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The first purpose of this paper is to show that for each Op*-algebra (1,.f.i1) whose weak 
commutant1~ is an algebra, there exists a closed Op*-algebra (~,g), which is the smallest 
extension of (1,.f.i1) satisfying ~~ = 1~ and ~~ g = g. The second purpose is to 
characterize an unbounded bicommutant1~17 of an Op*-algebra1. The third purpose is to 
generalize the well-known Radon-Nikodym theorem for von Neumann algebras to Op*-

algebras 1 satisfying the von Neumann density type theorem~':" = 1~17. 

I. INTRODUCTION 

In recent years algebras of unbounded operators have 
been studied by many mathematicians, both from the math­
ematical point of view and for applications in quantum phys­
ics.!-{j In particular, Powers introduced the notions of 
closed, Hermitian, and self-adjoint Op*-algebras in analogy 
with the notions of closed, Hermitian, and self-adjoint oper­
ators, respectively. The notation of self-adjointness has been 
indispensable in order to study Op*-algebras in detail. For 
such a study the weak commutant..4~ of an Op*-algebra 
(..4,.@) plays an important role. Indeed, it is well known 
that if..4 is self-adjoint, then..4 ~ .@ = .@ and..4 ~ is a von 
Neumann algebra. Though the condition..4 ~ .@ = .@ does 
not necessarily imply the self-adjointness of..4, many results 
have been obtained under the assumption ..4 ~ .@ = .@ 
without the one of self-adjointness of..4 (see Refs. 5 and 6). 
In Sec. III we shall show that though the condition "..4~ is 
an algebra" does not necessariJy i~ply ..4 ~ .@ = .@, there 
exists a closed Op*-algebra (..4,.@) which is the smallest 
extension of the Op*-algebra (..4,.@) satisfying~~ =..4~ 

A A A 

and..4~.@ =.@. 
Mathot has investigated topological properties of an un­

bounded weak commutant..4~ and unbounded bicommu­
tants ..4;17' ..4~17 of an Op*-algebra ..4 (see Ref. 7), and 
obtained that if..4 is an algebra of bounded operators (not 
necessarily leaving .@ invariant) then the strong*-closure 

Ji':" of ..4 equals the unbounded bicommutant ..4~17 
= ..4;17. This result is a generalization of the von Neumann 

density theorem for bounded operator algebras to the un­
bounded case. In Sec. IV we shall characterize the unbound-

/'.. A 

ed bicommutant ..4~u of..4 by using (..4,.@) instead of 
(..4,.@) and generalize the above Mathot result. 

In Sec. V we shall study a Radon-Nikodym theorem for 
unbounded operator algebras. Such a study was begun by 
Gudder,8 and hereafter was developed in Ref. 9. Here we 
generalize the well-known Radon-Nikodym theorem 10-12 

for von Neumann algebras to Op*-algebras satisfying the 
-,* von Neumann density type theorem (that is,..4 ' =..4 ~17 ), 

and investigate the Radon-Nikodym theorem obtained in 
Ref. 9 in more detail. Further, we apply the above results to 
the spatial theory for unbounded operator algebras. 

II. PRELIMINARIES 

Let .@ be a dense subspace in a Hilbert space f5. We 
denote by C(.@ , f5 ) the set of all linear operators X such that 
.@ (X) n.@ (X *) :J.@, and define a subset 2't (.@) of 
C(.@,f5) by 2't (.@) = {XEC(.@,f5); .@(X) = .@, 
X.@C.@,X*.@C.@}. Then C(.@,f5) is a *-invariant vec­
tor space with the usual operations and the adjoint X * and 
2't (.@) is a *-algebra with involution xt = X * /.@. 

A *-subalgebra..4 of 2't (.@) with identity operator I 
is said to be an Op*-algebra on .@ . An Op*-algebra..4 on .@ 
is also denoted by (..4,.@). 

Let (..4,.@) by an Op*-algebra. A locally convex topol­
ogyon.@definedbyafamily{1I . Ilx;XE..4} of semi norms 

Ilsllx = IIXs lI, SE.@, 

is said to be the induced topology on .@ , which is denoted by 
tJ/. If (.@, t~) is complete, then (..4,.@) is said to be 
closed. It follows from Ref. 5, Lemma 2.6, that for each Op*­

algebra (..4,.@) there exists a closed Op*-algebra (~,.@) 
that is the smallest closed extension of (..4,.@), which is 
said to be the closure of (..4,.@). 

If .@ = n XEd<.@ (X *), then (..4,.@) is said to be self-

adjoint, and if X * = X t for each X E..4, then (..4,.@ ) is said 
to be standard. 

Let .sf be a *-algebra. A *-homomorphism 1T of.sf onto 
an Op*-algebra on a dense subspace.@ (1T) in a Hilbert space 
f5 11' is said to be a *-representation of.sf in f5 11' with domain 
.@ (1T). A *-representation 1T of .sf is said to be closed (resp. 
self-adjoint, standard) if the Op*-algebra (1T(.sf),.@ (1T») is 
closed (resp. self-adjoint, standard). 

Let 1T be a *-representation of .sf. We let 

.@(iT)= n.@(1T(X»), 
XEd 

Then iT is a closed *-representation of.sf that is the smallest 
closed extension of 1T, which is said to be the closure of 1T (see 
Ref. 5). 

Let ¢ be a positive linear functional on a *-algebra .sf. It 
is easily shown that N", ~{XE.sf: ¢(x*x) = O} is a left ideal 
in .sf. For each xE.sf we denote by A", (x) the coset of .sf / N", 
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that contains x, and define an inner product ( 1 ) on A", (.sf) 
by 

(A", (x) 1,1", (y») = l,h(y*X) , X,YE.sf. 

Let [§ '" be the Hilbert space that is completion of the pre­
Hilbert space A", (.sf) . We denote by 1T '" the closure of a *­
representation 1T~ defined by 

1T~ (X)A", (y) = A", (xy), X,YE.sf. 

We call the triple (1T "', A"" [§ '" ) the GNS construction for I,h. 

III. WEAK COMMUTANT 

Let 1 be a closed Op*-algebra on a dense subspace fiJ 
in a Hilbert space [§. We define a weak commutant 1: of 
1 as follows: 

1: = {CE&if([§): (CXsl7]) = (Cslxt7]) 

for all XEJI, S,7]EfiJ}. 

Then 1: is a *-invariant weakly closed subspace of &if ( [§ ), 
but it is not necessarily an algebra.5

,13 For the relation 
between the self-adjointness of 1 and the weak commutant 
1;" we have the following lemma. 

Lemma 3.1: Let (1,fiJ) be a closed Op*-algebra. Con­
sider the following statements: (1) 1 is standard, (2) 1 is 
self-adjoint, (3) 1;" fiJ = fiJ, (3') Xis affiliated with1;':w 
for each XEJI, (4) 1: is a von Neumann algebra. Then the 
following implications hold: 

(3) 

(1) => (2)~il =>(4). 

(j) 

Though the above implication (4) =/ (3) does not nec­
essarily hold, we have the following. 

Theorem 3.2: Suppose (Jt ,fiJ) is an Op*-algebra such 
that~;" is an algebra. Then there exists a closed Op*-alge­
bra (1,fiJ), which is the smallest extension of (1,fiJ) sat­
isfying .ff;" = 1;" and.ff: fi; = fi;. 

Proof For each XEJI we define an operator XI' which is 
an extension of X as follows: 

fiJ 1= {.f CiSi: CiEJI:, Si EfiJ , n = 1,2, ... } , 
1= 1 

x{tl CiSi) = itl CiXSi , for itl CiSiEfiJ I . 

Since 

for all ~7 = I CiSiEfiJ I and 7]EfiJ, it follows that XI is a well­
defined linear operator on fiJ I that is an extension of X. Since 
1;" is an algebra, it follows that 

(X{tl CiSi) Ij~1 Dj 7]j) = itl j~1 (D 1CiXSi 17] j) 

n m 

= L L (D1CiSilxt7]j) 
i= Ij= I 
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for all ~7= I CiSi, ~j'= ID j 7] jEfiJ I' andXEJI, which implies 
that (1 l,fiJ I) is an Op*-algebra satisfying 1: = (1 1): 

and 1;" fiJ 1 = fiJ I' Hence it is easily shown that the closure 
A A 

(1,fiJ) of the Op*-algebra (1 1,fiJ 1 ) satisfies our asser-
tions. This completes the proof. 

For polynomial algebras we have the following. 
Corollary 3.3: Let fiJ be a dense subspace in a Hilbert 

space [§. Then the following statements hold. 
( 1) Let X be an Hermitian operator in ji"t (.9) and 

9 (X) be the Op*-algebra on .9 generated by X. Suppose X 
is essentially self-adjoint. Then there uniquely exists a closed 
Op*-algebr~ ~),fi;) which is an extensio~ oft ~ (X),£0) 
such that ~: = .9 (X): and ~: fiJ = fiJ, which 
is a standard Op*-algebra with fi; = n;: = I fiJ (X" ). 

(2) Let X and Y be Hermitian operators in ji"t (fiJ) 
such that XY = YX, and 9 (X, Y) be the commutative Op*­
algebra on fiJ generated by X and Y. Then the following 
statements hold. 

(a) Suppose X and Yare essentially self-adjoint. Then 
9 (X, Y);" is an algebra. 

(b) Suppose X nand Y n are essentially self-adjoint for 
n = 1,2, .... Put 

fiJ*(9 (X,Y») = n fiJ(P(X,Y)*) , 
P(X, Y)E.'? (X, Y) 

P*(X,y)S = P(X,y)*s, sEfiJ*(9 (X,Y») , 

where P is the conjugate of a polynomial P. Then 
9 * (X, Y) = {p * (X, Y): P is a polynomial} is a self-adjoint 
Op*-algebra on £0*(9 (X,Y»). 

(c) X and Y are self-adjoint operators with mutually 
commuting spectral projections if and only if 9 (X, Y) is 
standard. In this case 

00 

fiJ = n (.9(Xn)nfiJ(yn»). 
n=1 

Proof: (I) By Ref. 5, Lemma 3.2, 9 (X);" is an algebra. 
It hence follo~m Jheorem 3.2 that there exists a closed 
Op*-algebra (9 (X),fiJ) which is the smallest e~te sion of 

~ A 

(9 0"),fiJ) such that 9 (X);" = 9(X): and 9(X ;" fiJ 
= fiJ, which implies by Ref. 13, Theorem 2.1, that 
............... A 

(9 (X) ,fiJ) is standard and 

fi; = n £0(Xn). 
n=l 

(2) (a) Since 9 (X,Y);" = 9 (X);" n 9 (Y);", it fol­
lows from (Ref. 5, Lemma 3.2) that 9 (X, Y);" is an algebra. 

(b) It is easily shown that 9 * (X, Y) is an Op*-algebra, 
which implies that 9 * (X, Y) is self-adjoint. 

(c) This follows from Ref. 13, Theorem 3.2. 
For the study of Op*-algebra (1,fiJ) many results 

have been obtained under the assumption that (1,£0) is 
self-adjoint. 2

•
5

,6.9 By Theorem 3.2 we can obtain similar re­
sults under the weaker condition "1;" is an algebra" than 
the self-adjointness of 1. For example, we have a slight 
extension of Powers results Ref. 5, Theorems 7.1 and 7.3. 

Corollary 3.4: Suppose (1,fiJ) is a commutative Op*­
algebra such that Jt:, is an algebra. Then (.ff,fi;) is stan­
dard if and only if Jt;,:w is commutative. 

Corollary 3.5: Let .sf be a commutatuve *-algebra with 
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identity e and ¢ be a positive linear functional on .sf. Suppose 
17"", (.sf) ~ is an algebra. Then ¢ is strongly positive if and only 
if 17"", (.sf) is standard. 

IV. UNBOUNDED BICOMMUTANTS 

In Ref. 7 Mathot has introduced an unbounded commu­
tantv&'~ and unbounded bicommutantsv&''' andv&''' ofa 
*-invariant set v&' of unbounded operators, ;~d investi~ated 
when v&':;'" or v&';" equals the closure ~t ~ of v&' relative to 
the strong*-topology t ~. In particular, she has obtained the 
result that if (v&',EJ) is an algebra of bounded operators 

(not necessarily leaving EJ invariant), then ~'~ = v&''' 
"" 

In this section we characterize the unbounded bicom­
mutant v&':;'" of a *-invariant set v&' of unbounded operators 
and generalize the above Mathot result. 

We first define some locally convex topologies on 
C( EJ ,:1 ). Locally convex topologies on C (EJ ,:1) defined 
by systems {p,;,,! ( . ); 5, 7]EEJ}, {p,; ( . ); SEEJ}, and 
{p t ( , ); SEEJ} of seminorms, 

P,;,,! (X) = (XSI7]) , 

Ps(X) = IIXn, Pt(X) = IIXsl1 + IIX*sll, 

are said to be a weak topology, a strong topology, and a 
strong*-topology, which are denoted by tw ' t" and t~, re­
spectively. 

We next define unbounded commutants v&' ~, v&' ~ and 
unbounded bicommutants v&':;'", v&''' , v&''' , and v&''' of a 
*-invariant subset v&' of C(EJ,:1) a;follO\;~: cc 

v&'~ = {SEC(EJ,:1); (XsIS7]) = (S*sIX*7]), 

for all XEv&', S,7]EEJ}, 

v&'~ =v&'~n2'+(EJ), 

v&':;'" = {XEC(EJ,:1); (CXSI7]) = (CsIX *7]), 

for all CEv&'~, S,7]EEJ}, 

v&';" = {XEC(EJ,:1); (SsIX7]) = (X*sIS*7]), 

for all SEv&' ~, 5, 7]EEJ} , 

v&'~~ = {XE2' + (EJ); xs = SX, for all SEv&'~} . 

Then we have the following. 
Lemma 4.1: (See Ref, 7.) Let v&' be a *-invariant subset 

of C (EJ ,:1 ). Then the following statements hold: ( 1 ) v&' ~ is 
a strongly*-closed subspace of C( EJ,:1 ), (2) v&'; is an Op*­
algebra on EJ, (3) v&':;'" is a strongly*-closed *-invariant 
subspace of C( EJ ,:1) containing v&' U v&':;'w' (4) v&':;'" is a 
strongly*-closed *-invariant subspace of C( EJ ,:1) contain­
ing v&', and (5) if v&' EJ = EJ, then v&';~ is an Op*-algebra 
on EJ containing v&'. 

We now investigate the relation between the unbounded 
--,. 

commutant v&':;'" and the closure v&':;'w ' of v&':;'w relative 
to the strong*-topology. 

Theorem 4.2: Let v&' be a *-invariant subset of 
C(EJ,:1). Consider the following statements: 

( 1) v&' ~ is an algebra, 

(2) 
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(3) v&':;'w'~n2'+ (EJ) =v&'~ . 

Then the following implications hold: 

(1)< "(2) 

U 
(3) • 

In particular if v&' is an Op*-algebra on EJ, then the state­
ments (1 )-(3) are equivalent. 

Proof (1)==>(2). Since v&':;'wt~Cv&':;'" by Lemma 

4.1 (3), it is sufficient to show v&':;'" C v&':;'w':. Take arbi­
trary XEv&':;,,,. We let 

EJ, = tt, CkSk: CkEv&'~, Sk EEJ } , 

x,Ct, CkSk) = kt, CkXSk' for 

Since v&' ~ is an algebra, we have 

(x{t, CiSi) I j~' D j 7]j) = it, j~' (XsiIC~Dj7]j) 
n m 

= L L (D1CiSiIX *7]j) 
i=' j=' 

= (.f CiSi I i D j X*7]j), 
1=' J=' 

for each ~7 = , Ci Si' ~j=, D j 7] j EEJ " which implies that 
X,EC(EJ ,,:1) and X, is affiliated with v&':;'w' Hence there 
exists a sequence {An} in v&':;'w such that 
limn_ oo AnS=X,S and limn_ oo A~S =Xfs for each 
SEEJ ,. Since EJ C EJ " it follows that limn _ 00 An 5 = Xs and 

limn_ 00 A ~S = X *5 for each SEEJ. Hence XE v&':;'w t:. 
(2) ==> (1). For each C"C2Ev&'~, XEv&', and S,7]EEJ we 

have 
(C,CzXSI7]) = lim(CzAaSICf7]) 

a 

= lim(CztlA :Cf7]) 
a 

= lim(C,CztIA :7]) 
a 

= (C,cztiX*7]) , 

where {Aa} is a net in v&':;'w which converges to X for the 
strong*-topology. Hence C,C2Ev&'~. 

(2) ==> (3). This is trivial. 
Suppose v&' is an Op*-algebra on EJ. Since v&' Cv&'~, 

we can prove the implication (3) ==> ( 1 ) in the same way as 
in (2) ==> (1 ). This completes the proof. 

Let v&' be a *-invariant subset of C( EJ,:1) such that 
v&' ~ is an algebra. Then 

7/'~C //" C //" = v&''' ': v« ...".,u UO' o./U wa ww' 

U 

v&';~ Cv&':;'c = v&':;'w ': n2't(EJ) . 

By Theorem 4.2 we have the following Corollary 4.3, 
which is a slight generalization of Ref. 7, Proposition 9. 

Corollary 4.3: Suppose v&' is a *-invariant subset of 
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C( fiJ ,[9) with identity operator such that vii;: = vII;:'w, 

where vIIb = {AE.-4; A is bounded}. Then Jit:" = vii:;". 

v. RADON-NIKODYM THEOREMS 
We first generalize the well-known following Radon­

Nikodym theorem for von Neumann algebras to the un­
bounded case: every O"-weakly continuous positive linear 
functional ¢ on a von Neumann algebra 1 with a cyclic and 
separating vector So is represented as 

¢(A) = (AS Is), AE.-4, 

for a unique vector sE9 # == {AA· So: AE.-4}: in particu­
lar, 

¢(A) = (AHSoIHSo), AE.-4, 

for some positive self-adjoint operator H affiliated with vii. 
Let vii be an Op*-algebra on a dense subspace fiJ in a 

Hilbert space [9. We let 

fiJ OO (1) = {{Sk}CfiJ; 

ktl IIXsk I1
2

< 00, for all XE.-4}; 

[X ]{tk} = {XSk }, XE.-4, {tk}EfiJ 00 (vii) ; 

[1] = {[X]; XE.-4}. 

Then we have the following, 
Lemma 5.1: (1) ([1], fiJ 00 (1») is an Op*-algebra. 
(2) (vII,fiJ) is closed if and only if ([1],fiJ '" (1») is 

closed. 

(3) 1 ~ is an algebra if and only if [1] ~ is an algebra. 
(4) 1~ fiJ = fiJ if and only if [1] ~ fiJ 00 (vii) 

= fiJoo (1). 

(5) (vII,fiJ) is self-adjoint if and only if ([vii], 
fiJ 00 (1») is self-adjoint. 

Let 1 by an Op*-algebra on a dense subspace fiJ in a 
Hilbert space [9 and [9 '" be the direct sum of the Hilbert 
spaces [9 n = [9 for n = 1,2, .... The weakest locally convex 
topology on 1 such that the map X -+ [X] of JI into 
(C (fiJ 00 (1),[900), tw) [resp. (C(fiJ oo (1),[9"'), t

s
), 

(C(fiJ oo (vII),[9"'), t;")] is said to be a O"-weak (resp. 0"­

strong, O"-strong*) topology for 1, which is denoted by t:;:' 
(resp. t:;, t~~). 

Lemma 5.2: Let 1 be a closed Op*-algebra on a dense 
subspace fiJ in a Hilbert space [9 such that 1 ~ fiJ = fiJ. 
Then the following statements hold. 

(1 ) Suppose Jit:" = 1;:'".. Then the positive linear 
functional ¢ on 1 is weakly continuous if and only if ¢ is 
represented as 

n 

¢(X) = I (XSk ISk)' XE.-4, 
k~l 

for some finite subset {Sk }l<k<n of fiJ. 

(2) Suppose [Ji]'~ = [vii];:'".. Then a positive linear 
functional ¢ on 1 is continuous with respect to the O"-weak 
topology for 1 if and only if ¢ is represented as 

00 

¢(X) = I (XSk ISk)' XE.-4, 
k~l 
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for some {S k }EfiJ 00 (1). 

In this case, if 1;:'w possesses a separating vector, then 

¢(X) = (XS Is), XE.-4, 

for some SEfiJ. 
Proal We will first prove statement (2). Suppose ¢ is 

continuous relative to the O"-weak topology t:;:' for 1. Then 
there exists an element {17k} of fiJ 00 (1) such that 

1¢(X)I<iktl(X17kI 1/k)I, 
for all XE.-4. Hence it follows that 

IIA.p(X)II<II[X]{17k}ll, (5.1) 

for all XE.-4. We let 

CO [X]{17k}=A.p(X), XE.-4. 

Then by (5.1), Co is extended to a continuous linear map Co 

of [1]{17k} into [9.p. Since [1]~ fiJoo (1) 
--t· 

= fiJ'" (vii) by Lemma 5.1 and [1]' = [1];:'0" we 
have 

[1]{17k} = [1];:'w{17k}' 

whichimpliesthattheprojectionP from [9'" to [1]{17k} 

belongs to [1] ~. We now show 

(5.2) 

For each AE.-4;:'w and x, YE[9 '" there exist sequences {Xn} 
and {Yn} in 1 such that limn _ 00 [Xn ]{17k} = Px and 
limn _ 00 [Yn ]{17k} = Py, and since 

[1;:'w] = [vII];:'wC[vII];:'". = [1]t~, 

there exists a net {Xa } in vii such that 
00 

lim I IIXask - ASk 112 
a k~ 1 

00 

= lim I IIX a+Sk -A *sk112 = 0, 
a k~ 1 

(C [A ]xly) = (CoP [A ]xIC~) 

= lim (Co[A l[Xn ]{17k}ICo[Ym ]{17k}) 
m,n- 00 

= lim lim(Co[XaXn]{17k}ICo[Ym]{17k}) 
m,n- 00 a 

= lim lim(A.p (XaXn ) IA.p (Ym » 
m,n- 00 a 

= lim lim(A.p (Xn ) IA.p (X a+ Y m ») 
m,n- 00 a 

m,n--- 00 a 

x {17k}ICo[Xa ] + [Ym ]{17k}) 

= lim (Co[Xn ]{17k}ICo[A ]*[Ym]hk}) 
m,n_ 00 
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Hence CE[Jl:':w]~ = [Jl]~. Since [Jl]~§OO (Jl) 
=§OO(Jl), it follows that CI/2E[Jl]~ and {Sk} 
==C I/2{1Jk}E§00 (Jl), which implies that 

cp(X) = (A.p (X) IA", (1)) = (C [X ]{1Jk}lhk}) 

= ([X]C 1/2{1Jk}IC 1/2{1Jk}) 

'" 
= I (Xsklsk) ' 

k=1 

for allXEJI. 
The converse is trivial. 
Suppose Jl:':w possesses a separating vector 1Jo and 

cp(X) = };k= I (XSk ISk), XEJI, for some {Sk}E§oo (Jl). 
We let 

° o 

It is proved in the same way aSPE[Jl] ~ thatEIE[Jl] ~.It is 
clear that E2E[Jl] ~ and Z(EI ) <:Z(E2) = I, where Z(Ei ) 

is the central support of Ei (i = 1,2). Further we have 

{Sk}EEI ~ 00 

and 

and 

and 

(~ E2[Jl]~E2ijO= ~ )=E2~00, 

since 1Jo is a separating vector for Jl:':w' 
It hence follows from Ref. 10, Part III, Chap. I, Lemma 

4, that there exists an operator V in [Jl] ~ such that 
V*V = EI and VV*<:E2' Then we have 

VV*V{Sk} = VEI{Sk} = V{Sk} , 

and so V{Sk}EE2~ 00, which implies by [Jl]~ 
X§oo (Jl) = §oo (Jl), that 

V{$,} ~ (nfO, somesefP . 

Thus we have 

cp(X) = ([X ]{sk}I{Sk}) = (V*V [X ]{sk}I{Sk}) 

= ([X] V{sk}IV{Sk}) 

= (Xsls) , 

for allXEJI. 
The proof of statement (1) is similar to (2). 

Theorem 5.3: Let (Jl,§) be a closed Op*-algebra such 
--t* 

thatJl~§ = § and [Jl] , = [Jl]:':" and a vector So in 
§ be strongly cyclic for Jl and separating for Jl:':w' Then, 
for every positive linear functional cp on Jl, which is contin-
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uous with respect to the a-weak topology of Jl there exists a 
unique element S of 

9#( == {AA *So; AEJI:':w}) n§ 

such that 

cp(X) = (Xsls) , 

for allXEJI. In particular, there exists a positive self-adjoint 
operator H affiliated with Jl:':w such that SoE§ (H), 
HSoEfiJ, and 

cp(X) = (XHSoIHSo) , 

for all XEJI. 
Proof' By Lemma 5.2 there exists a vector ;oE§ such 

that 

cp(X) = (X;ol;o) , 

for all X EJI. We can prove this theorem in analogy with Ref. 
12, Theorem 15.1 as follows. We define a a-weakly contin­
uous linear functional (i)~o'50 on the von Neumann algebra 
Jl~ by 

(i)~o'5O<C) = (C;olso), CEJI~. 

Let (i)~'''50 = R v' tI/ be the polar decomposition of (i)~o'50' and 
put 

S = V'*;o' 

Then since Jl ~ § = § and 

9#n§ = {;E~qJ'; (i)~'50>0}, 

it follows that sE9 # n fiJ and ;0 = V'S, which implies 

cp(X) = (X;ol;o) = (X;ol V'S) 

= (XV'*;ols) 

= (Xsls) , 

for all X EJI. Thus the existence of S is shown. We next show 
the uniqueness of S. Suppose 

cp(X) = (XsIlsI) = (Xs2 Is2)' XEJI, 

for some SI' S2E9# n§. Since 

we have 

(AsIlsI) = (AS2Is2)' 

for allAEJI:':w' which implies by Ref. 12, Theorem 15.1, that 

SI =S2' 
We now let 

HoCSo = Cs, CEJI~. 

Since (i)~o >0, it follows that Ho is a positive operator whose 
closure Ho is affiliated with Jl:':w' Friedrich's extension H of 
lio fulfills our assertions. This completes the proof. 

We next consider to extend Gudder's Radon-Nikodym 
theorem for Op*-algebras. 8 Gudder introduced the follow­
ing notions. 

Definition 5.4: Let (Jl,§) be a closed Op*-algebra 
with a strongly cyclic vector So and cp be a positive linear 
functional on Jl. If XSo---->A.p (X) is continuous (resp. closa­
ble), then cp is said to be (i) 50 -dominated (resp. strongly (i) 50 -
absolutely continuous), where (i)50 denotes a positive linear 
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functional on JI defined by 0);0 (X) = (Xsolso). Iffor each 
XE..ff there exists a sequence {Xn} in JI such that 
limn_ 00 XnSO = 0 and limn _ 00 A¢ (Xn ) = A¢ (X), then t/J is 
said to be 0);0 -singular. 

We obtain the following result: for each strongly 0);0-

absolutely continuous positive linear functional t/J on JI 
there exists a positive self-adjoint operator H in f1 such that 

t/J(X) = (HXsoIHso) , 

for all XE..ff. However, as the relation between the above 
Gudder Radon-Nikodym derivative H and the Op*-algebra 
JI is vague, we obtained in Ref. 9 that under the assumption 
that 1T¢ + "'!;" (JI);" is an algebra t/J is strongly 0);0 -absolutely 
continuous if and only if there exists a sequence {H ~} of 
positive operators in JI;" such that 

t/J(X) = lim (H ~Xsolso) , 
n- 00 

for all XE..ff. By investigating the above results in more de­
tails, we obtain the following lemma. 

Lemma 5.5: Let (JI ,.9 ) be a closed Op*-algebra with a 
strongly cyclic vector so such that JI;".9 = !iJ. Then the 
following statements hold. 

(1) t/J is a 0);" -dominated positive linear functional on 
JI if and only if there exists a positive operator H' in JI;" 
such that 

t/J(X) = (XH'soIH'so) , 

for all X E..ff . 
In the following (2) and (3), suppose t/J is a positive 

linear functional onJi such that1T¢ + '" (JI);" is an algebra. 
!;" 

(2) The following statements are equivalent: (2') t/J is 
strongly 0);" -absolutely continuous, (2") t/J is represented as 

t/J(X) = lim (H ~Xsolso), XE..ff, 
n_ 00 

for some positive sequence {H ~ } in JI;" such that 
limn_ oo H~1!2 Xsexistsin f1 foreachXE..ff, (2"') t/Jis repre­
sented as 

t/J(X) = (XH'soIH'so), XE..ff, 

for some positive self-adjoint operator H' affiliated with JI;" 
such that !iJ (H') "':JJI SO. 

(3) t/J is decomposed into the sum 

t/J =t/Ja +t/Js, 

where t/Ja is a strongly 0);" -absolutely continuous positive 
linear functional on JI and t/Js is a 0);0 -singular positive lin­
ear functional on JI. If t/J is strongly 0);" -absolutely contin­
uous, then t/J = t/Ja; and if t/J is 0);" -singular, then t/J = t/Js. 

Proof' Statements (1), (3), and the equivalence of (2') 
and (2") follow from Ref. 9, Theorem 3.2 and Theorem 3.3. 

(2"') ==> (2'). This is trivial. 
(2") ==> (2"'). We define an operator H ~ in f1 as fol­

lows: 

.9 (H ~) = {SEf1; lim H ~ 1!
2s exists in f1}, 

n_ 00 

H ~s = lim H ~ 1!2S, for sE!iJ (H ~) . 
n_ 00 
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Then H ~ is a positive operator in f1 such that !iJ (H ~ ) 
"':JJI SO. Further, since 

for each AE..ff:w and sE!iJ (H ~), it follows that H ~ is affi­
liated with JI;". We denote by H' the Friedrichs self-adjoint 
extension of H ~. Then H' is a positive self-adjoint operator 
in f1 affiliated with JI;" such that!iJ (H') "':JJlso and 

t/J(X) = (H'XsoIH'So) , 

for all XE..ff. Further, since {H ~ 1I2yso}C.9 and 

n_ 00 n_ 00 

for each X, YE..ff, so that 

t/J(X) = (H'XsoIH'so) 

= (XH'soIH'so) , 

for all XE..ff. This completes the proof. 
Theorem 5.6: Let (JI,.9) be a closed Op*-algebra such 

that JI;"!iJ = !iJ and a vector So in !iJ be strongly cyclic for 
JI and separating for JI:w ' Then the following statements 
hold. 

( 1) Every 0);" -dominated positive linear functional t/J on 
JI is represented as 

t/J(X) = (XHsoIHso), XE..ff, 

for a unique positive operator H in JI:w such that HsoE.9. 
(2) Every strongly 0);0 -absolutely continuous positive 

linear functional t/J on JI such that 1T ¢ + OJ!;" (JI);" is an alge­
bra is represented as 

t/J(X) = (Xs Is), XE..ff, 

for a unique vector sin 9 # n.9. In particular, there exists 
a positive self-adjoint operator H affiliated with JI:w such 
that soE!iJ (H), HsoE.9 and 

t/J(X) = (XHsoIHso) , 

for all XE..ff. 
Proof The existence of H in ( 1) and s,H in (2) follows 

from Lemma 5.5 and the proof of Theorem 5.3. We show the 
uniqueness of H in (1). Suppose 

t/J(X) = (XHsoIHso) = (XKsoIKSo), XE..ff, 

for some positive operators Hand K in JI:w such that Hso, 
KsoE.9. Since t/J is 0)50 -dominated, it follows from Lemma 
5.5 that there exist operators H' and K' in JI;" such that 
H 'Xso = XHso and K 'Xso = XKso for all XE..ff. Then we 
have 

(H'*H'XsoIYSo) = (XHsoIYHso) 

= (XKsol YKso) 

= (K'*K'XsoIYSo) , 

for all X, YE..ff, and henceH'*H' = K '*K', which implies 

(AHsoIHso) = (AH'soIH'so) = (AK'soIK'so) 

= (AKsoIKso) , 

for all AE..ff:w ' By the uniqueness of Sakai's Radon-Niko-
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dym derivative (Ref. 12, Theorem 15.1), we have H = K. 
This completes the proof. 

Remark 5. 7: We may alter the condition "1;" fiJ = fiJ" 
in Lemma 5.2, Theorem 5.3, Lemma 5.5, and Theorem 5.6 to 
the weaker condition "1;" is an algebra." For, by Theorem 
3.2 there exists a closed Op*-algebra (1,.@) which is an 
extension of (1,fiJ) satisfying 1;" = 1;" and 1;".@ 
= .@. Hence we have only to consider the Op*-algebra 
(1,.@) instead of the Op*-algebra (1,fiJ). 

The spatial theory for Op*-algebras was investigated in 
Refs. 1+.-16. In particular, Takesue15 obtained many results 
for such a study. We have the following results by using 
Lemma 5.1, Theorem, 5.6, and Takesue's results (see Ref. 
15, Theorem 3.1, Theorem 3.8). 

Corollary 5.8: Let (1,fiJ) be a self-adjoint Op*-algebra 
with a strongly cyclic vector So' 1]0 be a separating vector for 

--t" 
1;w and a be a *-automorphism of 1. Suppose [1]' 
= [1];". Then, if a and a-I are continuous relative to the 

(T-weak topology for 1, then a is represented as 

a(X) = UtXU, X6vR, 

for some 

UE!/t (fiJ ) u ~ {UE!/t (fiJ ); fJ is unitary} . 

Corollary 5.9: Let (1,fiJ) be a self-adjoint Op*-alge­
bra, So be a strongly cyclic vector for 1 and a separating 
vector for 1;w' and a bea *-automorphismof1. Then the 
following statements hold. 

(1) Suppose both the map Xso---+a(X)so and 
Xso---+a- 1(X)so are continuous. Then a is represented as 

7 J. Math. Phys., Vol. 28, No.1, January 1987 

a(X) = utxu, X6vR, 

for some UE!/t (fiJ ) u • 

(2) Suppose 1Tw +w Oa (1);" is an algebra, and both 
s" ,,, 1 

the map Xso---+a(X)so and Xso---+a- (X)So are closable. 
Then a is represented as 

a(X) = UtXU, X6vR, 

for some UE!/t (fiJ ) u • 
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On classical theory of moments: Finite-set-of-moments approach. I. Non­
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For an unknown non-negative distribution O(z), the corresponding Hankel transform F(k) is 
introduced. It is proposed to partition F(k) in such a way that each component satisfies a 
linear differential relation whose solution gives an approximate Hankel transform in terms of a 
given finite set of even moments. As a result, for a known finite set of even moments, the non­
negative distribution 0 (z) is obtained in the form of a finite sum of the definite differential and 
integral forms of the Gaussian distributions. 

I. INTRODUCTION 

One of the basic problems in the classical theory of mo­
ments 1-3 consists in constructing explicitly the unknown 
non-negative distribution or density ill (z) from its complete 
set of moments, 

(1) 

This problem is not purely mathematical, since the related 
problems arise also in theoretical physics and quantum 
chemistry. However, their peculiarity is related to the fact 
that only a few moments of the unknown non-negative dis­
tribution are given in contrast to the purely mathematical 
content of the classical problem of moments. Naturally, such 
empirical content of the classical problem of moments has a 
specificity, in particular, that the problem of constructing a 
non-negative distribution from a given finite set of its mo­
ments has no unique solution and, as emphasized by Corco­
ran and Langhoff,4 is of continuing interest. The maximum 
entropy functional concept is one of the approaches to re­
solve such problems and is used widely in theoretical physics 
and quantum chemistry (see, for example, Ref. 5). This 
technique has been realized recently for momentum-space 
distributions of many-electron systems, in particular for the 
Compton profiles, and allows us to represent explicitly the 
momentum-space distributions in terms of their first few 
moments. 6

,7 

The present series of papers gives an alternative solution 
of the finite-set-of-moments problem. In Paper I, we restrict 
ourselves to the particular case of this problem where a finite 
set of even moments (z2m) is given. A general case of an 
incorporation of odd moments is studied in Paper II of this 
series. The structure of this paper is as follows. Some neces­
sary definitions are given in the next section. The basic idea 
of the present approach is illustrated in Sec. III. A general 
solution of the problem for a given finite set of even moments 
is presented in Sec. IV. Some concluding remarks are made 
in Sec. V. Throughout this paper, the superscript [n] de­
notes the nth order, while the superscript (n) does the nth 
derivative. 

II. DEFINITIONS 

In view of making bridges between the purely math­
ematical problem of the classical theory of moments and the 
related problems arising in theoretical physics and quantum 
chemistry, we may modify the definition of the moment 
(zn) '" given by Eq. (1). For this purpose, we introduce a 
distribution O(z) and define its moment (zn)n as follows: 

(Zn)=41T f" dZZn+
20(z), n = - 2, -1,0,1,.... (2) 

For a given non-negative distribution O(z), let us define the 
function F( k) as its Hankel transform, 

F(k)=41T 100 

dzz20(z)jo(kz), O<k< 00, (3) 

wherejn (kz) is the spherical Bessel function. Inverting Eq. 
( 3 ), one obtains 

(4) 

that is, F(k) and O(z) constitute a pair of Hankel trans­
forms. From Definitions (2) and (3), it follows immediately 
that 

F(O) = (Zo) 

and (5) 

F(2n)(0) = ( - l)n(z2n)/(2n + 1), n;>l. 

In the usual three-dimensional coordinate (r) space, 
O(r) plays the role of a spherically symmetric one-particle 
density or charge distributionp(r) normalized to the num­
ber of particles N of a given many-particle system, i.e., 
(rO) = N. In momentum (p) space, O( p) can be a spheri­
cally symmetric momentum distribution p ( p) (see, for ex­
ample, Ref. 7 as a review). In the particular case of closed­
shell atoms and ions,p(r) is one-electron density, and F(k) 
is the so-called atomic scattering factor I( k), which satisfies 
some well-known sum rules8 

(r- I ) =.3.. ("" dkl(k), 
1T Jo 

(r- 2) = fO dk kl(k). 

(6a) 

(6b) 
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Equations (6a) and (6b) together with Eq. (5) in the form 
off(O) = (,.0) = N are the unique exact relations that con­
nect the atomic scattering factor with the moments of the 
atomic charge distribution. There also exists an approximate 
relation of the same nature arising from the expansion ofEq. 
(3) at small values of k (Ref. 9): 

f(k) = N - (r)k 2/3! + (r4 )k 4 /5! + O(k 6). (7) 

Equation (7) has been exploited recently to reconstruct 
f(k) approximately,1O but it is impossible to reproduce the 

corresponding per) starting from Eq. (7) due to its diver­
gence at large k. 

III. BASIC IDEA: AN EXAMPLE OF FIRST FEW 
MOMENTS 

To illustrate the basic idea of the present approach, let 
us differentiate Eq. (3) twice with respect to k. We obtain 

F(1)(k) = -417' I" dzz3n(z)jl(kz), (8) 

F(2)(k) = _ 417' ("" dz z4n(z) [jo(kz) - 2j2(kz)], 
3 Jo 

(9) 

smce 

[jn(x)](1) = (2n + l)-l[njn_1 (x) - (n + l)jn+1 (x)]. 

Introducing an operator function U(k) in such a way that 

U(k)F(k) =417' 1"" dz z4n(z)j0(kz), (lOa) 

or 

U k 
_ fodz z4 n(z) jo(kz) 

( ) = , 
fodz z2n(z)jo(kz) 

(10b) 

one can derive the following second-order differential rela­
tion for F(k): 

F(2)(k) + (2/k)F(I)(k) + U(k)F(k) =0. (11) 

As follows directly from Definition (10), U(k) satisfies the 
constraint 

(12) 

Replacing U(k) in Eq. (11) with its value at k = 0, Eq. 
(12), one can interpret the resultant relation as a second­
order linear differential equation for the zeroth-order ap­
proximate Hankel transform F [0) (k): 

[F[0)(k)](2) + (2Ik)[F[O)(k)](I) +aF[O)(k) =0. 
(13) 

Equation (13) is a special case of the differential equation 
for the spherical Bessel function, and its solution takes the 
following simple form: 

F[O)(k) = (ZO)jo{[ (Z2)/(zO)]112 k). (14) 

When F [0) (k) is expanded for small k, the first two terms of 
F[O)(k) andf(k) [Eq. (7) 1 coincide with one another. 

Let us now evaluate n[OI(z) corresponding to F[O)(k) 
via the rule given by Eq. (4). In contrast to the expansion 
(7), the Hankel transform of F[OI(k) does exist. The result 
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is 

(15) 

Therefore, 0.[0) (z) approximates the true non-negative dis­
tribution 0. (z) by means of a single delta-point "charge" (or 
"mass"). Evidently, this approximation is poor, and in order 
to improve it, let us return to Definition (10) of U(k). 

It is fairly easy to show that U(l) (0) =Oand 

U(2)(O) =J... [(Z2»)2 _ (Z4)] = -213, (16) 
3 (ZO) (ZO) 

if we remind the propertiesjo(O) = 1 andjn (0) = 0 (n> 1) 
for Definition (10) and its differential forms. Then one can 
write the following second-order linear differential equation 
for the first-order approximation F[ll(k) to the Hankel 
transform F(k): 

[F[I)(k)] (2) + (2Ik) [F[I)(k)] (I) 

+ (a - 13k 2)F[I) (k) = O. (17) 

The solution ofEq. (17) has the following explicit form [see 
Eq. (2.273.11) of Ref. 11]: 

F[l) (k) = k -3/2 [ C I Ma/4 /13.1/4 ($k 2) 

(18) 

where MK.I-' (x) is the Whittaker function which is express­
ible in terms of the degenerate hypergeometric function as 

MK,I-' (x) = xl-' + 1/2 exp( - x/2) IFI (! + f.l - K,2f.l + 1,x), 

(19) 

and C I and Cz are numerical constants. SinceF(k) is finite at 
k = 0, or in other words (ZO) < 00 as follows from Eq. (5), 
we must put C2 = O. Taking Eq. (5) into account, one can 
obtain CI = (ZO) 13 -3/8 and 

F[II (k) = (zO)exp( - yk z) IFI (a,b,2yk 2) 

= (ZO) [IFI (a,b, - 2 ~)exp( - yxk 2
)] , 

dx X= I 

(20) 

with a = (3 - a/$)/4, b = 3/2, and y =.,;{3 /2. 
Expanding F[II(k) in the Taylor series at k = 0 and 

taking into account the first three terms in this series expan­
sion, one has 

F[I)(k) = (ZO) - a(zO)k 2/3! 

+ (6f3+az )(zO)k 4/5!+O(k 6
), (21) 

which coincides exactly up to the terms proportional to k 4 

with the expansion (7) for the atomic scattering factorf(k) , 
if nCr) = per). It is clear that the form of F [11(k) given by 
Eq. (20) is more applicable to problems in theoretical phys­
ics and quantum chemistry than the expansion (21) [or (7) 
for the atomic scattering factor 1, since in particular it is de­
fined on the whole interval O<k < 00, converges as k ap­
proaches to an infinity, and its Hankel transform, the re­
quired distribution n[I)(z), follows from a simple 
evaluation. In fact, bearing in mind the formula ( 11.4.28) of 

E. S. Kryachko and T. Koga 9 



                                                                                                                                    

Ref. 12, one obtains 

O[IJ(Z) = 2(zO) (J-3/4 ~ (a)nr(n +~) 
rr2 n~o zn + 3/2n! (b) n 

X I FI (n + ~,~, - z2/4y) , (22) 

with (a)n =r(a + n)/r(a). However, there exists an alter­
native way to express 0 [I J (z) in a more convenient form. 
Taking Eq. (11.4.29) of Ref. 12 into account, we have 

fO dk exp( - yk 2)k 3/2JI12(kz) 

(23) 

100 

dk exp( - yk 2)k 2n + 3I2JI/2(kz) 

= (_l)nzIl22-312 d
n
[y-3/2 exp ( -z2/4y)]. (24) 

dyn 

Therefore 

O[IJ(Z) = (ZO) f (- l)n(a)n (Jn12 

8~/2 n=O n!(b)n 

d n [y-3/2 exp( _ z2/4y)] 
X--~----~--~~~ 

dyn 

= (ZO) [ F (b 2 d) -3/2 8~/2 I I a, ,- dx (xy) 

( 
_ Z2)] Xexp ---- . 
4xy X= I 

(25) 

Hence the distribution 0 [I J (z) takes a definite explicit 
form given by convergent degenerate hypergeometric series 
I FI (a,b, - 2d /dx) ofthe normal or Gaussian distribution. 
It should be emphasized here that in deriving O[IJ(Z), we 
have assumed that a and (J are positive to provide a non­
negativity of 0 [I J (z). Notice that in the r space these condi­
tions are automatically satisfied for all closed-shell atoms 
and ions whose moments, (r) and (r4), are available. In 
particular, based on the known Z-dependence of (r) and 
(r4

) (see Ref. 10), one can demonstrate that in the limit 
Z --+ 00, a approaches ~, and (J is positive and behaves as 
Z -0.95. Thereforep[IJ(r) =O[1J(r) is non-negative. 

Obviously, the approximate distribution O[IJ (z) is cor­
rect in the sense that it gives the correct zeroth, second, and 
fourth moments as follows immediately from Eq. (21), i.e., 
(ZO)[IJ = (ZO), (Z2)[1J = (z2), and (Z4)[IJ = (Z4), where 

(z2n )[IJ=4rr f'" dZZ2n + 20[I](z) 

= ( _ l)n(2n + 1) [d 2nF[~Jn(k) ] . (26) 
dk k=O 

Moreover, O[ I J (z) provides the approximate expressions for 
higher moments, for example, 

(Z2m)[IJ = (zO)2m(2m + 1)!! f (- 1)n(a)n (Jn/2 d n ym 
n=O n!(b)n dyn , 

(27) 

in particular 

(Z6)[IJ = (ZO) (J3I2( 105 - 2l2a + 144a2 - 64a3 ), (28a) 
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(~)[IJ = (ZO) (J2(945 - 1524a 

+ 1952a2 - 768a3 + 256a4), (28b) 

(ZIO)[IJ = (ZO) (J512(10395 - 25236a + 24480a2 

- 14720a3 + 3840a4 - 1024a5
). (28c) 

It is clear that these expressions, Eqs. (27) and (28a)­
(28c), are useful in practice, for instance, to predict the un­
known higher momen ts ofthe r- and p-space charge distribu­
tions per) and p( p).13 In conclusion, it is worth noticing 
that O[1I(z) and F[II(k) constitute, by defintion, a pair of 
Hankel transforms similar to O(z) and F(k). Hence, in r 
space the first-order approximate atomic scattering factor 
j[IJ(k)=F[IJ(k) satisfies the sum rules (6a) and (6b) 
where the moments (r- I) and (r- 2

) on the left-hand side of 
Eqs. (6a) and (6b) are replaced by (r- I) [IJ and (r-2) [IJ of 
the distribution p[1J (r) =O[ IJ (r). 

IV. GENERAL TREATMENT 

In order to formulate analytically and generally the ba­
sic idea outlined in Sec. III, we first prove the following state­
ment. 

Proposition 1: Operator identities 

Ljo(kz) = - Z2 jo(kz), 

L n jo(kz) = ( - l)n z2njo(kz), n> 1, 

hold, where 

L=~ l:..~ __ 1_~(k2~) 
- dk 2 + k dk - k 2 dk dk' 

(29) 

(30) 

(31) 

n> 1, 

(32) 

Proof ofEq. (29) follows immediately from the definition of 
jo(kz). Repeating Eq. (29), one can obtain Eq. (30). The 
relation (32) can be proved via the method of mathematical 
induction. 

Now expandingjo(kz) in the well-known series 

jo(kz) = 1 _ (kZ)2 + (kz)4 _ + ... = ~ a (33) 
3! 5! n~o n' 

with 

an = ( - l)n(kz)2n/(2n + 1)!, 

we have relations 

(34) 

L n an = ( - 1 )z2L n - I an _ I = ... = ( - 1)n z2nao, 

n).l, (35) 

which can be rewritten in a formal way, by inverting, as 
follows: 

an = ( - 1)n z2n L - n(ao)' (36) 

Inserting expansion (33) into Eq. (3), one can formally 
partition F(k) as 

00 

F(k) = L j[nJ(k), (37) 
n=1 
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where 

j[ll(k) =:417" L'" dzz20(z)[ao +a l +a2], 

j[21(k) =:417" L'" dzz20(z)[a3+a4 +a5 ], 

etc., and generally 

n>2. 

(38a) 

(38b) 

(38c) 

As follows from Eqs. (5) and (34), the formal partitioning 
(37) possesses the following peculiarity:j [nl(k) contributes 
only to the moments (z6n - 6), (Z6n - 4), and (z6n - 2), which 
are uniquely determined by 

(Z6n-2m) = (_ 1)3n-m(6n - 2m + 1) 

X [ 
d6n-2mj[nl(k) ] , 

dk 6n - 2m 
k=O 

m = 3,2,1. (38d) 

Let us consider in detail the leading term of the parti­
tioning (37) of F(k). As mentioned before,j[ll(k) was 
used in Refs. 9 and 10 to approximate the atomic scattering 
factor at small values of k, and taking into account Eq. (2), it 
can be represented as 

(39) 

Using Eq. (36), one may rewritej [11(k) as 

j[ll(k) =417" l'" dzz20(z)[ao -z2L -I(ao+a l )]· 

(40) 

Applying the operator L to both sides of Eq. (40), we have 

Lj[ll(k) = -417" l'" dzz40(z)(ao +a l ) 

- (Z2) + (z4)k 2/3!. (41) 

Based on Eq. (17), let us define 

U[II(k) =: U I (0) +! U I (2)(0)k 2 = a[ll - (J [Ilk 2, 

(42) 

then we can show that 

where we have used Eq. (39), anda[ll=:a and{J [l1=:{J are 
defined by Eqs. (12) and (16). Hence j [I I (k) satisfies the 
following second-order linear differential relation: 

which is valid for small values of k with the condition 
j[II(O) = (ZO). 

Similarly, forj [nl (k) (n> 1) one can obtain the follow­
ing relations: 

11 J. Math. Phys., Vol. 28, No.1, January 1987 

j[nl(k) = (_1)3n-3 (Z6n-6) ___ _ 
[ 

k 6n-6 

(6n - 5)! 

_ (Z6n - 4) + (Z6n - 2) ___ _ k 6n - 4 k 6n - 2 
] 

(6n - 3)! (6n - 1)! 

= 417"( _ 1)3n - 3 L'" dz Z6n - 40(z)L - (3n - 3) 

X [aO -z2L -I(ao + al)]' (45) 

and 

Lg[nl(k) = -417" L'" dzz6n-20(z)(aO+al) 

= _ (z6n-4) + (z6n-2)k 2/3!, (46) 

where the function 

g[nl(k) =417" L'" dzz6n-40(z)[ao-z2L-I(ao+al)] 

= (_1)3n-3L3n-3j[nl(k) 

= (z6n-6) _ (z6n-4)k 2/3! + (z6n-2)k 415! (47) 

is introduced. It is clear thatg[ll(k) =j [11(k). 
Now generalizing the function U[I](k) to an arbitrary 

n (> 1), 

u[nl (k) = Un (0) + ! Un (2)(0)k 2 

(48) 
where 

a[nl = (z6n-4)/(z6n-6), (49a) 
{J[nl = _! [(z6n-4)/(z6n-6»2 

_ (z6n-2)/(z6n-6»), (49b) 

one can prove fairly easily that g[n l (k) obeys the following 
second-order linear differential relation: 

Lg[nl(k) + u[nl(k)g[nl(k) = 0 + O(k 4
), (50) 

which is valid for small k under the constraint g[n l (0) 
= (z6n - 6). Then 

j[nl(k) = (_1)3n-3 L -(3n-3)g[nl (k) (51) 

with the conditions 

[j[nl(k)H':!o=O, forO<m<6n-7, n>1. (52) 

Definition: The function F [I I (k) is defined as a solution 
of the second-order linear differential equation 

LF[II(k) + U[II(k)F [11(k) = 0, (53) 

where U[ll(k) is given by Eq. (42) with positive a[ll and 
(J [II. 

Comparing Eq. (53) with the relation (44), one can 
conclude that F [II (k) coincides exactly withj [II (k) up to 
the term proportional to k 6 inclusively, since Eq. (53) coin­
cides with Eq. (44) up to the term - k 4 as second-order 
differential relations [see also Eq. (21)]. The explicit form 
of F [I I (k) was obtained in Sec. III. One can define the first­
order distribution Olll(z) as the Hankel transform of 
F 111(k), viz., 

0[11 (z) =: 2~ L'" dk k 2F [II (k)jo(kz), (54) 
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which is non-negative due to the positiveness of a[ll and 
f3 [1 1, and whose moments 

(55) 

with n;;;.O are all non vanishing in general [compare with 
Eqs. (27) and (28) ]. The non-negativity of all the moments 
(zn) [11 for n;;;.O follows directly from the expansion of 
p [11 (k), given by Eq. (20), similar to the formal expansion 
(37) . 

The first-order approximate distribution n[ll generally 
predicts incorrect higher even moments (~m) [11 with m;;;.3. 

The deviation of higher even moments from their true mo­
ments leads to the introduction of higher-order corrections 
p [nl (k),s and n[n l (z),s, which are so defined as to correct 
the deviations in the even moments successively. Applying 
the similar arguments to P [nl(k)'s and n[nl(z)'s, we can 
formulate the following statements. 

Proposition 2: For a given finite set of even moments 
{(~n) }~~ I the required distribution n(z), whose mo­
ments {(z2n)!l }~': 0 I are just the given moments, and the 
corresponding Hankel transform P( k) are determined by 
the following partitions: 

N 

n(z):== I n[nl(z), (56) 
n=l 

N 

P(k):== I p[nl(k). (57) 
n=l 

The components or "pieces" of the expansions (56) and 
(57) of the same order, say n, n[nl(z) and P [nl(k), consti­
tute a pair of the Hankel transform, i.e., 

p[nl(k) =41T 1"0 dzz2n[n l (z)jo(kz), (58a) 

n[nl(z)=2~ioo dkk 2 p[nl(k)jo(kz). (58b) 

The function P [n 1 (k) satisfies 

p [nl(k) = (_1)3n-3 L -(3n-3) G[nl(k) (59) 

with the conditions 

[p[nl(k)H':lo=O, forO<;m<;6n-7, n>1. (60) 

p [11 (k) = G [ll (k). (61) 

The function G [nl (k) obeys the second-order linear differ­
ential equation 

LG [nl(k) + u[nl(k)G [nl(k) = 0 (62) 

with 

(63) 

(Z6n-6) _ [n- l l(z6n-6) 
= ( _ I) 3n - 3 -'--_----'-___ --'-_---'-

(6n - 5) 

where 

f3[n l = 

(Z6n-4) _ [n- ll(z6n-4) 

(z6n-6) _ [n- l l(z6n-6) 

_ ~ {[ (Z6n -4) _ [n - 11 (Z6n -4) ]2 
6 (z6n-6) _ [n- l l(z6n-6) 

(64) 

- (65) 
_ (z6n-2) _ [n-ll(z6n-2)}, 

(z6n-6) _ [n- ll(z6n-6) 

[nl(zm):==41T foo dzzm + 2 [nln(z) = i (zm)[k l, (66) 
1 k=1 

[nln(z):==ktl n[kl(z), (zm)[k l :==41T i
oo 

dzZm+ 2n[k l (Z). 

(67) 

Proposition 3: The function G [nl (k) as a solution ofEq. 
(62) under the conditions (63 )-( 67) takes the following 
explicit form: 

G[nl(k) = «z6n-6) _ [n- ll(z6n-6» 

Xexp( - y[nlk2)IPI(a[nl,b,2y[nlk2) 

= «z6n-6) _ [n- ll(z6n-6» 

X [IPI (a[nl,b, - 2 ~)exp( - y[n lx k 2)] , 
dx x=1 

(68) 

where b = ~ and 

a[nl = (3 - a[nl/~f3 [nl )/4, y[n l = ..[jjI;;J/2. (69) 

For a known G [nl (k) we now derive the expressions for 
p[nl(k) and n[nl(z). As follows from Eq. (59), 

L 3n-3p 1nl (k) = (_1)3n- 3G[n l (k), n> 1. (70) 

Using the identity (32), one can rewrite Eq. (70) as 

d 6n - 6p 1nl(k) 2(3n - 3) d 6n - 7p[n l (k) 
-------'--=-+---.:.--~-------':........:... 

dk 6n - 6 k dk 6n - 7 

=(_1)3n- 3G[n l (k), (71) 

or introducing 

(72) 

in the following form: 

dH:~(k) + 6n;; 6 H[nl(k) = (_ 1)3n- 3G[n l (k), 

(73) 

with the subsidiary condition H[nl(o) = 0 [see Eq. (60)]. 
Then, taking Eq. (68) into account, one obtains H [nl (k) as 

X {[IPI (a1nl,b, - 2 ~)IPI (1,3n - ~,-~) k exp( - y[nlxyk2)] } , 
dx 2 dy y = I x = I 

(74) 
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where Eq. (6.5.12) of Ref. 12 has been applied. 
Using the idea offractional-order integral transform (see for instance, Ref. 14 and Chap. 13 of Ref. 15), one can obtain 

Fln](k) = (_1)3n-3 (z6n-6) - In-I](z6n-6) { F (aln] b _ 2~) [ F (13n _~ _!!...) 
(6n - 5) I I , , dx I I' 2 ' dy 

X [(6n - 8)!] -I i
k 

dt (t - k)6n - St exp( - yln]xyt 2) L= Jx= I' (75) 

where the subsidiary conditions (60) for FIn] (k) are taken into account. Applying Eq. (13.1.15) of Ref. 15, one can evaluate 
the integral in Eq. (75): 

[(6n - 8)!] -I i
k 

dt (t - k)6n- St exp( - yln]xyt 2) = [(6n - 5)!] -I k 6n- 52 F 2(1,pn - pn - 2; - yln]xyk 2). (76) 

Therefore we finally have 

Fln](k) = ( _ 1 )3n - 3( (Z6n -6) _ In-I](Z6n -6» [(6n _ 5)(6n _ 6)!] -Ik 6n - 6 

X {IF1(aln],b, - 2~) [IFI (1,3n -~, - !!...)2F2 (1,~;3n - ~,3n - 2; - yln]xyk 2)] } . (77) 
dx 2 dy 2 2 y = I x = I 

Notice that we can expressFln] (k) in terms of the G-function by Meijerinstead of 2F2 via the application ofEq. (5.6.1) of Ref. 
16. 

Taking Eq. (58b) into account, we now obtain an explicit form of oln] (z). First, let us substitute Eq. (77) into Eq. (58b): 

oln](z) = (_1)3n-3«z6n-6) _ In-I](z6n-6»[2r(6n - 5)(6n -6)!]-1 

X{IF1(a
ln

],b,-2 !) [I F I(I,3n- ~,- ~) 

Xi'" dk k
6n

-
4 

2F2 (1, ~ ;3n - ~ ,3n - 2; - yln]xyk2)jo(kZ) L= I }x= I· 
Similarly to Eq. (31), one can introduce in z space the operator L z : 

d 2 2 d 
L z == d~ + -; dz' 

and obtain the relation 

L z
3n - 2jO(kz) = (_1)3n- 2k 6n - 4 jo(kz). 

Then, taking Eq. (80) into account, we rewrite Eq. (78) as 

oln](z) = _ L
z 

3n -2( (Z6n -6) _ In- I] (Z6n - 6) )[2r(6n - 5)(6n - 6)!]-1 

X(~)1/2 {IFI (aln],b, - 2 !) [IFI (1,3n - ~ , - ~) 

X ('" dk k -1/2 JI/2 (kz) 2F2 (1, ~ ;3n - ~ ,3n - 2; - yln]xyk2)] } Jo 2 2 Y= I X= I 

= _ L
z 

3n -2( (z6n-6) _ In - I] (z6n - 6) )[2r(6n - 5)(6n - 6)!] -Ire 3n - n r(3n - 2)Z-1 

[ ( d) ( 3 d) (~ 1
1
,3n - pn - 2)] X IFI a

ln
],b,-2-

d 
IFI 1,3n--

2 
'-d- G~! -4 In] 11 30 ' 

X Y Y xy 2' '2' x = Y = 1 

where Eq. (7.542.5) of Ref. 17 has been used. 

(78) 

(79) 

(80) 

(81) 

According to Eq. (5) [see also Eq. (38d)] and due to 
the presence of the term k 6n - 6 in the expression for FIn] (k) 

[and similarly to L/n - 2 in oln] (z)], the nth piece of the 
Hankel transform FIn] (k) [or the nth piece of the distribu­
tion oln](z), as proved via integration by parts] does not 
contribute to the moments (zm) with - 2<:;m<:;6n - 4, i.e., 

From Eqs. (69), (64), and (65), one obtains similarly that 

(Z2m) In] = 0, - 1 <:;m<:;3n - 2, n> 1. (82) (84) 
The first nonvanishing contribution of FIn] (k) is (z6n - 6) In]: 
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and for m>O 
(z6n + 2m) [n] 

[ 

d6n+2mF[n](k) ] 
=( - 1)3n+m(6n + 2m + 1) 

dk 6n + 2m 
k=O 

= [ (6n + 2m + 1)( m + 3)! ( ~ t + 3 (y[ n] ) m + 3 ] 

(z6n-6) _ [n-I](z6n-6) 
X----~--~------~--~----

(6n - 5)( 3n - ~) m + 3 (3n - 2) m + 3 

X[IFI(a[n],b,-2 !}FI (1,3n- ~ ,- ;) 

X(xy )m+3L=Y=I' (85) 

Note that it has been assumed implicitly that for all n> 1 
the quantities a[n] and,B In], given by Eqs. (64) and (65), are 
positive for n[n] (z) and the total distribution n(z), defined 
by Eq. (56), to be non-negative. However, one can prove 
(see Paper II) that this constraint is not so strong. Also in 
Paper II, it will be shown that the assumption made in Prop­
osition 2 that the number of known moments is just 3N 
(N) 1) is not essential and can be removed. 

V.SUMMARY 

The present approach permits us to represent an un­
known distribution in terms of a finite set of its known mo­
ments as a finite sum of the definite differential and integral 
forms of the Gaussian distribution [see Eq. (56)]. Natural­
ly, one can consider such a representation as one of many 
ways (though only a few ways are known) in which a func­
tion chosen is expressed in terms of a sum of Gaussians and 
their differential forms. Nevertheless, it should be empha­
sized that the present representation is based on a given finite 
set of even moments. Restricting ourselves to the case where 
only even moments are known, we may assume that in fact 
n (z) is also a function of Z2, but its explicit representation in 
terms of Gaussians in z space is equivalent to its discrete 
Laplace representation in Z2 space. IS 

It is clear that such a representation of the unknown 
distribution is rather simple in a computational sense, and 
one can suggest that it is applicable and workable in process­
ing experimental data on diverse symmetric spectroscopic 
contours, symmetric distributions of various signals, includ­
ing radio signals and noises in technical problems, and also 
on charge distributions of molecules in rand p spaces, and in 
the related physical problems where only a finite number of 
moments is available from the experimental and computa­
tional data. The present approach may be applied to analyti-

14 J. Math. Phys., Vol. 28, No.1, January 1987 

cal approximation of one-electron densities in rand p spaces 
and scattering factors of atoms and to the prediction of un­
known higher even moments via Eq. (85), which is of purely 
quantum-chemical interest and will be published else­
where. 13 Notice that within the framework of the nth order 
approximation, the sum rules for the atomic scattering fac­
tor [n1j(k) as the Hankel transform of the distribution 
[n]n (z) in r space, Eqs. (6a) and (6b), are satisfied exactly. 
Finally, it is worth noticing that the approach developed 
here can be generalized in a simple way to an arbitrary refer­
ence even moment (z2mo) instead of (ZO) as chosen in Sec. II. 
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Approximate representations of SU(2) ordered exponentials in the adiabatic 
and stochastic limits 
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Approximate representations for the SU(2) ordered exponential U(t IE) 
= (exp[iS~dt' u-E(t ') ])+ ,written as a functional of its input field E(t), are derived in the 

adiabatic (p< 1) and stochastic (p~ 1) limits, wherep== IdE Idt liE, E = EIE, 
E = + (E2) 1/2. An algorithm is set up for the adiabatic case, and fixed-point equations are 
obtained for situations of possible convergence. In the stochastic regime, "averaged" functions 
describing U(t IE) are derived which reproduce its slowly varying dependence oflarge 
magnitude while missing, or approximating, rapid oscillations of small magnitude. Several 
functional integrals, analytic and machine are carried out over these approximate forms, and 
their results compared with the same functional integrals over the exact U(t IE). 

I. INTRODUCTION 

Ordered exponentials are found in every branch of 
mathematical physics that deals with the causal time devel­
opment of systems of more than one degree offreedom. Ana­
lytic treatments have typically been restricted to perturba­
tive expansions, although computer calculations are now 
quite capable of dealing with any specific strong-coupling 
(SC) situation. However, when the variables in question are 
operators-numerical functions appearing in ordered ex­
ponentials and subsequently subjected to fluctuations as 
specified by an appropriate functional integral-the situa­
tion is much less clear. What would be most useful for such 
situations is a semianalytic approximation to the ordered 
exponential, which could then be inserted under the desired 
functional integral and its evaluation performed by some rel­
evant approximation such as stationary phase. Functional 
integration aside; there are many instances when one would 
like to know the qualitative form of an ordered exponential 
as a functional of its input, without having to resort to a 
detailed numerical integration for each choice of input. 

The purpose of this paper is to discuss and derive results, 
some of which have been previously quoted elsewhere,1 for 
two classes ofSC approximation to the ordered exponential 
solution of the differential equation 

au = ia.E(t) U(t), U(O) = 1, (1.1) 
at 

where the a/ denote 2 X 2 Pauli matrices, and the E/ (t) are 
real, input functions. The unitary solution to (1.1) is 

U(t) = (exp[i' dt' u-E(t ') ]) + 

== f i~ (' dt l' .• (' dtn (a·E(l 1) .• ·a·E(tn ))+, (1.2) 
n=O n. Jo Jo 

a) Permanent Address: Physics Department, Brown University, Provi­
dence, Rhode Island 02912. 

where the symbol ( ) + denotes an ordering of the ti-depen­
dent factors, with those containing later times standing to 
the left. 

Perhaps the most interesting applications are associated 
with the generalization to SU (N), obtained by replacing the 
a l of (1.1) by the N X N Hermitian matrices Al which form 
the defining representation ofSU (N). In principle, the anal­
ysis of this paper could be extended from SU(2) to SU(N); 
however, the specific details appear quite complicated, and 
have not yet been carried through. Some work on the SU (2) 
SC adiabatic limit has already appeared in rather special 
contexts,2.4 which is here generalized in a nontrivial way; to 
the best of the author's knowledge, the material presented 
for the SC stochastic limit is new. Generalizations of the 
adiabatic limit to SU (N) are not difficult, and have been 
used in quite different contexts, for Navier-Stokes fluid 
flow,5 N = 3, and in one approach to QCD,6 for arbitrary N. 

The SC situation may be defined by the requirement 

S~dt' E(t ') > 1, E = + /Fl, in contrast to the weak-cou­
pling, or perturbative regime for which one assumes the con­
verse, S~ dt 'E (t ') < 1; in the latter case it is simple to derive a 
valid representation for In U in terms of an expansion in 
multiple integrals over ascending powers of E(t'). For the 
SC case, ~wo distinct limiting regions can be defined, one for 
which IdE Idt I is "small" (the adiabatic, or quasistatic lim­
it), and the opposite ("stochastic") situation for which it is 
"large." Clearly, if E(t) =E(t)IE(t) did not depend on 
time, and were fixed in one direction, a choice of coordinate 
axes could be made so that only one of the al need appear, 
and the ordered exponential would become an ordinary ex­
ponential involving that al' When E(t) varies with time, 
however, the problem becomes nontrivial, and naturally di­
vides into these two quite different limits. By "large" or 
"small" one must mean the magnitude of IdE Idt I with re­
spect to the only other relevant quantity of like dimension, 
E(t); and hence if one defines p(t) == IdE Idt liE, the SC 
adiabatic and stochastic limits are defined by p < 1 and p ~ 1, 
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FIG.!. Curves of (a) Fa, (b) cos Qo, and (c) cos Qo' cosq,; for the situation 
p = 0.1. (N.B. In all 18 figures, all curves plot the negative of every function 
indicated. Time increases from left to right.) 

respectively. The word "stochastic" is appropriate because 
such behavior of p is expected in situations where a subse­
quent functional integration is performed with a "white­
noise" Gaussian weighting; this will be fully discussed in 
Sec. IV. 

To simplify the initial analyses as much as possible, and 
because it is always possible to reduce the problem to an 
equation ofform (1.1) with a two-component E(t) vector, 
we first discuss both adiabatic and stochastic limits treating 
E as a vector in the (x, y) plane. The results of these investi­
gations may be briefly summarized as follows, and will be 
described using the form of U which is convenient for nu­
merical integration, U(t) = Fo(t) + iu·F(t). 

A. The adiabatic limit 

There exists here a sequence of corrections which can be 
written for (Fo' F j ), and which should approach the exact 
(that is, numerically integrated) solutions rapidly, if the 
first two approximations are at all representative. One can 
write an algorithm that can be used to generate successive 
approximations; and if (which we do not prove) conver­
gence exists, then the solutions are given in terms of four 
simultaneous fixed-point equations. For brevity, we here 
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FIG. 2. Superpositions of (a) Fo and Fo, and of (b) F3 and F3 ; for p = 1. 

only mention the form of solutions to Fo = ! Tr [ U], with 
representations for F and all details reserved for the subse­
quent text. 

In the adiabatic limit, p = 0, one finds 

Fo(t) = cos Qo(t), Qo(t) = i'dt'E(t')' (1.3) 

For a constant magnitude E, Fo varies as a simple cosine, 
with frequency E /21T. Asp is increased from zero, butp~ 1, 
this essential form remains but is modulated by a smaller 
competing frequency; e.g., if we supposethatw = IdE /dt I is 
also independent of time, and is chosen such that p = w/ E 
=0.1, then the modulation will cause Fo to shrink to zero 
after five cycles or so, then increase again, and repeat the 
same pattern. Variations of E(t) and/or w(t) will change 
the details but not the overall behavior, as long as p ~ 1. 

Use of the algorithm discussed in the text leads to the 
first correction to (1.3) given by 

Fo(t) = [cos QoCt)] [cos( wi' dt 'Isin QoCt ') I) ], (1.4) 

again assuming, for simplicity, that wand E are constant. As 
pictured in Fig. 1, the numerically calculated Fo is compared 
with the approximations of ( 1. 3) and ( 1.4 ); and one can, in 
fact, see that (1.4) provides a bit too much modulation. If 
the procedure converges, the next approximation should 
modify that discrepancy, etc. We have not attempted further 
numerical work, and do not yet know whether the fixed­
point equations written in Sec. II have solutions for certain 
E(t). 

B. The stochastic limit 

As p increases, the forms of the exact solutions change 
dramatically. For p-1, with constant w, E, the exact Fo is 
displayed in Fig. 2, and bears no resemblance to its form in 
the adiabatic limit. Asp is increased further, for p ~ 1 there is 
great simplification with Fo taking the form of small, rapid 
w-oscillations superimposed upon a cosine of larger magni-
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tude and much slower frequency - E 2/21TOJ. When E and OJ 

are themselves time-independent, the slowly varying behav­
ior of Fo can become considerably more complicated than a 
simple cosine. 

Whatever physical properties are being described by 
these equations, it is surely the larger, slower oscillations­
the "average" functional dependence-which should con­
tain physically significant information, and not the smaller, 
faster oscillations riding on the "averaged" behavior. It is 
then a matter of some interest to be able to extract the "aver­
aged" behavior of Fo in any stochastic situation where p ~ I; 
and such an "averaged" Fo(t) can be crudely represented by 
Fo(t) =cos(f~dt'E/p), a curve that misses all the rapid 
fluctuations offrequency OJ/21T and order of magnitude 1/p 
in Fo, but reproduces its slower-frequency and large-magni­
tude behavior. (The phrase "of order" used in this paper 
means "of order relative to the slowly varying, averaged 
forms ofFo,3'" which are assumed to be correct when speci­
fying the size of the small, rapidly fluctuating corrections. 
This is an operational definition of accuracy, not an absolute 
one.) Various forms of this "averaging," for the F; as well as 
Fo' are illustrated in the associated figures. In fact, one can 
construct a simple argument, using unitarity, to include the 
rapid fluctuations correct to order 1/ p; but the main thrust 
of our discussion in Sec. III is to derive simple forms for Fo, 
F; in the stochastic limit. Slightly more complicated forms 
are derived in the text for use with smaller values of p > 1, 
and they even bear a certain resemblance to the exact forms 
for p S 1. 

In Sec. IV we turn to the application of these "averaged" 
approximations in the stochastic limit generated by white­
noise Gaussian (WNG) functional integration, by first com­
paring the known result of exact WNG integration over U 
with the result ofWNG integration over Fo, which can also 
be done exactly (and has an amusing form reminiscent of a 
Heisenberg, nearest-neighbor, spin-spin interaction). To 
within a spurious phase factor, which can be easily under­
stood and "renormalized" away, both expressions agree. 
Other more general examples offunctional integration over 
the adiabatic and stochastic approximations are also consid­
ered, and are compared to numerical results performed on 
the Saclay eRA Y. 

A generalization of the stochastic-limit approximations 
to a three-dimensional input E(t) is written in Sec. V, and is 
presented there along with the relevant, associated figures. 
Finally, in the next section, a "fine tuning" of the first sto­
chastic averaged functions is performed, resulting in curves 
that reproduce the exact numerical integrations in an un­
canny way, including the small rapid oscillations correct to 
order 1/p. The last section is devoted to a very brief sum­
mary, and the posing of some relevant questions for future 
study. 

II. AN ALGORITHM FOR THE ADIABATIC LIMIT 

In the extreme adiabatic limit p = 0, corresponding to 
iF: / dt = 0, all the complexity of the problem disappears. 
For, as noted above one can choose an arbitrary spatial axis 
to lie along the direction of E, and the ordered exponential 
becomes an ordinary exponential, so that U(t) ::::}cos G 
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+ ia'E sin G, with G(t) = S~dt' E(t'). The adiabatic algo­
rithm which we now construct should involve forms close to 
this limiting case. 

Suppose that E(l) is a slowly varying unit vector, in the 
sense of very smallp; then it is reasonable to choose as a first 
guess for U(t) the same limiting form 

Uo(t) =exp[ia'Qo(t)], (2.1) 

where Qo(t) = E(l) and 

Qo(t) = IQo(t) 1= f dt' E(t '), E = + $. 

This is not correct, but it is unitary, and its deviation from 
the exact U can be expressed by a unitary V(t): if 
U(t) = Uo(t)· Vet) with Uo given by (2.1), then V must 
satisfy the exact differential equation 

av =i<F'(E-Qo dQo)v 
at dt 

or 

(2.3) 

We write (2.3) in theform EI = If (Qo,Qo;E), and note that 
while the first two rhs terms of (2.3) will cancel for the 
specific choice of Qo and Qo, the functional form of ( 2.3 ) will 
be useful later on. Under the initial condition V(O) = 1, the 
exact solution to (2.2) is 

(2.4) 

But if, in the p ~ I regime, the Uo of (2.1 ) is a reasonable first 
approximation to U, then a reasonable approximation to 
(2.4) should be given by 

VI (t) = e;a-q,(tl, 

where 

(2.5) 

ql(t) =EI(t), ql(t) = Iql(t)1 = f dt'IEI(t')I· 

(2.6) 

With this approximation, we have an "improved" estimate 
of U(t), 

(2.7) 

But the combination of (2.7) is unitary, and can be rewritten 
in a manifestly unitary form as 

(2.8) 

with 

QI (t) == IQI (t) I = arccos [cos Qo'cos ql 

- (Qo·q I) sin Qo·sin q I], 
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or 

and 

or 

QI (t) = [Qo sin Qo-cos ql + qj sin qj-COS Qo 

+ (q I X Qo) sin q I-sin Qo] (sin Q I ) - j, 

(2.10) 

where the quantities Q and Q are defined by the first lines of 
(2.9) and (2.10), respectively. 

But the same process can be repeated: instead of the Uo 
of (2.1) we now have the U I of (2.8), and can define a better 
approximation U2 = exp[iO'-Q2], with 

E2Ct) = if(QI'QI;E), 

q2 Ct) =E2 Ct), q2 Ct) = L dt'IE2Ct')I, 

Q2Ct) = Q(QI,%QI-q2)' Q2Ct) = Q(Qj,q2;Qj,q2)' 

Clearly, the process can be repeated an infinite number of 
times; and if it converges, can be represented by the fixed­
point equations 

Q* = Q(Q*,q*;Q*-q*), 

Q * = Q(Q*,q*;Q *,q*), 

q* = ~(Q*,Q*;E), 

q* = L dt'lif(Q*,Q*;E)I, 

(2.11) 

where Q *, Q *, q*, q*, and E are functions of t, and the func­
tional forms if, Q, and Q are given by (2.3), (2.9), and 
(2.10). 

For an arbitrary input E(t), there is probably little hope 
of finding or proving convergence; but for some suitably sim­
ple input this might be possible. For our purposes, we note 
that if E (t) is chosen to be a vector of constant magnitude E 
rotating in the (x, y) plane with a constant angular frequen­
cy OJ, then for p = OJ/ E - 0.1, U j is a better approximation to 
the exact U than is Uo, as illustrated in Fig. 1 where the first 
two approximations to Fo (t) are compared with the exact, or 
numerically integrated result. In fact, U I provides somewhat 
too much modulation, which should be removed by U2 , etc. 

Results equivalent to the U j correction to Uo have been 
discussed, in special contexts, in Refs. 2 and 3. To our knowl­
edge, the algorithm for general Un' as well as the fixed-point 
equations (2.11), is new; however, these latter statements 
are probably too complicated to be of much practical use. 
Generalization to SU(N) is simple for Uo (Refs. 5 and 6), 
and while the general algorithm can be defined for arbitrary 
N, the more complicated statement of unitarity there will 
make this task much more tedious. 

III. THE STOCHASTIC LIMIT 

For p~ 1 we again choose for U(t) the m~nifestly 
unitary form, U(t) = exp[iO'-GCt)], with G = G'G, G 

+ j(F, and substitute into (1.1) to obtain 

it . G dG . G 
0'-E Ct) = df1 e''''U' 0'- - e - ,,.,U· 

o dt 
(3.1 ) 
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or 

/'0. dG 1 (/'0. dG) E(t) = G- - -[ 1 - cos(2G)] G X-
dt 2 dt 

/'0. 
+ ~ sin(2G) dG , 

2 dt 
(3.2) 

which is equivalent to the pair of exact relations 

dG = G(t)-ECt), (3.3) 
dt 

/'0. 
dG =E[GXE+cotG(E-G(E.G))]. (3.4) 
dt 

With the initial conditions G(O) = 0, G(O) = E(O), the 
magnitude GCt) is completely determined by G. For simpli­
city, we suppose that E lies in the (x,y) plane; the three­
dimensional generalization is treated in Sec. V. 

Since G is a unit vector, it can be specified by two inde­
pendent quantities which we c~oose ~ the following way. 
For R~l, we know that G(t)-E(f~dt'OJ), but as 
OJ = IE XdE Idt I increases from zero this cann9,1 be re­
tained; rather, we suppose that the argument of E can be 
~ecifie1 by a phase change relative to S~OJdt ': 
E( t) -.E (S~OJ dt' - bCt)). It will be convenient to use a di­
mensionless time variable, 1', given by dr = Edt, and so 
write thisyhase-shifted unit vector as J(S~dr' p - b(r)). 
But since E lies in the (x, y) plane, and G will have a z com­
ponent for arbitrary p while remaining a unit vector, we 
choose the ansatz 

G ( 1') = cos ¢ ( r)E (f dr' p - b ( 1') ) + z sin ¢ ( 1'), 

(3.5) 
with ¢ (1') and b ( 1') the two independent functions needed to 
characterize G. Substitution of (3.5) into (3.4) yields the 
two independent equations 

db sin b 
- =p - tan ¢-cos b ----cot G, 
dr cos ¢ 

d¢ = sin b - sin ¢-cos b-cot G, 
dr 

(3.6) 

( 3.7) 

which, together with the initial conditions b (0) = ¢ (0) = 0 
and the relation 

G(r) = i7 dr'cosb(r')-cos¢(r'), (3.8 ) 

completely determine G. Equation (3.8) is obtained using 
the assumed variation ofE, for arbitrary w(t), E(l): 

with 

E (f p dr') = i cos(f p dr') +] sin(f p dr'). 

It is clear that Eqs. (3.6 )-( 3.8) are very nonlinear, and 
it is difficult to have any intuitive feeling about their solu­
tions in the large p limit. In order to obtain this intuition, one 
may machine-integrate these equations-or, equivalently, 
those that follow by substituting the ansatz U = Fo + iO'"F 
into (1.1), along with unitarity restriction F~ + F2 = l­
and find for p ~ 1 a remarkable simplification. For simpli-
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city, we again for the moment consider OJ and E, and there­
fore p, as constants, and watch the exact solutions for 
Fo = cos G change as p is increased through unity to large 
values. For p~ 1, one finds that a very rapid oscillation, of 
frequency OJ/21T and mangitude p -I, is superimposed upon a 
relatively, slowly varying oscillation, of frequency - E /21Tp 
and magnitude unity. The rapid oscillations should be irrele­
vant to any physical property described by this system of 
equations, and it is therefore natural to phrase the question: 
is it possible to approximate U(t) = U(t IE) as a function of 
E so that, in the large p limit, one reproduces only the "aver­
aged," or slowly varying behavior, and not the rapid fluctu­
ations? The answer to this question is, indeed, yes; it is the 
point of this section, and we now outline the derivation of 
such "averaged" functions, to be denoted by Fo,i' 

Just the "experimental" knowledge that, for p~ 1, the 
output for, e.g., Fo consists of rapid oscillations superim­
posed on a slowly varying function ofform - cos (El / p) is 
enough to suggest an argument that can be followed. For, 
from (3.8), this means that as far as the "averaged" behavior 
is concerned, the quantity J =- cos 8 ( 7) 'cos ¢ ( 7) can be 
treated as a constant. (This statement will be refined, in Sec. 
VI, when we discuss "fine tuning.") It will be useful to define 
the associated quantity H=-cos ¢·sin 8, so that cos2 ¢ = J2 
+ H2, and the exact equations (3.6)-(3.8) can be expressed 

as 

and 

J' = -pH + [1 -J2 ]cot G, 

H' = - sin ¢ + pJ - HJ cot G, 

G= iT d7' J(7'). 

(3.9) 

(3.10) 

(3.11 ) 

For the "averaged" behavior, J-const=-5(p), (3.9) 
may be replaced by 

H=((1 - 5 2 )/P)cot G, (3.12) 

with G=75. Just as G depends on the slowly varying time 
dependence, so must the "averaged" H of (3.12). Substitut­
ing the latter into (3.10), with G = 75, yields an equation for 
an "averaged" sin ¢, 

(3.13 ) 

The form of (3.13) will be more complicated if p depends 
upon t, or 7, but for p~ 1 this extra dependence need not be 
important; this will be discussed in Sec. V. For the remainder 
of this derivation we shall continue to assume thatp is essen­
tially constant; but we shall not hesitate to state our results 
for time-dependent p, where our final formulas continue to 
work in a satisfactory way. 

If our analysis leading to (3.13) is correct, sin ¢ should 
display an "averaged" behavior, with rapid oscillations 
superimposed on a constant background; and this is true, 
experimentally, as one can see in Fig. 3. One may note that 
there is a change of procedure used here, in the following 
sense. An exact (numerical) integration of (3.6)-(3.8) 
yields a value of G that never increases past 1T, while sin ¢ 
andJ are positive when the average G is increasing and nega­
tive when it decreases (so that G can cover all points on the 
unit sphere). In contrast, our "averaged" G will increase 
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(a) 

(b) 

(c) 

FIG. 3. Graphs of (a) sin <p, (b) J = cos <po cos D, and (c) a superposition of 
Fo and Fo; for p = 6, E = 10. 

without limit, so that sin G may become negative (just when 
the exact G was decreasing), while the averaged sin ¢ and J 
are replaced by positive constants. In this way we are able to 
represent the correct signs of all the (Fo,F;). This same fea­
ture of always positive sin ¢ and J can occur in numerically 
integrated solutions of the exact equations (3.6)-(3.8) de­
pending on the accuracy of the computation and the passage 
through the singular regions of cot G. For our purposes, 
both sin ¢ and J can be thought of as having an "averaged," 
constant value, even though in reality they oscillate about 
that value, and oscillate wildly near the regions G - n1T. In 
contrast, a plot of sin 8 displays an almost uniform density of 
points spread over the same intervals. 

We now use the "averaged" constancy of sin ¢, or of 
cos2 ¢ = J2 + H2, to determine the dependence of 5 on p. 
For, if the "averaged" value of (d /d7) (~COS2 ¢) is to van­
ish, from (3.9) and (3.10) one finds another expression for 
the "averaged" H, 

0= - H sin ¢ + J [1 - (J2 + H2) ]cot G, 

or 

H = 5 sin ¢ cot(57). 

Comparing with (3.12) we obtain 

5 sin ¢ = (1 - 52 )/P' 

and finally, comparing (3.15) with (3.13) yields 

(1 - 52) / p = P5 2 [1 + (1 - 52) / p2], 

or 

(3.14) 

(3.15) 

(3.16 ) 

In obtaining (3.16) it has been supposed that 5> 0 and 
1 - 52> O. The slightly more complicated form of 5(p) used 
in Ref. 1 is exactly equivalent to (3.16). Limiting forms are 

5( P)p>1 -lip - lIp2 + ... 
and 

5( P)p<,l -1 - (p/2) + .... 
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(a) 

(b) 

v 
FIG. 4. Superpositions of (a) Fa and Fa, and (b) F3 and F3; for p = 6, 
E= 10. 

From (3.16) and (3.15), it follows that our "averaged" sin <p (b) 
is given by unity, which is certainly compatible with the 
curve of sin <p illustrated in Fig. 3. 

With these relations, our "averaged" solutions for Fo, F3 
are given by 

Po = cos G, 

P3 = sin G, 

where 

(3.17 ) 

(3.18 ) 

(3.19) 

is appropriate as a first generalization to time-dependent E 
and w. The accuracy of these expressions is quite good for 
p> 5, where errors, or deviations from the numerically inte­
grated Fo, F3 are rarely worse than a few percent, and fre­
quently much less. Even for p-l, where the analysis is cer­
tainly not valid, one finds that these expressions for Fo and F3 
do tend to average out the then, nonrapid fluctuations of the 
machine integrated Fo, F3. Some typical outputs may be seen 
in Figs. 4-7, including several examples of t-dependent E 
and w. One finds, generally, that even if p has some oscilla­
tion superimposed on a constant value~ 1, the "averages" 

(a) 

Ib) 

FIG. 5. Superpositions of (a) Fa and Fa, and (b) F3 and F3; for w = 60, 
E(t) = 10 + 5 sin(5t). 
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FIG. 6. Superpositions of (a) Fo and Fa. and (b) F3 and F3; for w = 60, 
E(t) = 10 + 5 sin(30t). 

given by (3.17)-(3.19) continue to be reasonably accurate. 
One must, of course, be careful about the errors that accu­
mulate in numerical integrations; a typical such effect will be 
the appearance of a phase lag between Fo and Po, and 
between F3 and P3, which is a "at-effect," and may be de­
creased by choosing a smaller integration step or a more 
accurate method of integration. 

Analogous approximate expressions for F\,2 are easily 
written. One has, exactly, 

F\ = sin G [J cos L + H sin L ], 

F\ = sin G [J sin L - H cos L ], 

(3.20) 

(3.21 ) 

with L = f~ dt ' w (t '). Inserting the same "averaged" ap-

FIG. 7. Superpositions of (a) Fo and Fo, and (b) F3 and F3; for w = 60, 
E(t) = 10 + COS(t2). 
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FIG. 8. Superpositions of (a) F, andF\. and (b) Fo andFo• and (e) F2 and 
F2 ; for p = 6. E = 10. 

proximations for J, H, G as before, one finds 

F\ = $" sin (G + L), 

Fz = - $" cos ( G + L ), 

(3.22) 

(3.23 ) 

where G is again given by (3.19). For large p, $"- 1/ p, and 
these FI 2 - O( 1/ p), in contrast to our Fo 3 - O( 1 ). These 
FI •2 are' therefore small, and oscillate rapidly, and should 
have little physical importance in any specific problem. 
However, as seen in Fig. 8, Eqs. (3.22) and (3.23) do miss 
some of the slowly varying dependence of the exactFI 2' even 
if the dependence is itself on the order of 1/ p. In Sec: VI we 
will give a simple argument to correct the FI •2 above, so that 
they will be correct to 0 ( 1/ p ); and in the process, use the 
requirement of unitarity to "fine tune" our Fo,3 , giving them 
a rapid oscillation superimposed on their "averaged" values 
which is correct to O( 1/pz). Unitarity is, of course, approxi­
mately satisfied by the FO,I.2.3 above, 

(F6 +F~) + (Fi +F~) = 1 + $"z=1 + (l/p2) + .... 
In Sec. VI we shall arrange to have this unitarity sum given 
by 1 + O( 1/p4) , and hence infer that the "fine-tuned" Fo.; 
are themselves correct to at least 0 ( 1/ p ). 

There is one qualification to the remarks of this section 
that must be noted, and that will be relevant to some of the 
functional integrals performed over our stochastic averaged 
forms. If the input E(t) can be split into two nonparallel 
parts of radically different magnitudes, then it is the large­
magnitude input that controls the final output of U. For 
example, motion corresponding to the input E = lEI 

+ JE2 COS(lVt), withEI >Ez, is essentially adiabatic, regard­
less of the value of lV. 

More generally if E (t) is given as the sum of two non­
parallel pieces, E = EI (t) + Ez (t), with arbitrary time de­
pendence but where the magnitude of one is much larger 
than the other, say EI >E2, then the prudent way to set up 
the calculation is to separate all the E] dependence into a 
unitary V, leaving a rotated Ez dependence, say E; in W: 
U= VW, where 

V= (exp[if dt' (J.EI(t')]) + . 
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We assume that all the components of EI are of the same 
order of magnitude; anything much smaller is put into E 2• 

Then 

W = (exp[if dt' (J·E; (t') ]) + ' 

where 

O'"E; = V + (J·E2 V, E;2 = E~. 

When we calculate the p-value of E; we will find it of 
order (lVzIEz) and/or (EIEz); explicitly 

pZ(E;) = [( d!z + [E]XEJ Y - (d!2 Yl (E~ )-1. 

As long as EI X E2 =1= O--and this was assumed-there will be 
a piece ofthisp proportional to (E]/E2 ) > 1. It is then appro­
priate to use the stochastic form for W, leading to the contri­
bution 

G
w

- dt' __ 2 __ dt'O _2 , i' E i' (E2) 
o p(E;) 0 E] 

which will be a small correction to the G y if G y is adiabatic, 
or a contribution of the same form as Gy if Gv itself is sto­
chastic. 

IV. STOCHASTIC FUNCTIONAL INTEGRATION 

One very nice check on our approximations is their abi­
lity to reproduce the result of the one, nontrivial functional 
integration over an ordered exponential which can be per­
formed analytically, that of WNG integration over the 
U(t IE) of ( 1.2). Indeed, one type of application of our re­
sults should be to stochastic functional integration over 
weightings more complicated than Gaussian. In this section, 
we first show why the stochastic limit is appropriate to 
WNG integration, and then just how our approximate forms 
can reproduce the known, exact result 

N J d [E] exp [ - ;c f dt' E2 (t') ]U(t IE) = e-'c, 

(4.1 ) 
where N is a normalization constant defined by 

N-
I

= J d[E]exp[ -;cf dt 'E
2
(t')]' 

In (4.1) we denote by c a real, positive constant; and contin­
ue to suppose that E lies in the (x, y) plane. 

We first remaind the reader of the derivation of (4.1). 
Imagine the interval (O,t) broken up into n subintervals, of 
width I::..t = t /n and labeled by an index i, so that the E(t') 
field in each subinterval is denoted by E;. Then, one defini­
tion of the functional integral is 

(4.2) 

and the ordering of the brackets is such that terms with the 
larger value of i stand to the left. But each integral yields a 
result independent of i-that is, independent of (J-by the 
following argument. 

Because of the Gaussian weighting, each E; scales as 
(1::..t)-1/2; that is, in (4.2) replace each E; by F;lp;i (in­
cluding the normalization, N; ..., N ; /I::..t), and for small I::..t 
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L 

expand each expUv'K! uoFi) so that (4.2) becomes 

!~~ iDIN; J d 2Fi e - FT/2C( 1 + iv'K! uoFi - ~t F~ + .. -). 
(4.3 ) 

in which we retain only the leading, nonzero dependence 

proportional to !::.t (the coefficient of v'K! vanishes by sym­
metry). Each ith integral is the same; and it is trivial, yield­
ing 

lim (1 - cAt)n = e - ct, (4.4 ) 
n- 00 

with At = t In. 
The essential part of this computation has been the ob­

servation that, for WNG integration, each Ei scales as 
(At) -1/2. We now consider the same functional integration 
over our "averaged" forms. The first point to be settled is 
whether the stochastic limit is valid, and for this we must 
estimate the size ofp2 = (dE /dt)2/E2. But, upon breaking 
up the interval (O,t) into subintervals, any p2(t) would be 
replaced by 

p~ = (Ei - E i + I )2/E;(At)2. 

The Ei dependence is of O( 1 ); but because Ei scales as 
(At)-I12, p;-O(1/At) and is large. Hence the stochastic 
limit most certainly is relevant, and we consider the func­
tional integrals of our "averaged" forms in the limit of very 
large p, fJ -->Fo + i0"3F3' Fa = cos G, F3 = sin G. One then 
requires 

N J d[E]exp [ -;ci'dt'E2
(t')]e±iG, (4.5) 

which upon writing G=f~dt '(E /p) and breaking up the in­
tegration region into subintervals, generates 

n J 2 1· IT N. d 2E. -Ll.tE,12c ±iLl.tEilpi 1m I lee , 
n-oo i= 1 

( 4.6) 
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FIG. 9. A comparison of the re­
sult of functional integration 
over the exact U(t IE) with sever­
al approximations, for r- 1 

= 100, Em = 10, ilt = 0.005. 
The labeling of the curves is A 
= exact, numerical; B = renor­
malized (Up); C= (lIp); D 
= full 5(P); E = renormalized, 

fuIl5(p); F = renormalized adi­
abatic; G = adiabatic. 

where Pi = + [(Ei - Ei+ 1)2] If
2/Ei At. Again rescaling 

Ei' we now find in each subinterval both an integral over the 
magnitude Fi and a nontrivial angular dependence. Integra­
tion over each magnitude is trivial, leaving 

_ de 1 + lCu.t - . 1 1217 ( • A ) I 

21T 0 I isini(e;l2)i 
(4.7) 

The integral of (4.7) can be done exactly; with q 
± cAt, it is 

1 2iq 1 [(1_(1+q2)lf
2

_ iq ) 
+ 1T(1 +q2)lf2 n 1 + (1 +q2)lf2_iq 

X ( 1 + (1 + q2) 1/2)] . 
1 - (1 + q2)lf2 

As At --> 0, the argument of the log becomes ± 
erating for the complete functional integral 

lim IT (1 - cAt ± 2icAt In(~)) , 
n-oo i~ I 1T cAt 

which can be written as 

e - cte ± (2ict /l7)ln(2IcLl.t) I 
Ll.t-O· 

2i/cAt, gen-

(4.8 ) 

(4.9) 

Comparison with (4.1) shows that a spurious phase has 
appeared; but one that can be understood, and removed, by 
the following argument. In every subinterval's integration, 
our "averaged" forms have made a small error, which is 
(fortunately) imaginary, and which must be removed "by 
hand." Instead of calculating (4.5) as we have done, we 
must add the proviso that we keep only the real part of every 
subinterval's contribution; and in this way, by not retaining 
and compounding the small error generated by our "aver­
aged" forms, we can reproduce (4.1). We expect this ten­
dency towards a spurious phase factor to show up in more 
complicated functional integrals, or in functional integrals 
that are Gaussian but not precisely in the white-noise limit, 
and it will be necessary to remove such spurious dependence. 
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t 
f 
This can be done most simply by replacing the functional 
integral over e ± iG, which we call (e ± iG), by the quantity 
[I (e ± iG) 12] 1/2, a computation we henceforth label "renor­
malized." 

More general, non-WNG weightings may be treated by 
calculating Gaussian fluctuations with correlation function 
given by 

ll.ij (tl - t2 ) = (Ei (tl )Ej (t2» = oij (EmI2r)e -1/\ - t211r, 

where r is a correlation time, and Em an appropriate magni­
tude. The limit r- I

--+ 00 for Em = 1 is the WNG case, 
ll.ij --+OijO(t1 - t2 ), while the opposite limit, r-I--+O is effec­
tively the adiabatic limit. (This last remark would be )trictly 
trueifp were defined as IdEldt liE 2 rather than as IdE Idt II 
E; in practice there seems to be little difference.) 

We illustrate in Figs. 9 and 10 calculations in the WNG 
region (r- I = 100) over a variety of different possible ap­
proximations, and note that here the best agreement with the 
exact functional integration is given by first performing the 
large-p approximation of 5, 5( p) -lip, and then perform­
ing the functional integration. Why this is true-rather than 
using the exact 5( p) and letting the natural, large-p fluctu­
ations automatically induce the effective large-p form of s­
is a reflection of the comments made at the end of Sec. III. In 
the numerical computations there are many su~cessive 
choices of Ei that correspond to large variations of E, but of 
small magnitude, superimposed on a perpendicular compo­
nent oflarge magnitude and slow variation; and these fluctu­
ations are to be interpreted as adiabatic contributions of 
small, effective p. When the full5( p) is used, such small-p 
contributions are incorrectly taken into account. However, 
with the large-p form of 5,5 - lip, the corresponding contri­
butions to (tr U) are small for small p, since such exponen­
tiated terms are rapidly damped away. Using the large-p 
form of 5( p) suppresses such incorrect, effectively small-p 
behavior; and, as one can see from Figs. 9 and 10, provides 
fairly reasonable approximations to the exact result. 
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FIG. 10. The same comparisons, with 
the same labeling as in Fig. 9, using 
r- I = IOO,Em = l,dt=O.OOS. 

v. THREE-DIMENSIONAL INPUT 

We here consider the generalization of the material of 
Sec. III to three-dimensional input E(t), which requires a 
generalization to time-dependentp. It will be appropriate to 
comment, firstly, on the derivation given in that section for a 
time-dependent p, and then to extend the analysis to three 
dimensions. 

The passage from the exact equations (3.9)-(3.11) to 
our approximate, "averaged" forms was performed assum­
ing a constant p, and using the "experimental" properties 
that J and sin ¢ are given by rapid oscillations superimposed 
upon a constant background. If p = P (t), one must first de­
termine if the same properties of "averaged" constancy of J 
and sin ¢ still exist, before an analysis of the same type can be 
given. The experimental answer, obtained for a variety of 
choices of the t dependence of p (but always insisting on 
p ~ 1) is that the angular integrations represented, e.g., by 
Fig. 11, are only slightly modified; experimentally, J and 
sin ¢ may still be represented as constant quantities on 
which are superimposed rapid oscillations. This being the 
case, it does make sense to apply the same form of argument 
as was used to arrive at (3.12); but the form of (3.13) will 
now be complicated by the appearance of an extra term pro­
portional to 

dp [ (1 - 52) + K as] cot G. 
dt p2 p ap 

The result is that (3.13) and (3.15) no longer yield an alge­
braic equation for 5(p), but rather, with specific input dpl 
dt, a differential equation for 5(p). The complication is de­
cidedly nontrivial. Fortunately, if 5 still falls off as p in­
creases, for p ~ 1 these terms should not have any important 
effect. More precisely, even if a time-dependent p (but, al­
ways, p ~ 1) adds small and rapid oscillations to our "aver­
aged" forms, which need not agree with the small and rapid 
oscillations of the numerically integrated functions, the 
slowly varying behavior of the "averaged" forms still repro-
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(a) 

(b) 

/ 
I 

(c) 

FIG. 11. Graphs of (a) sin.p, (b) Fo, and (c) J = cos.p cos 8; for E = 10, 
p(t) = 30 + 30Icos(6Ot) I. 

duces that of the exact solutions. This can be clearly seen, 
even after the "fine-tuning" of Sec. VI, in Fig. 12, where anw 
containing rapid oscillations inserted into our essentially 
constant (or slowly varyinbg) w-analysis produces a curve 
whose small and rapid oscillations do not match the exact 
ones, but whose "averaged" shape continues to reproduce 
that of the exact curves. 

We emphasize that we have not attempted a careful 
study of this quite complicated point; but we are convinced 
that, for p ~ 1, the specifically time-dependent effects of pare 
not important in developing the "averaged" forms in any 
way other than the elementary generalizations we have 
made, 

UJt-+ f dt' w(t '), G = 7S(p) -+ f dt' E(t ')S(p(t '»), 

in writing our finalformulas (3.17)-(3.24). To substantiate 
this claim, we point to the superimposed curves of Fo and Fo 
of Figs. 5, 6, 7, and 12 made for a variety of choices of p ( t) , 
and using only the Fo of (3.17). 

In treating the problem of three-dimensional input 
E (t), it is always possible to perform a transformation on the 
basic equation (1.1) to yield a similar equation for a related 
quantity in which there appears a two-dimensional input 
if (1). For, if one defines another unitary quantity V 
= e - U/2)1J(t)a,. U, where fJ(t) is a function to be determined, 

then the matrix V will satisfy 

a;; ={ulifl+U2if2+U3[E3- ~])v, (5.1) 
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(b) 

FIG. 12. Superpositions of (a) Fo and Fo, and (b) F3 and F3; for (j) = 60, 
V= 20,ET = 10, andEL = 5. 

with fJ(O) = 0, V(O) = 1, and 

if I =.EI cos fJ + E2 sin fJ, (5.2a) 

g" 2 =.E2 cos fJ - EI sin fJ. (5.2b) 

If choose !fJ(t) = S~dt' E 3(t '), then the problem has been 
reduced to one of two-dimensional input. 

Writing the exact solutions for Vin the form V = Yo 
+ ieT'Y, and comparing U = Fo + iCT'F with the solution 

obtained from U = exp [ ju 3 ( fJ 12)] V, one has the exact 
statements 

Fo = Yo cos(fJ 12) - Y 3 sin (fJ 12), 

F3 = Yo sin(fJ 12) + Y 3 cos(fJ 12), 

F, = Y I cos(fJ 12) + Y 2 sin(fJ 12), 

F2 = Y 2 cos(fJ /2) - Y I sin(fJ 12). 

(5.3a) 

(5.3b) 

(5.3c) 

( 5.3d) 
In order to write approximate, "averaged" expressions 

for the lhs of equations (5.3), we now apply the technique of 
Sec. III, writing, e.g., 

Fo = Yo cos(fJ 12) - Y 3 sin(fJ 12), (5.4) 

and similarly for the other lines of (5.3). Here the Yare 
constructed in terms of a p( g" 1,2) of the two-dimensional 
prob~m. Clearly~ g" = (g"i + g"~)1/2= (Ei +E~)I/2, 
and g" I = g" 1/g", g" 2 = g" 2/g". 

The description is simplest using cylindrical coordi­
nates; if we choose EI = ET cos(wt), E2 = ET sin(wt), 
E3 = EL cos( vt), then g" I = ET cos(wt - fJ), g" 2 

= ET sin(wt - fJ). For simplicity, suppose again that EL 
and E T' as well as wand v, are all constants; then one imme­
diately calculates 
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FIG. 13. Fine detail of the curves of Fig. 12, starting from t = 0. 

(5.5) 

exhibiting an explicitly time-dependentp, which will be used 
to calculate the Yo,;. We again insist on the requirement 

(a) 

(b) 

FIG. 14. Superpositions of (a) Fo and Fo, and (b) F, and F,; for w = 60, 
v = 60, ET = 10, and EL = 5. 
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(b) 

FIG. 15. Superpositions of <a) Fo and Fo, and (b) F, and F,; for w = 60, 
v= 90, ET = 10, andEL = 5. 

p~ I, which condition governs the possible choices of (j), 
EL,ET • 

Just how well the Fo and F3 reproduce the numerically 
integrated exact solutions can be seen from the examples of 
Figs. 12-15. For (j) significantly larger or smaller than v, the 
agreement is superb. For (j) - v the agreement is less pleasing; 
but much of the discrepancy here seems to be tied up with the 
"in phase" errors made during the numerical computations. 
For example, a slowly forming phase lag gradually appear­
ing between Fo and Fo, for (j) = v, is definitely diminished by 
using a finer time step in the numerical equations; however, 
we have not succeeded in completely removing this phase 
lag. This difficulty aside, which we believe is tied up with the 
deails of the numerical integration, it is difficult to be any­
thing but enthusiatic over the quality of the results given by 
these "averaged" forms, using a three-dimensional input. 
Again, one finds that generalizations to time-dependent 
E L , E T , continue to be well represented by Eqs. (5.4), using 
in the computation of Yo.; the elementary generalizations of 
Sec. III for time-dependent E,{j). 

VI. FINE TUNING 

Of all the qualitative agreements between the exact solu­
tions and our "averaged" functions, only the agreement 
between F 1,2 and F1,2 is less than satisfactory, because the 
F1,2 of Sec. III miss the low-frequency behavior clearly visi­
ble in the F 1,2; this is illustrated in Fig. 8. As a practical 
matter, it is not important because the F 1•2 are of order lip 
and are small; but as a matter of principle one would like to 
be able to extract all the correct, slowly varying behavior. 

The trouble resides in our neglect of the small, rapid 
oscillations of J and H, in Sec. III, because those neglected 
fast oscillations could themselves be combined with similar 
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(a) 

(bi 

(e) WMNVVvVVWVVW 
FIG. 16. Superpositions of (a) FI andF;, and (b) FoandFo; (e) F2 andF;; 

for w = 60, E = 10. 

oscillations appearing in the definition of the F 1,2' in (3.20) 
and (3.21), to generate terms independent of the rapid oscil­
lations. To see this, denote by Sand Ho our previous choices 
of the constant and slowly varying J and H dependence, re­
spectively; and then suppose that J and H shall each have a 
rapidly oscillating part of form 

J = S + S [cos L + sin L cot G ], (6.1 a) 

H = H 0 + S [sin L - cos L cot G ] . ( 6.1 b) 
Imagine that there are constants, or slowly varying 

functions, a, p, y, 8 multiplying each of the sin L, cos L 
terms in (6.1); and then imagine substituting (6.1) into the 
defining equations for F 1,2' to reproduce the F1,2 of (3.22) 

FIG. 17. Detail of the first shoulder of the superposition of Fo and F~; for 
w=60,E= 10. 
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(a) 

(b) 

FIG. 18. Detail of the first shoulder for the superpositions of (a) Fo and F ~, 
and (b) F3 and F;; for w = 60, E(t) = 10 + 5 sin(5t). 

and (3.23) plus a part that has only a slowly varying time 
dependence. We denote by F;,2 these new, improved func­
tions, and find that we must choose a = p = y = 8 = 1, and 
then obtain 

F; =S[sin(G+L) +sinG], 

Fi = -S[cos(G+L) -cosG]. 

(6.2a) 

(6.2b) 

The agreement between (6.2) and the exact F 1,2 is so good 
that on the scale used in Fig. 16 there is no visible difference 
at all between them. Only when the scale is enlarged to show 
effects of order 1/ p2 can one see superpositions of two 
curves. 

These new values of J and H, given by (6.1 ), can now be 
used to define new F ~,3' which themselves are correct to 
order 1/ p. But it is much easier to use an argument suggested 
by unitarity, which requires 

F~2+F:/+F;2+Fi2= 1 +OO/p4) (6.3) 

if the new, "averaged" functions are to be correct to order 
(1/p). For if we write 

(6.4 ) 

and substitute into (6.3), using the F ;,2 of (6.2) one obtains 
the relation 

8Fo cos G + 8F3 sin G + S 2 [1 + sin G sin (G + L) 

- cos G cos(G + L)] = O. (6.5) 

Rewriting the "1" coefficient of S, in (6.5) as sin2 G 
+ cos2 G, and equating the coefficients of sin G and cos G, 

generates 

8Fo= +S2(cos(G+L) -cos G), 

8F3 = - C(sin(G + L) + sin G). 

(6.6a) 

(6.6b) 

The agreement between the F~,3' given by (6.6) and 
(6.4) is extremely good, as displayed in Figs. 17 and 18. 
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From this construction we infer that these F ~,3 are correct to 
order lIp2, while the F;,2 are correct to order lip. Again, 
this "fine tuning" is probably irrelevant in any given phys­
ical application, but it is pleasing to be able to improve the 
accuracy of our "averaged" curves in such a simple way. 

VII. SUMMARY AND FURTHER QUESTIONS 

In this paper we have suggested some methods for the 
approximate estimation of SU (2) ordered exponentials in 
the SC limits, adiabatic and stochastic, and have compared 
the results to exact or machine statements when certain 
functional integrals are carried out using our approximate 
forms. Our derivations have been mainly intuitive; but there 
can be no argument raised against the results which those 
derivations provide, which nicely match the numerically in­
tegrated functions representing the exact ordered exponen­
tial in both the adiabatic and stochastic limits. As such, we 
expect that these approximations will be immediately useful 
in a variety of physical problems, whose dynamical content 
can be expressed, approximated, or modeled in terms of 
SU (2) ordered exponentials. 

There are three main areas in which the analyses of this 
paper raise questions that are surely deserving of futher at­
tention. 

(1) Are there possible choices of E(t) for which the 
fixed-point equations (3.1) have a nontrivial solution? 

(2) A thorough analysis should be made of the general­
ization to time-dependent p(t). Would the result of this in­
vestigation show that the Fo,1 are insensitive to the time de­
pendence of p, as suggested by all of our examples; or will 
there be certain situations, certain forms for p(t) ~ 1, for 
which our results are invalid? 

(3) Can our results be extended to SU (N), N> 2? 
It is not difficult to write the leading term of the adiaba-
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tic approximation for the case of SU (N), but its corrections 
will surely be more complicated because of the more cum­
bersome statement of unitarity. 5 In the stochastic limit, on 
the other hand, the situation seems less well-defined, and the 
methods of Sec. III would appear to be hazardous and uncer­
tain. In principle, the same techniques can be used; in prac­
tice, the greater number of functions Fo,;, 1 <J<.N 2 

- 1, 
makes for a certain amount of confusion. Surely, the much 
greater number of physical problems that involve SU(N), 
rather than SU (2), would make this a study of paramount 
interest. 
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It is shown that asymptotically flat space-times with certain properties do not admit conformal 
Killing fields which are not Killing fields. The space-times must be vacuum, asymptotically 
Minkowskian, and have positive Bondi energy. 

I. INTRODUCTION 

Asymptotically flat space-times are thought to repre­
sent isolated gravitating systems. Thus there has been much 
interest in them. Research has been done on specific asymp­
totically flat space-times (e.g., the Schwarzschild, Kerr, and 
Weyl solutions of Einstein's equation I) and on general prop­
erties of asymptotically flat space-times. 2 One property of 
interest is the group of symmetries admitted by such a space­
time. In particular, the possible isometries admitted by as­
ymptotically flat space-times have been studied. 3

,4 

However, conformal isometries have not been studied, 
largely because it has been thought that in some sense as­
ymptotically flat space-times do not admit conformal isome­
tries.s Results along these lines have been proven for space­
times that are asymptotically flat at spatial infinity.6,7 In this 
paper we present a result for space-times that are asymptoti­
cally flat at null infinity. 

The conditions that the space-time must satisfy are as 
follows: (a) it must be vacuum, (b) it must be asymptotical­
ly Minkowskian, i.e., it must contain "all of .f," and (c) it 
must have positive Bondi energy. Under these conditions, 
the space-time does not admit a conformal Killing field that 
is not a Killing field. 

The notation used will be as in Ref. 2. Section II contains 
a review of some of the properties of conformal Killing fields 
and of asymptotically flat space-times as well as a statement 
of the result. Section III contains a proof of the result. 

II. NOTATION 

Let M be a manifold, gab a smooth (i.e., COO) metric, 
and g a a vector field. Then g a is said to be a conformal 
Killing field for the space-time (M, gab) if 

535gab = - 2qgab' (1) 

for some scalar field q. (Note that the minus sign and factor 
of 2 are chosen for later... convenience.) If q = 0, then g a is a 
Killing field. Let Va, Rabe d, and Rab be, respectively, the 
derivative operator and the Riemann and Ricci tensors asso­
ciated with gab' Define the following tensor fields: 

"j -- f;-b !>a =gab!> , 

Fab =Vlatb l' 
ka = - 2Vaq, 

Lab =Rab - i gedRedgab' 

Then the following equations hold8
: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Vaq = - ika, (8) 

Vakb = - geVeLab + 2qLab - 2gcdLc(aFb)d' (9) 

The values of the tensor fields [ga,Fab,q,ka 1 at a pointp are 
called the conformal Killing data for g a at point p. Given any 
conformal Killing data at a point p, Eqs. (6)-(9) can be 
integrated along any curve to give the value of g a on that 
curve. If the conformal Killing data come from an actual 
conformal Killing field g a, this integration procedure can be 
used to give the value of g a everywhere. Since gab is smooth, 
this procedure must yield a smooth g a. Note that if the con­
formal Killing data vanish at any point, then g a = 0 every­
where. Also note that if (M,gab) is a vacuum space-time, 
then Lab = 0, and thus Va kb = O. 

The space-time (M,gab ) is said to be asymptotically flat 
at null infinity if there exists a manifold M with boundary .f 
and smooth (i.e., Coo ) metric gab; a smooth function!1 on 
M and a mapping from M to M (by means of which we 
identify M with a subset of M) such that 

(i) onM, gab = !12gab , 

(ii) on.f, !1 = 0, Va!1#O, gabVa!1Vb!1 = O. 

Here gab is called the physical metric, gab the unphysical 
metric,9 and (M,gab,!1) an asymptote of (M,gab)' and .f, 
also called null infinity, is essentially a boundary added to 
the physical space-time at infinite distance in null directions. 
This .f can be regarded as a manifold in its own right and 
tensor fields on the physical space-time give rise to tensor 
fields on.f. The tensor fields so produced are to be regarded 
in some sense as limits of the tensor fields on (M,gab ). This 
process has two parts: first, given a smooth tensor field de­
fined on M we produce a smooth tensor field defined on M; 
second, given a smooth tensor field on M we produce a 
smooth tensor field on.f. Let aa"'be 'd be a smooth tensor 
field defined on M. If there exists a smooth tensor field 
aa' '-'::e"'d defined on all of M such that aa·· 'be"' d = aa·· 'be"' d 
on M, then aa·· 'be"' d is said to be smoothly extendible to.f. 

Thus smoothly extendible tensor fields on M give rise to 
smooth tensor fields on M. 

We now define a map t * (also called pullback) from 
tensor fields on M to tensor fields on .f. This map acts on a 
subset ~ of tensor fields on M. For a scalar field, 
J,t * (f) = fin ~ o· For the exterior derivative of a scalar 
field, ; * (df) = d; * ( f ). Pullback of the sum (or outer 
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product) of tensor fields is the sum (or outer product) of 
their pullbacks. This defines S * on all tensor fields of type 
(O,p). For a general tensor field aa"'be"' d consider the fol­
lowing equation: 

S * (aa" .be .. 'd/3 a"'b) = S * (aa" 'be· .. d)S * (/3 a"'b)' (10) 

If the left-hand side of this equation vanishes whenever 
S * (/3 a"'b) = 0, then Eq. (10) defines S * (aa" ·be ... d ); other­
wise aa"'be"'d is not in the set ~ and cannot be pulled back. 

Thus not all tensor fields on the physical space-time give 
rise to tensor fields on f. First they must be smoothly exten­
dible to f, then their extensions must be in the set ~. In 
particular, a smooth vector field defined on M can be pulled 
back if and only if it is smoothly extendible to f and its 
extension is tangent to f. Here, S * commutes with taking 
Lie derivatives, but not with contraction. 

In what follows all indices will be raised and lowered 
with the unphysical metric gab' Define na =.Van. We obtain 
the following fields on f: 

£ab ='S * (gab ), 

l1 a=.S *(na), 

(11) 

(12) 

(13) 

It is useful to define Eabe as the unique antisymmetric field on 
f satisfying ~beEabe = 6. It follows from the conditions sat­
isfied by n that gabl1 b = ° and that gab has signature 
(0, + , + ). Thus £ab is degenerate and has no inverse. 
Nonetheless, it is useful to define the class of symmetric ten­
sor fields ~b satisfying 

(14) 

Members of this class differ by a tensor field of the form 
v(a l1 b) • 

The fields£ab and l1 a depend on the conformal factor n. 
In particular it is possible to choose n so that 

2,,£ab = 0. (15) 

Make this choice. The integral curves of l1 a are called the 
generators of f. The manifold of generators is called the 
base space B. A cross section of f is a two-dimensional 
submanifold which intersects each generator once. The 
physical space-time (M,gab) is said to be asymptotically 
Minkowskian if f is the manifold S 2 X R and the generators 
are complete. From now on we will assume that (M,gab ) is 
asymptotically Minkowskian. It is now possible to choose 
conformal factor n and coordinates u,e, and ¢ on f such 
that 

(16) 

(17) 

Make this choice. A tensor field 'l'a" 'be"' d on f that satisfies 
2" 'l'a" 'be"' d = ° and that yields zero when contracted on 
any index with l1 a or Ja u can be regarded as a tensor field on 
the two-sphere base space B. Thus, e.g., £ab can be regarded 
as a positive definite metric on B. 

Thus the fields defined so far on f are "kinematical"; 
they have been brought to a standard form by a choice of n. 
We now define the physical fields on f. First assume that 
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(M,gab) is a vacuum space-time. Then it can be shown (see 
Ref. 2) that the Weyl tensor Cabed is zero on f and 
n -ICabed is smooth. Define the following tensor fields on f: 

*Kab=.~mn~pqr*(l n-IE rsc ) 
~ 2 mn rspq' 

Nab ='£aeS * (R eb - tRc5eb) - £ab' 

(18) 

(19) 

(20) 

The tensor fields K ab, * K ab, and Nab are symmetric. Define a 
derivative operator D a on f by 

DaS*(Wb) =S*(VaWb)' (21) 

These are the physical fields on f. They satisfy the follow­
ing equations: 

Dal1
b = 0, Da£be = 0, 

N abl1b = 0, 

D[aNble =! Eabm *Kmn£ne, 

DaKab = 0, 

K a *K ab = 0, 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

g Kmb = _ E nP*Kmb (28) _am amp - , 

£am *K mb = Eampl1PKmb. (29) 

Notice Nab is determined by * K ab in the following sense: for 
a given * K ab, Nab is the unique symmetric tensor field satis­
fyingEqs. (23)-(25). Thusif*Kabgbe = ° then Nab =0. 

Let C be a cross section of f. Define the Bondi energy 
associated with C by 

E(C) =. 8~ LEabe(! Kamfm + (Dmfn )~PNpq~[ml1al), 
(30) 

where fa is anyone form satisfying l1afa = 1. (Note that E 
does not depend on the choice of fa or ~b.) Note that if 
K ab = * K ab = 0, then E = ° for every cr~ss section C. Let 
CI and C2 be two cross sections of f, where C2 is to the 
future of CI • Let A be the portion of f in between C I and C2 • 

Then 

E(C2 ) -E(CI ) =-=-.!.. f (~p~mNmnNpq)Eabe' (31) 
3217' L - -

We now state the result of this paper. 
Theorem: Let (M,gab) bea space-time that is (i) asymp­

totically Minkowskian, (ii) vacuum, and (iii) has positive 
Bondi energy for every cross section of f. Let 5 a satisfy 
2 s gab = - 2q gab' Then q = 0. 

In other words, a space-time satisfying conditions (i)­
(iii) admits no conformal Killing field that is not a Killing 
field. 

III. PROOF 

First we prove the following lemma. 
Lemma 1: Let (M,gab) satisfy conditions (i)-(iii) and 

let 5 a satisfy 2 sg ab = - 2q~ab' Then q is a constant. 
Proof Defineka =. - 2Va q. ThenEq. (9) and condition 

(ii) imply 

(32) 
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Taking another derivative, antisymmetrizing, applying con­
dition (ii), and using the conformal invariance of the Weyl 
tensor, we obtain 

(33) 

where Cabc d is the Weyltensor of gab' Condition (iii) implies 
that there is a pointp at which Cabc d #0. It then follows from 
Eq. (33) that at pointp, g"bkakb = O. Contracting Eq. (32) 

with i""kc we find that g"bka kb is a constant. Thus 

g"bkakb = 0 (34) 

everywhere. Define k a=.g"bkb. Then k a is a Killing field for 
gab' It then follows (see Ref. 2) that k a is smoothly extendi­
ble to f and is tangent to f. Since k a is null, it follows that 
there is a smooth function r such that 

lim k a = rna. 
!I-a 

Since 0 -lCabcd is smooth, it follows that 

lim(O-lCabcdrnd) = O. 
!I_a 

Thus at points of f where r#O, 

lim(O-lCabcdnd) = O. 
!I-a 

(35) 

(36) 

(37) 

It follows that at such points K ab = * K ab = O. Now assume 
ka # O. Then, since k a is a conformal Killing field for gab' the 
conformal Killing data for k a cannot vanish at a point. Thus 
k a cannot vanish in an open (three-dimensional) subset of a 
three-dimensional surface. Thus r cannot vanish in any open 
(three-dimensional) subset of f. Thus since K ab and * K ab 
are smooth, they must vanish everywhere on f. Thus the 
Bondi energy is zero. But this contradicts condition (iii). 
Thus ka = 0, q is a constant. 

We now show that 5 a gives rise to a vector field on f. 
Lemma 2: Let (M,gab ) and 5 a be as before. Then 5 a has 

a smooth extension to f that is tangent to f. 
Proof Since 5 a is a conformal Killing field for (M ,gab)' 

5 a is also a conformal Killing field for (M,gab)' and 5 a is 
thus smooth everywhere on M and thus automatically has a 
smooth extension to f. Using Eq. (1) we obtain 

- 2q(O-2gab ) 

= 5.3s (O-2gab ) 

= 0-2(5.3sgab - 20- 1gab 5.3s0), 

(20- 15.3s0)gab = 5.3sgab + 2qgab' 

(38) 

(39) 

Since the right-hand side of Eq. (39) is smooth, 0 -15.3s0 
must be smooth. Thus 5.3s 0 = 0 on f. Since Va 0 is the nor­
mal to f, 5 a is tangent to f. This proves the lemma. Thus 
5 a satisfies the conditions necessary for a vector field to be 
pulled back to f. 

Define the following fields on f: 

€a=';*(sa), 

K='; *(O-15.3s0) - q. 

Since 5 a is a conformal Killing field we obtain 

5.3sCabc d = O. 

Using; * and Eqs. (1) and (42) we obtain 

5.3{;Jiab = 2K/J.ab' 
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(40) 

(41 ) 

(42) 

(43) 

5.3s:'1a = (q - K)'1a, 

5.3{;Kab = (q _ 5K)K ab. 

5.3s:*Kab= (q_5K)*Kab. 

(44) 

(45) 

(46) 

We assume that q#O and use Eqs. (43)-(46) to obtain a 
contradiction. Since both 5 a and - 5 a are conformal Kill­
ing fields with opposite values of q, without loss of generality 
we now choose q > O. 

First we examine the properties of the vector field € a 

and its integral curves. Using our chosen coordinate system, 
we expand € a in a coordinate basis 

€a=A(:ur +B(:er +C(~r (47) 

where A, B, and C are functions of u, e, and <p. Using Eqs. 
( 17) and (44) we obtain 

A=(K-q)U+J, (48) 

aB = ac =0, 
au au 

(49) 

where/is a function of e and <p alone. Define the vector field 
TJa as 

TJa=.€a -A (:u r (50) 

then TJa is a vector field on the two-sphere. Equation (43) 
implies 

(51) 

Since /J.ab is, in our coordinates, the standard two-sphere 
metric, TJa is a conformal Killing field for the two-sphere. 
Define the scalar Z by 

Z='/J.abTJaTJb. (52) 

Then Z is bounded, Z;;"O, and Z = 0 only at points where 
TJa = O. Contracting both sides of Eq. (51) with TJaTJb we 
obtain 

5.3T/Z=2KZ. (53) 

Let C(A,) be an integral curveof€ a. RegardK, u,J, andZ 
as functions of A, along the curve. Let C(A,) be the corre­
sponding curve on the two-sphere space of generators. Then 
C(A,) is an integral curve of TJa. 

Define the function L (A,) by 

L(A,) =.f'K(A, ')dA, '. (54) 

The integral curves of TJa have the following property. 
Lemma 3: Let P be a point in the two-sphere and let 

C(A,) be the integral curve of1t for which C(O) = p. Then at 
least one of the following two conditions holds: (i) L(A,) is 
bounded above, and/or (ii) C(A,) = P for all A,. Further­
more, there are at most a finite number of points p for which 
condition (i) fails to hold. 

Proof First treat the case where TJa is the zero vector 
field. Then K = 0, L (A,) = 0 for all integral curves and the 
lemma is trivially true. 

Next treat the case where TJa is not the zero vector field. 
First consider the case where TJa #0 at point p. Then for all A" 
the curve teA,) only passes through points where TJa#O. 
Thus for all A, Z(A,) > O. Evaluating Eq. (53) on the curve 
t(A,) and dividing by Z we obtain 
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~(lnZ) = 2K. 
dA 

(55) 

Integrating Eq. (55) we obtain 

L(A) =! In (Z(A)/Z(O»). (56) 

Since Z (A) is bounded above, L (A) is bounded above. 
Thus condition (i) can only fail to hold if1]° = Oat point 

p. However, for a given two-sphere conformal Killing field 
1]0 (other than the zero vector field), there are only a finite 
number of points where 1]0 = O. Thus there are at most a 
finite number of points for which condition (i) fails to hold. 
If 1]0 = 0 at point p, then C(A) = P for all A. This completes 
the proof of the lemma. 

This property of integral curves of 1]0 allows us to derive 
the following property of integral curves of s:o. 

Lemma 4: Let p be a point in J. Let G be the generator 
of J that contains p. Let C(A) be the integral curve of s: ° for 
which C(O) = p. Then at least one of the following two con­
ditions holds: (i) L(A) is bounded above and there exists a 
compact set QC J such that for all A;;;'O, C(A )EQ, and/or 
(ii) for all A, C(A)EG. Furthermore, there are at most a 
finite number of generators G that contain points p at which 
condition (i) fails to hold. 

Proof Let C(A) be the two-sphere curve corresponding 
to C(A) and let p be the two-sphere point corresponding top. 
First treat the case whereL(A) is bounded above. Applying 
Eqs. (47) and (48) to the curve C(A) we obtain 

du 
dA =(K-q)u+f (57) 

The solution ofEq. (57) is 

U(A) = u(O) exp [L(A) - qA ] 

+ f'dA'f(A')eXP[J(A,). ')]. (58) 

whereJ(A,). ')is given by 

J(A,).') == r'dA "(K(A ") - q). L, (59) 

Since L (A) is bounded above andfis a smooth function 
on the two-sphere, there exist positive constant MI and M2 
such that the following two inequalities are satisfied for A ;;;.0: 

lu(O)1 exp [L(A) -qA].;;;MI, (60) 

If(A)I';;;Mz' (61) 

It then follows that u (A) satisfies the following inequality 
for A;;;'O: 

lu(A)I.;;;MI +Mz f' dA'exp [J(A,).')]. (62) 

We now show that there exist constants M3 and a where 
M 3 ;;;.0, O.;;;a < 1, such that J(A,). ') satisfies the following in­
equality for A;;;'O, O';;;A ' ';;;A: 

J(A,).').;;;(a-l)(qA-qA') +M3' (63) 

First treat the case where K(A ").;;;0 for all A ";;;.0. Then Eq. 
(63) is satisfied with a = M3 = O. Next, treat the case where 
K(A ") > o for some A "> O. Choose a such that 0 <a < 1 and 
the following two conditions are satisfied: (a) none of the 
points where 1]0 = 0 satisfy K = aq, and (b) for some A " > O. 
K(A"»aq. 
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Let 0 be the region of the two-sphere where K;;;'aq. Let 
Al be a number satisfying AI> 0 and C(AI)EO. Then one of 
two conditions holds: either (a) for all A" satisfying 
O';;;A "';;;A I, C(A" )EO; or (b) there exists Ao satisfying 
o < Ao';;;A I such thatK(Ao) = aqand C(A ")EO for alIA "sat­
isfying Ao';;;A ",;;;A I. Note that dL /dA > 0 in region 0 and 
L (0) = O. Thus if condition (a) holds, then L (AI) > O. If 
condition (b) holds, then L (AI);;;.L (Ao). Since none of the 
points where 1]0 = 0 satisfies K = aq, it follows that Z is 
bounded away from zero on the set of points in the two­
sphere where K = aq. Thus L(Ao) is bounded below on the 
set of Ao satisfying K(Ao) = aq. Thus L(A I ) is bounded be­
low on the set of Al satisfying O';;;A I andC(A I )EO. Since 
L (AI) is also bounded above, there exists a positive constant 
M4 such that IL (AI) I.;;;M4 for all Al satisfying O';;;A I and 
C(AI)EO. 

From Eq. (59) we obtain 

J(A,).') = (a -1)q(A -A') + (" dA "(K(A") -aq). L, 
(64) 

For a given A and A' satisfying A;;;'O, O';;;A' ';;;A; choose 
numbers A _ and A + as follows: if there is a A " satisfying 
A '';;;A " ';;;A and C(A ")EO; then let A _ be the minimum such 
A " and let A + be the maximum such A ". If there is no such 
A ", then choose A _ = A + = A. In either case, note that the 
integrand in Eq. (64) is negative for all A" that satisfy 
A '';;;A " ';;;A, but which do not satisfy A _';;;A " ';;;A +. Thus using 
Eq. (64) we obtain the following inequality satisfied for all 
A;;;'O, O';;;A ' ';;;A: 

J(A,). ').;;; (a - 1 )q(A - A') + i~+ dA "(K(A ") - aq) 

= (a - 1 )q(A - A') + L(A+) - L(A_) 

- aq(A+ - A_) 

.;;;(a -1)q(A -A') + 2M4. (65) 

Thus Eq. (63) is satisfied with M3 = 2M4· 
UsingEq. (63) inEq. (62) we obtain forA;;;'O 

IU(A) I.;;;MI + M z exp(M3) 

XL'dA' exp [(a -1)q(A -A')] 

= MI + M z exp (M3 ) 
(1- a)q 

X[1 - exp[ (a - 1 )qA]]. (66) 

Define the constant M5 by 

M5==MI +Mzq-I(1-a)-1 exp(M3)· 

Then for A ;;;.0, I u (A) I.;;;M5• Define the set Q by 

Q== {points p!pd, lu(p)I.;;;M5}, (67) 

then Q is compact and for allA;;;'O, C(A )EQ. Thus if L(A) is 
bounded above then condition (i) of this lemma is satisfied. 

If condition (i) of this lemma is not satisfied then the 
two-sphere point p corresponding to the generator G does 
not satisfy condition (i) of Lemma 3. Thus C(A) = P for all 
A. Thus C(A )EG for all A. Since there are at most a finite 
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number of such two-sphere points p, there are at most a finite 
number of such generators G. This completes the proof of 
the lemma. 

We are now ready to prove the theorem. We will use 
Eqs. (43 )-( 46) and Lemma 4 to show that for q =1= 0, the 
Bondi energy must vanish, thus establishing a contradiction 
with condition (iii). First define the scalar S by 

S=KacKbd£ab£cd' (68) 

Then Eqs. (43) and (45) imply 

2s.S = 2(q - 3K)S. (69) 

Letp be a point in f for which condition (i) of Lemma 4 is 
satisfied. Let C(A) be the integral curve of 4: a for which 
C( 0) = p. Then the solution of Eq. (69) along the curve 
C(A) is 

SeA) = S(0)exp[2qA - 6L(A)]. (70) 

For A;>O, C(A) remains in a compact region. Thus, sinceSis 
smooth, SeA) is bounded for A;>O. Since L(A) is bounded 
above, Eq. (70) then implies that S(O) = O. Thus S = 0 at 
all points p for which condition (i) of Lemma 4 is satisfied. 
But since S is smooth, S = 0 everywhere. 

Since S = 0, K ab must be of the form 

(71) 

for some x b• Applying the same proof to * K ab we obtain 

(72) 

for some *Xb. Using Eq. (72) in Eq. (25) we obtain 

llaDlaNb]c = O. (73) 

Now applying Eq. (22) we obtain 

2r)Nab = O. (74) 

For each real number y let Cy be the cross section u = y 
of f; denote by E(y) the Bondi energy associated with the 
cross section Cy and define I(y) by 

I(y) =_1_ f (~ctdNabNcd )lleEe/g • (75) 
81T Jcy 

Then Eq. (74) implies that 

dI = o. (76) 
dy 

Thus I is a constant. Equation (31) then implies 

E(yz)-E(Yt) = -F(Yz-Yt). (77) 

Thus if I =1=0 then there exists a y such that E(y) < 0, i.e., 
there exists a cross section for which the Bondi energy is 
negative. But this contradicts condition (iii). Thus 1=0. 
Equation (23) then implies 

Nab = O. (78) 

Equations (25) and (28) then imply 
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*K ab = */3llallb, 

K ab = {311 a,l, 
(79) 

(80) 

for some scalar fields /3 and *(3. Equations (44) and (45) 
imply 

2s./3 = - (q + 3K ){3. (81 ) 

Equations (22) and (26) imply 

2r){3 = o. (82) 

Thus {3 is a function on the two-sphere and satisfies the equa­
tion 

21]/3 = - (q + 3K){3. (83) 

Let P be a point in the two-sphere for which condition (i) of 
Lemma 3 is satisfied. Let C (A) be the integral curve of 1]a for 
which C(O) =p. Then the solution of Eq. (83) along the 
curve C(A) is 

(3(A) = (3(0) exp[ -qA - 3L(A)]. (84) 

Since (3 is a smooth function on the two-sphere, /3(A) is 
bounded for all A. Since L(A) is bounded above, Eq. (84) 
then implies that/3(O) = O. Thus{3 = 0 at all pointsp of the 
two-sphere for which condition (i) of Lemma 3 is satisfied. 
But since {3 is smooth, /3 = 0 everywhere. Similarly */3 = 0 
everywhere. Thus K ab = * K ab = O. Thus the Bondi energy 
is zero. But this contradicts condition (iii) and thus proves 
the theorem. Space-times satisfying conditions (i)-(iii) of 
the theorem do not admit conformal Killing fields that are 
not Killing fields. 

ACKNOWLEDGMENTS 

I would like to thank Robert M. Wald, Robert Geroch, 
Carl Bender, and Doug Eardley for helpful discussions. 

This research was supported in part by NSF Grant No. 
PHY 80-26043 to the University of Chicago and by NSF 
Grants No. PHY 83-13545 and No. PHY 85-13953 to 
Washington University. 

IS. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford U. 
P., New York, 1983). 

2R. Geroch, in Asymptotic Structure of Spacetime, edited by F. P. Esposito 
and L. Witten (Plenum, New York, 1977). 

3A. Ashtekar and B. C. Xanthopoulos, J. Math. Phys. 19, 2216 (1978). 
4A. Ashtekar and B. G. Schmidt, J. Math. Phys. 21, 862 (1980). 
5J. Isenberg and V. Moncrief, unpublished. 
6p. Yip, unpublished. 
7D. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Commun. Math. 
Phys. 106, 137 (1986). 

SR. Geroch, Commun. Math. Phys. 13, 180 (1969). 
9It is an open question whether the requirement that the unphysical metric 
gab be C~ is "too strong"; i.e., whether it rules out a class of "physically 
reasonable isolated systems." See, e.g., J. Winicour, Found. Phys. 15, 605 
( 1985). Nonetheless, for the purposes of this paper we assume that gab is 
C~. 

David Garfinkle 32 



                                                                                                                                    

Quantum theory on a regular tetrahedron 
J. S. Dowker 
Department of Theoretical Physics, The University of Manchester, Manchester, England 

(Received 7 July 1986; accepted for publication 27 August 1986) 

Quantum theory on the surface of a regular tetrahedron is discussed. The fact that the net of 
the tetrahedron tiles the plane allows the propagators to be constructed as image sums of 
standard ones. The effect of a constant magnetic field is discussed. The field theory Casimir 
energy is found. 

I. INTRODUCTION 

The study of the effects of the curvature and topology of 
space-time on quantum theories defined on that space-time 
is a well-established one. 1.2.3 The object ofthe present work is 
simply to present an investigation of a rather special and 
fixed situation but one that exemplifies certain general ideas 
and techniques. 

First we assume that space-time is ultrastatic, i.e., that 
time is metrically separated from space. Second, we assume 
that space is d-dimensional and has a regular tetrahedron T 
as a section, i.e., that space takes the form Ra - Z X T. We 
shall consider in detail only d = 3 and d = 2. 

The tetrahedron is of interest because the curvature is 
concentrated at the vertices, which are conical singularities.4 

A single conical singularity, or wedge, has been considered 
previously5.6.7 but the present example has the advantage of 
reducing to analysis on a space of finite volume. This makes 
the relevant eigenvalues discrete and allows integrated quan­
tities to be discussed. The disadvantage is that the vertices all 
have a fixed deficit angle of Jr. It should be possible to discuss 
other polyhedra. 

One motivation for studying quantum theories on (not 
in!) polyhedra is that such spaces arise in the I + 2 theory of 
gravitation, or we could think of them as triangulation ap­
proximations to smooth manifolds in the manner of Regge's 
bones. 

The particular fact that makes the regular tetrahedron 
so easy to deal with is that its net tiles the plane. Thus the 
Green's functions on T are image sums of plane Green's 
functions. 

II. THE TETRAHEDRON 

The net of a regular tetrahedron of edge length a is an 
equilateral triangle of side 2a. The corresponding tiling of 
the plane is ancient and is illustrated in Fig. 1. The tetrahe­
dron net is taken as the region OAB, the other triangles being 
equivalent copies. The unshaded triangles are obtained by 
discrete translations parallel to OA and OB through integer 
multiples of 2a, while the shaded region can be obtained by 
first reflecting in the origin 0 and then translating. (Equiva­
,lent to reflection is a rotation through Jr.) The group r of 
this tiling is the non-Abelian, semidirect product of the cy­
clic group C2 = Z2 and the discrete translations Z? Thus the 
images of a point (;,77) in OAB are (w; +2Ma, 
w77 + 2Na), where w = ± 1, (M,N)EZ}, and; and 77 are 
oblique Cartesian coordinates. It is the non-Abelian, nonfree 

nature of the symmetry group that accounts for the vertex 
curvature (or vice versa), according to the Z2 holonomy. 

III. QUANTUM THEORY 

Depending on whether we are considering quantum me­
chanics, statistical mechanics, or quantum field theory we 
are interested in propagators, partition functions, or the 
Green's functions. 

There are two equivalent calculational methods­
modes and image sums. Thus, for example, the propagator 
to go from the point (;,77) to the point (; ',77') on the tetrahe­
dron will be the sum of standard plane propagators from 
(;,1'1> to (w;' + 2Ma,w77' + 2Na), V M,NEZandw = ± 1. 

By basic theory, 8 the distinct propagators we can obtain 
in this way are catalogued by Hom(r,U( 1 »)-Z2' [Ifr were 
just 'I}, the propagators would be labeled by 2U(1), i.e., 
by two angles, but the presence of the reflection makes the 
Abelianized r equal to Zz, and we know that 
Hom(Z2' U( 1 ») - Z2' Whence the result just given.] The two 
propagators correspond to modes which are either periodic 
or antiperiodic ("twisted") under reflection. 

Note that this approach does not produce the full free­
dom in the propagator allowed by the topology of the tetra­
hedron. The plane is not the universal covering space of T. In 
order to take the fundamental group T fully into account we 
should have to use not the standard plane propagator but the 
propagator in the presence of an infinite hexagonal lattice of 
Aharonov-Bohm flux lines through the points marked in 

FIG. 1. The tiling of the plane by the net, OAB, of a regular tetrahedron. 
The lines, solid and dashed, are the edges and the dots are the vertices. 
Those at 0, A, B, and their images, are to be identified. The shaded region is 
obtained from the fundamental zone OAB by first reflecting in the origin 0 
and then translating. The unshaded region is obtained by just translating 
OAB. 
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Fig. 1 (the vertices of the tetrahedron). Some further re­
marks will be found in Sec. VII. 

IV. MODES. ZETA FUNCTIONS 

Whatever problem we are discussing we shall need the 
modes of the Laplace operator, 

4( 8
2 

8
2 

8
2

) 
A2 ="3 8t 2 - 8t 81] + 81]2 ' 

i.e., the solutions of 

- A2u =AU. 

By inspection, two sets of eigenfunctions are 

u+ = (2/0»)/2 cos (1Tla)(mt + n1]), (m,n)EZXl+, 

and 

u_ = (210) 1/2 sin(1Tla)(mt+n1]) , 

(m,n)ElXl+ # (0,0) . 

with 

A =Amn = ~(~/a2)(m2 - mn + n2) . 

The area of the tetrahedron is denoted by 0 = -f3 a2
• The U + 

are untwisted and the u _ are twisted. 
The integrated zeta functions are thus given by the Ep­

stein function 

tT(S) = 1.(3a
2

)S I' (m2 - mn + n2)-S 
2 4~ - 00 

(1) 

in both cases. This can be expressed in terms of "simpler" 
sums. Thus9

•
10 

where tR (s) is the Riemann zeta function and L3(s) is the 
Dirichlet series 

L3 (s) = 1 - 2 - s + 4 - s _ 5 - s + 7 - s _ 8 - s + . . .. 
It is amusing to note that t T (s), for s;;.1.035, is the mini­

mum of those zeta functions defined in a similar fashion but 
with the quadratic form am2 + 2bmn + cn2, ac - b 2 = i, in 
place ofm2 - mn + n2. This is related to closest packing and 
covering questions. 10 

For some purposes the nonlocal zeta functions are re­
quired. These are again Epstein, 

2 00' COS} 1T COS} 1T 
t± (s;t',1]'lt,1]) =- I . -(mt+n1]). -(mt'+n1]')A;;;/ o _ 00 sm a sm a 

(2) 

2[zl 0 0 1 zl 0 
=0 (t-t')/2a (1]'-1])/2a (S)q>± (t+t')/2a 

(3) 

in Epstein's notation 1 1 with cp = m2 - mn + n2. 
Use of the transformation formula turns this eigenfunction expression into a classical paths form. Thus 

t (s·t' 'It ) = _1_ r(1 - s) (3a
2 )S 

± ' 1] ,1] 3a21T res) 4 

x[zl(t-~')/2a (1]'-o1])/2aI(1_S)q>_'±zl(t+~')/2a -(1]~1]')/2aI(1_S)q>_,J, 

(4) 

where cp -) is the inverse form 

cp -I = 4(M 2 + MN + N 2 )/3, 

recognized as proportional to the distance between the origin and its (M,N)th image. 
The second zeta functions on the right-hand sides of (3) and (4) are due to the reflection part ofr. In the coincidence lim­

it, t' = t, 1]' = 1], they still give a position dependence indicating the inhomogeneous nature of the tetrahedron. 
Finally in this section we note that the twisted modes vanish at the vertices. 

V. QUANTUM MECHANICS ON THE TETRAHEDRON 

The Hamiltonian for free particles is (fz = 1) 

H = - (l/2,u)A2 , 

and the propagator reads 

with E; = A mn 12,u and the 'If; equal to the u + or u _ modes. 
Using Epstein's definition of the generalized theta func­

tion (see also Krazer I2
), the twisted and untwisted propaga­

tors can be written 

o 1(0 21Tft) ] 
- (1] + 1]')/2a ' 3,ua2 

q> • 

(5) 

The theta function transformation formula yields expressions suitable for small t, 
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K ± (t;t',r/it,1]) = 2~it [e 1 (t - ~')/2a 

+ e 1 (t + t')/2a 

(1]' - 1] )/2a 1 (0, _ 3i/1-a2 ) 
o 2m '1'-' 

- 0 
- (1] + 1]')/2a 1 (0, _ 3i/1-a2 ) ] . 

o 21Tt '1'-' 
(6) 

This is the image sum of plane propagators referred to in Sec. 
III. 

Equations (5) and (6) are related to (3) and (4) by 
Mellin transforms. 

The integrated propagators follow directly from the 
eigenvalues of course, and are given by 

= n/1- e 10 

21Tit 0 

01 (0, 21Tit) ± 1] 
o 3/1-a2 

'I' 

o 1 (0, _ 3i/1-
a2

) + l. . 
o 21Tt '1'-' - 2 

The small t expansion of (8) yields 

K ± (t) -~(n ±.!!-. it) + O(e- lIt
) , 

2mt /1-

(7) 

(8) 

(9) 

in which we recognize the first term as the Weyl volume 
contribution. The second term agrees with the "corner 
terms" 13 (suitably adjusted for periodic boundary condi­
tions). 

The replacement t --> - i/kT turns K(t) into the quan­
tum mechanical partition function and (9) then gives the 
high temperature expansion. 

VI. MAGNETIC INTERACTIONS 

The study of magnetic fields in two-dimensional sys­
tems is an important one and we wish to examine the case 
when a uniform magnetic field is applied perpendicularly to 
the plane of Fig. 1. For the tetrahedron this means that a 
uniform field H passes perpendicularly through each face. 
For consistency, as will be seen, we shall have to apply the 
Dirac quantization rule to the total flux, i.e., 

nH = phc/e, pEl. ( 10) 

Thus we shall not have the luxury of being able to treat H as a 
continuous variable. We note that p labels the first Chern 
classes H 2 ( T;l) of the U ( 1 ) -bundles over T. Instead of be­
ginning with the modes we shall construct an image sum 
analogous to (6). 

The propagator on the plane in the presence of a uni­
form magnetic field is well known and we can simply tran­
scribe the standard expression 14 to oblique coordinates to 
obtain 

KH (t;t '1]' it,1]) 

= .e~ exp[ieH{(t, _ t)2 
4m Sin !vt 4 
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(11) 

with v = eH //1-, c = 1, and e is the charge on the particle. 
The vector potential is the "symmetrical" one A 

= - !H(y, - x), in rectangular coordinates, and, unlike 
the magnetic field, does not possess the symmetry of the 
lattice. There are then well-known problems regarding the 
setting up of quantum mechanics. 15 Compensating gauge 
transformations are necessary. 16 

In order that the resulting "magnetic translations" 
(and, here, reflections) should induce a true representation 
in function space, rather than a ray representation, it is suffi­
cient to impose the flux quantization (10). The general re­
sults of Ref. 8 are then immediately applicable. 

If a point ofthe plane R 2 is denoted by q and the action of 
r by qy (YEn, then, instead of being periodic or antiperio­
dic, the wave function on R 2 satisfies 

(12) 

where Ay (q) is a compensating gauge transformation and 
aEHom(r,U(l)). In the present instancea(y) = ± 1. 

Suitably interpreted ( 12) is valid for more general situa­
tions. 

For a constant magnetic field 

Ay(q) =¥uaeH/3(M1] -Nt), 

whereq = (t,1]) andqy = (wt + 2Ma, W1] + 2Na). Intro­
ducing dimensionless coordinates t = t /a and 1] = 1]/a we 
find that when using (10), 

AyCq) =w1Tp(Mij-Nt). (13) 

Iterating (12) produces no inconsistency and the mag­
netic group is isomorphic to the ordinary one. IS

,17 This can 
be considered as another proof of the Dirac quantization 
rule-the so-called "integrality condition." Applying the 
general theory,8 the propagator on the tetrahedron is 

Kr(q',q) = 'L a-I(y)e - iAy(q')KH (q'y,q) 
y 

= 'LKH(q',qy)a(y)/Ay(q) . 
y 

(14) 

Written out explicitly in terms of theta functions, we find, 
from (11), (13), and (14), 
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±exp --hrp(trj'-t'TJ) 8 2, { I} 1- let + t ') 
2 ~p(TJ - TJ) 

(15) 

where here, and from now on, we drop the bars over the 
coordinates and where v = 21Tp/0{l and cp -I = 4(M 2 

+MN+N2)/3. 
The theta function transformation formula can be used 

to rewrite (15) in eigenfunction form. However we restrict 
attention to the coincidence limit K(t;t,TJlt,TJ) since it is 
easier to handle. From (15), 

K(t;t,TJlt,TJ ) 

= p [81 0 0 1 (0, - {3ip cot~vt) 
2Ui sin !vt - PTJ pt 2 2 ",-' 

+ 8 1 - t - TJ 1 (0, - {3ip cot ~ vt) ]. ( 16) 
- 0 0 2 2 ",' 

We further wish to integrate this quantity over the tetrahe­
dron. Because of the symmetry of the integrand it is possible 
to extend the integration over the entire parallelogram 
0<t<2, 0<TJ<2 with the penalty of a factor of 2. Then we 
note that this integration is most easily performed for those 
theta functions in which t and TJ occur on the bottom line so 
that it is calculationally advantageous to transform the sec­
ond term in (16) to give 

K(t;t,TJlt,TJ) 

=- --- 8 0 ---cotlvt 1 [p I 0 0 I ( {3ip ) 
20 i sin !vt - P'T! pt ' 2 2 '" -, 

01 (0, ~ tan~vt) ], 
TJ {3p '" 

1 1

0 
+--8 
- cos !vt t 

where cp = m 2 
- mn + n2. From the definition of the theta 

function, which we repeat here, 

00 

= I exp[ - 1Tz(m2 
- mn + n2

) + 21Ti(mt + nTJ)] , 

it can be seen that integration over t and TJ picks out the zero 
mode, i.e., the m = n = 0 term. Whence we find for the inte­
grated propagator 

K(t) =!( - pi csc !vt ± sec!vt), rIO. (17) 

If P = 0 then we regain (8) instead. 
It is a simple matter to obtain the eigenvalues of the 

Hamiltonian and their degeneracies from (17) . We find the 
energy levels Ek = (k + !)v,k = 0,1,2, ... , and the degener­
aciesdk =P± (-I)k,p>O. 

Without the flux quantization we would have found 
nonintegral degeneracies. This is another way of looking at 
the possible inconsistency in the quantum theory on a com­
pact region. 

This result is not unexpected because it is standard 18 

that the area density of states in a given Landau level is eH / 
21T. With (10) this yields the above degeneracy for the tetra-
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hedron region, apart from the reflection term ± ( - 1) k • 

Saying this again, the first term of ( 17) is obtained by in te­
grating the coincidence limit of the plane propagator, (11), 
over a region 0 and then using (10). Thus, insofar as the 
integrated quantities go, the only novelty that the tetrahe­
dron has to offer over any given region of the plane is the 
reflection contribution in (17). This will certainly have an 
effect on, say, the statistical mechanics, especially for small 
p. However, the main distinguishing property of the tetrahe­
dron expressions is their position dependence the study of 
which is perhaps better appreciated in quantum field theor­
ies were local quantities are more freely available. 

VII. QUANTUM FIELD THEORY. THE CASIMIR EFFECT 

We approach this topic via the Green's functions of the 
free massless scalar field constructed as image sums. In order 
to have something to compute we shall concentrate on the 
Casimir effect and shall evaluate the vacuum average of the 
energy density (Fao) , a local quantity, and also the v~uum 
average of the total energy (the Hamiltonian) E = (H). 

Explicit expressions will be given for the cases of two­
and three-dimensional space. The former for simplicity and 
the latter because we hope to make contact with the single 
wedge result mentioned earlie~ 

General theory l,19 gives (T;Jv) as the coincidence limit 
of a differential operator acting on the Feynman Green's 
function D. In flat space-time (and rectangular coordinates) 

(7'oo(x) ) 

= i !~~ [(2f" + ~)ao ao + (2f" - ~)ai at ]D(x,x') , 

(18) 

where f" is a parameter that, in order to give the improved 
energy-momentum tensor, equals i in four-dimensional 
space-time and i in three. These are the values we use. 

In four-dimensional space-time D is given as the image 
sum20 of standard Feynman Green's functions, 

D(x,x') = __ 1_ I --+ 2' • 00 ( 1 1) 
4~ M.N a2MN - (a!N) 

where 

a2MN = (t - t ')2 - [(t - t' - 2Ma)2 

+ (t - t' - 2Ma)(TJ - TJ' - 2Na) 

+ (TJ-TJ'-2Naf] - (Z_Z')2, (19) 

and the reflected interval is 

(a!N)2 = (t - t ,)2 - [(t + t' - 2Ma)2 

+ (t + t' - 2Ma)(TJ + TJ' - 2Na) 
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(20) where 

2 (a 2 a2 a2 a2 
) 

a~ = 3 2 as as' - a", as' - a",' as + 2 a", a",' 
Our notation is such that x = (s,,,,,z), x' = (S ',,,,',z'). 

The differential operator in (18) is given by 

is the polarized Laplacian on the tetrahedron (or the plane) . 
Calculation produces the Epstein forms 

(21) 

The M = N = 0 term in the first summation has been omitted as usua1. It corresponds to the standard ultraviolet divergence 
on Minkowski space. 20 There is a divergence, which we can do nothing about, coming from the second term as x approaches a 
vertex. We easily find that as r ...... 0 (r is the distance from the vertex) 

(7' oo(x» - - l/96~r4 , 
for untwisted fields, in agreement with the result5.6 for a single wedge of angle 1T, again adjusted for periodic boundary 
conditions. 

Obviously if (7' oo(x» is integrated over all the tetrahedron to give the total energy, per unitz interval, the answer will be 
infinite due to the vertex effects. As described elsewhere,5.21 an alternative procedure is to average the Hamiltonian, that is, to 
perform the integration first and then regularize/renormalize. Apart from any ultraviolet divergence this gives a finite result. 

Standard theory5.21 yields the expression for the total vacuum energy per unit z slice, 

E = (l/81T)lim r(s - 2);T(S - 2) , (22) 
s-I 

where; T (s) is the tetrahedron zeta function (1), which, in Epstein's notation, is 

1 (3a
2
)S 1

0 
;T(S) ="2 4~ z 0 ~I (s)q> . 

For the numerical evaluation of E it is generally easiest to leave E as in (22) because the right hand side is given by Eq. (3) 
on p. 207 of Epstein II and this equation is ideally suited to rapid calculation in terms of the incomplete gamma function. We 
find 

a2E* - 0.0423. 

An application of the transformation formula to the expression for E yields 

E = - 1 Z 1
0
0 001 (2)q>-' , 

6f3a2~ 

which is identical to the integral of the first, constant term in (21 ) over the tetrahedron. Thus it appears that if we integrate be­
fore averaging, the zeta function method drops the entire reflected term. We have no feelings either way for the justification or 
significance of this procedure. 

The analysis can be repeated for the three-dimensional space-time whose spatial section is the tetrahedron. The operator 
in (18) is now 

~(3~-ap) 
4 at 2 2' 

but the Feynman Green's function is not so simply expressed. It is easiest to leave it as a proper-time integral, 

D(x,x') = i oo 

i d: 3/2 I [exp( - ~ a2MN ) ± exp( - ~(a~fN )2)] , 
o (- 41Tl7) M.N 47 47 

where the space-time intervals are as in ( 19) and (20) except there are no (z - z') 2 terms. The integration over 7 is left until 
the differentiations and coincidence limits have been taken. We find 

A 1{' 1 II} 
(Too(x» = - 321Ta3 ~ (M2+MN+N 2)3/2 ±"2 ~ [(S-M)2+ (S-M)(",-N) + (",_N)2]3/2' (23) 

Near the vertex the behavior is again divergent, 

(1' oo(x» - + l/641Tr, 

and, as before, the total vacuum energy can be calculated by the zeta function method. This time 

1 1T 1
0 

E=-;T( -!) =--Z 
2 2a.j3 0 

°l(_~) * _.2:.!2.. o 2 q> a 

Again it is easy to show that this equals the integral of the first term in (23). 
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VIII. COMMENTS AND CONCLUSION 

Although the particular numbers obtained in this paper 
may not have much practical use, the calculation does sug­
gest a few interesting questions. 

The two-sphere and the tetrahedron, including its ver­
tices, are homeomorphic (they have the same Euler num­
ber) but of course are metrically different so that we would 
not expect them to have the same total Casimir energy. In 
fact for conformally invariant fields this energy is zero on S 2 

(and on all even spheres). 
We would not expect them, either, to have the same 

coefficient of it in the short-time expansion of the quantum 
mechanical propagator [cf. (9)]. Only for smooth mani­
folds (with or without boundaries) is this coefficient a topo­
logical invariant ( = 217'X /3, where X is the Euler number). 
For manifolds whose boundaries contain corners there are 
nontopologically invariant terms. 13 This raises the question: 
What is the short-time expansion of the propagator on a 
general polyhedron? This would be of interest when discuss­
ing quantum field theory on those two-spaces whose curva­
ture is concentrated on points. 

It is easily proved using Carslaw's wedge results7
,22 that 

the contribution to the coefficient of it of a vertex of deficit 
angle 217' - /3 is (4r - /3 2 )/6/3 (for,u = !). 

When the deficit angles a i (i labels the vertices) become 
infinitesimally small, 

which is the standard coefficient for the smooth, limiting 
surface JI, diffeomorphic to the two-sphere. 23 

One might expect the higher terms in the expansion to 
vanish if only because they do so for the polygonal mem­
brane. 24 The tetrahedron result (9) confirms this. 

We might even extend this termination to simplicial ap­
proximations in d dimensions and speculatively say that 
only the first d terms can possibly appear. 

Another point concerns the classification of propaga­
tors on the tetrahedron. General theory3,25 says that the dis­
tinct propagators are in one to one correspondance with the 
elements of Hom(HI' U( 1)) where HI is the first homology 
group of the configuration space. For the tetrahedron 
HI = 3Z. Hence the propagators should be labeled by three 
angles. 

In order to give these angles a "physical" meaning, ima­
gine the particle to be charged and magnetic flux tubes to 
emerge from each vertex. The change of phase of the wave 
function when circling the tetrahedron will be 217'~i mioi , 
where ni is the winding number, around the ith vertex, of the 
path and Oi = e<l>i /hc, where <l>i is the flux through the ith 
vertex. Since the total flux is quantized e~<I>i = phc, PEZ, 
and only three 0 parameters are independent. They can be 
taken to lie between 0 and 1. Multiplied by 217' these are the 
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three angles mentioned above. 
The antiperiodic case discussed in Secs. III and IV cor­

responds to all the Oi being 1. Any other distribution of the 
Oi, apart from all zero, requires the solution ofSchrodinger's 
equation in an infinite lattice of flux tubes, an interesting 
problem in its own right. 

Finally, we remark that it is not difficult to relax the 
regularity condition so long as the deficit angles remain 
equal to 17'. 
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Two spectral function methods are developed for linear and nonlinear diffusion equations in 
one dimension where the nonlinearity is in the inhomogeneous term and occurs as a power of 
the solution. In the single spectral function method polynomial spectral functions in the spatial 
variable are introduced. The spectral resolution of the diffusion equation in the Hilbert space 
spanned by these functions yields a system of ordinary differential equations which is then 
integrated in discrete steps of the time variable. The double spectral method introduces 
polynomial spectral functions in both space and time variables and thereby eliminates the need 
for time integration through application of an iterative algorithm. Both methods are compared 
against analytical solutions for the linear cases and against the numerical solutions for the 
nonlinear cases. The second spectral function method was found to be more efficient than the 
first by a factor of 6 in the case of nonlinear problems. 

I. INTRODUCTION 

Traditionally the diffusion equation is encountered in 
statistical mechanics I where it occurs together with the 
Fokker-Planck2 equation in the description of Brownian 
motion of microscopic particles. A comprehensive historical 
review of the diffusion equation and the relationship to sto­
chastic processes is to be found in the essay by Montroll and 
Schlesinger.3 An exposition on the diffusion equation, solu­
tion methods, and applications is given by Crank.4 From the 
point of view of numerical techniques typical methods of 
solution are described in Refs. 5 and 6. The usual numerical 
approach to the solution of the diffusion equation is to dis­
cretize in either space or time degrees of freedom or in both. 
However, for large scale problems in several spatial dimen­
sions such discretization methods become expensive in 
terms of computing resources. For this reason research into 
more efficient numerical methods continues and is de­
scribed, for example, by Ghoniem and Sherman 7 or 
Rektorys.8 

One alternative to discretization in space and time vari­
ables is the so-called spectral function method. Spectral 
function methods9 provide concise and accurate approxima­
tions to operator equations characteristic of initial or bound­
ary value problems. As an example, the method has enjoyed 
continued success in applications to fluid flow problems. 10 

Interest in the method was revived by a series of key papers 
by Orszag and collaborators. 9. II The spectral function meth­
od may be thought of as an L2 projection of the operator 
equation of interest onto a finite dimensional Hilbert space 
spanned by a set of polynomial "coordinate" 12 or spectral 
functions. Given an L2 norm it then becomes possible to 
apply the underlying powerful functional analytic theory as 
developed by Kantorovich and Akilov. 13 

A spectral function method was previously applied to 
linear Schrodinger operator equations characteristic of 

a) Dedicated to Professor Dr. F. Beck (Institut fUr Kernphysik, Technische 
Hochschule, Darmstadt, West Germany) on the occasion of his sixtieth 
birthday. 

quantum scattering theory.14.15 In the present study the 
method is developed for equations describing linear and non­
linear diffusion in one spatial dimension. Although only 
model cases are discussed in this communication, an appli­
cation to a real-life problem in theoretical plasma physics is 
under study. 16 

Two spectral function methods are developed in the 
present work. In the first of these polynomial spectral func­
tions in the spatial variable are introduced. This leads to a 
system of first-order ordinary differential equations, which 
is then integrated in discrete steps of the time variable. The 
second spectral method consists of polynomial spectral func­
tions in both space and time variables and thereby eliminates 
the need for time integration. Both methods are compared 
against analytical solutions for the linear cases and against 
the numerical solutions of Rektorys8 for the nonlinear cases. 

This communication is divided into six sections. Section 
II introduces the two spectral function methods and the 
problems to which they are applied while Sec. III describes 
the extensions required for application to the nonlinear 
cases. Sections IV-VI give the results of numerical experi­
ments using both methods for linear and nonlinear problems 
and Sec. VII summarizes conclusions. 

II. TWO SPECTRAL FUNCTION METHODS 
A. Statement of the problem and method 

The diffusion equation studied here in one spatial di­
mension takes the form 

(1) 

where at denotes one derivative with respect to time t and arr 

denotes two derivatives with respect to one spatial degree of 
freedom. The domain of definition for the solution u (r,t) is 
rE [O,p ], tE [0, l' ] subject to the boundary conditions 
u(O,t) = u(p,t) = ° and initial value u(r,O) = uo(r). The 
inhomogeneous term Q(r,t,u) depends only on r, in the lin­
ear case, or on u (r,t) in the nonlinear case, for the problems 
studied here. The coefficient functions of the derivative 
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terms have been chosen as unity. The extension of the meth­
od to cases where the coefficient functions depend on r, t, or 
u (r,t) is not a problem in principle and the analysis is simpli­
fied with this assumption. However, a typical real-life prob­
lem from theoretical plasma physics does require this exten­
sion. 16 

The specific cases chosen for study were as follows for 
tE[O,I]. 

PI: Q = 0, rE[O,1T], and uo(r) = sin(nr) for n = 1. 

P2: as in PI for n = 2. 

P3: as in PI for n = 4. 

P4: Q = siner), rE[O,1T], and uo(r) = 0. 

P5: Q = - 20u3 (r,t) , rE[O, I], and 

{
r, rE[O,!], 

Uo(r) = 
1- r, rE[!,I]. 

P6: Q= L{I-U2(r,t')}dt', rE[O,I], and uo(r) =0. 

Solutions for problems PI-P4 are known in closed form and 
for PI-P3 u(r,t) = e - n', sin(nr) while for P4 
u(r,t) = (1 - e - ')sin(r). Solutions to P5 and P6 are avail­
able in numerical form and may be generated from tables of 
coefficients given by Rektorys using a time discretization 
method as described in Chaps. 5 and 6 of Ref. 8. Figure I 
shows perspective plots of the solutions for two of the linear 
problems, namely cases PI and P3, while Fig. 2 shows the 
solutions of the nonlinear problems P5 and P6. 

In essence the spectral function method has as its basis 
the method of separation of variables in that the solution has 
a representation as a sum of products of functions in the 
different degrees offreedom. The solution is then written as 

00 

u(r,t) = I Pn (t)Wn (x) , (2) 
n=l 

with the change in variable r = px. The set {wn (x)} l' is 
orthonormal on the interval XE[ - 1, + 1] with respect to a 
weight function ¢ (x) > 0 on the interval. Conversely, given a 
Hilbert space Hr in which an inner product is defined as 

(J,g) = J_+llf(X)g(X)¢(X)dX, (3) 

then, for fixed t, Eq. (2) is simply the Fourier series l3 for 
u(r,t). Therefore for a fixed t the solution u(r,t) is fully 
specified by the set of bounded numbers p = {Pn (t)}1' Ch 
and the Hilbert spaces hand Hr are isomorphic. However, 
the exact Fourier coefficients are not known a priori and 
usually a Galerkin method is applied II to obtain approxi­
mate values for the exact Fourier coefficients for each value 
oft. 

This is the usual approach9 to solving partial differential 
equations by the spectral method and is referred to here as 
the single spectral function method (SSFM). The present 
study proposes an extension by introducing a second set of 
spectralfunctions for Eq. (2) as 

00 

Pn (t) = I ' Pnrnurn (y) , (4) 
m=l 

with the change in variable t = ry. The set {urn (Y)}1' is or-
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thonormal on the intervalYE[O, 1] and for some weight func­
tion t/J(y) > ° an inner product is defined by 

(f,g) = ff(y)g(Y)t/J(Y)dY , (5) 

This extension will be referred to as the double spectral func­
tionmethod (DSFM). In the DSFM Eqs. (2) and (4) com­
bined show that the solution u(r,t) finds a representation in 
a tensor product space H = Hr ® H, with {wn (x) }1'EHr 
and {urn (Y)}1'EH,. 

B. Choice of spectral functions 
1. Definition of the coordinate functions 

The choice of basis for the spectral functions is usually 
limited to simple trigonometric or polynomial functions. 9 

However, higher transcendental functions have also been 
used. 15 In the present application the boundary conditions 
suggest that the set {sin (nr) } l' is a natural choice in the 
trigonometric case. However, in more realistic problems the 
choice is not so obvious and for this reason a polynomial 
spectral method is also developed. For the reasons outlined 
previouslyl4 and because of their convenient numerical 
properties the Chebyshev polynomials are used. Chebyshev 
polynomials have previously been applied to the linear diffu­
sion equation l7 and also to integral equations. 18.19 

In the following the notation will be a general one appli­
cable to either the trigonometric or Chebyshev polynomial 
choice and also to problems beyond the scope of the present 
one. Since the approximation methods described below refer 
to finite and not infinite series this will be explicitly indicated 
in what follows. 

Let t be the vector of N + 1 components such that in the 
trigonometric case the transposed vector is 

t T = {cos (01TX ) ,sine I1Tx ),cos( I1Tx ),sin( 21TX), 

COS(21TX), ... , sin(N1Tx12),cos(N1Tx12)}, (6) 

and in the polynomial case 

t T = {To(x),TI(X),T2(X),T3(X), ... ,TN(X)}, (7) 

where r = px and XE[ - 1, + 1] with N chosen as even. 
Then an approximation to the solution of Eq. (1) is 

(8) 

where a is a vector of N + 1 coefficients which depend on 
time and 

(9) 

Application of the two boundary conditions to Eq. (8) 
shows that two of the coefficients are linear combinations of 
the others. In the Chebyshev case these coefficients are !ao 
and al while in the Fourier case they are !ao and a2' On 
substituting the relevant linear combinations for this pair of 
coefficients in Eq. (8) and rearranging terms one obtains in 
the Fourier case 

NI2 

u(r,t) = I a2n _ 1 (t)e n (x) 
n=l 

N/2- I 

+ I a2n + 2 (t)eN12 + n (x) , (10) 
n=l 
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where for n = 1, ... ,N /2, 

en (x) = sin (n7ix) , 

and for n = 1, ... ,N /2 _ 1, 

) lcos{(n + l)7ix} - COS(07iX), eN
/ 2 + n (x = { } 

cos (n + l)7ix - cos (17ix), 

u 

1.00 

0.67 

u P3 

1.00 

0.33 

0.00 0.00 0.33 

(11) 

n odd, 
n even. 

(12) 

In the Chebyshev case 

N/2_1 

u( r,t) = L a2n + 1 (t)e
n 

(X) 
n=1 

N/2_1 

+ L a2n+2(t)eN/2+n(X), n=O 

(a) 

1.00 

(b) 

0.67 
- 1.00 

FIG. I. P'_ti,. - of ""0",,0, 10 IWo of Ih, lio"" po>h,_. -"~Yo (.) "",, P) '"" (b) "'~ PJ. Th, 'g",~ _, """"'''" from U" 'oowo '"~""'" ""otio" " ""'0 io &c. II A. n,"PMi~ "'""""'" ~ '/P. who" p i, u,' ~'tioom ,,'~ of, 41 
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0·11 

0.07 

0.04 

where for fI = l, ... ,N /2 _ 1, 

e" (x):::: 7;"+1 (x) _ Tdx) , 
and for n = O, ... ,N /2 _ 1, 

Ps 

0.50 

(14) 

(a) 

1.00 

(0) 

1.00 

FlG. 2. """"",,, pI"" of ~'O""", '0 ... <>-0 o""."~, ''''''fum •. ",mdy, ('1 ,=, P5 ",d (b) "'" P6. Tire ,",<1m ""'hI, ill x ~ '(p, wh~ P • <b, 
........... "'~ of,. Th, "0" "'re '<n,,,,,,, lium '" '.m'ri~,.".tio" g;"" by "k,,,,,.. ' t" ca~ '5 <h, "''''on ." 'PP,"U"""", .i(h <h", futik 
"""""" .,,"" d'_ tim, po;"" N"" <h, th", "'<1M' rid"" -101 to '" , "'" "',,-.d'o. to th, "'0"", , ~ 0.25, 0.5, ""d O.?y. I. e." P6 U" 
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Each member of the linearly independent set {en}f - I satis­
fies the boundary conditions and a matrix T is defined by 

e=Tt, (16) 

where e is the vector of N - 1 coordinate functions en (x) of 
Eqs. (10) and (13). Those functions which are oddinx are 
placed in the upper block of the vector e for reasons which 
become apparent in the next section. The forms of the vec­
torst[Eqs. (6) or (7)] ande[Eqs. (11) and (12) or (14) 
and (15)] define the matrix T. This matrix is rectangular 
with N - 1 rows and N + 1 columns since e has two ele­
ments less than t. The matrix T changes if either the bound­
ary conditions or the basis t is changed. 

2. Orthonormalization 

Equation (1) can be solved directly with the expansion 
of Eqs. (10) or (13) similarly to the previous work. 14 How­
ever, while the upper block of the vector e, namely the sine 
functions of Eq. (11) are orthonormal, the remaining ele­
ments en in Eqs. (12), (14), and (15) are not. From the 
point of view of the numerical application it is more efficient 
to use an orthonormalized set {wn}f - I generated from the 
linearly independent set {en}f - I. The Gram-Schmidt 
method generates an auxiliary set {dn}f - I as follows: 

WI = dl/lldlll, dl = e l , 

Wn = dn/lldn II, n = 2, ... ,N - 1 

with 
n -I 

dn = en + I ani Wi , 
i~ I 

where 

(17) 

(18) 

(19) 

The norm is Ildn II = ~ (dn ,dn ) and the inner product is as 
defined in Eq. (3) with the weight function tP (x) = 1 in the 
Fourier case and tP(x) = 1I.JT=? in the Chebyshev case. 
The Gram-Schmidt method is used to determine the matrix 
elements Sij of a matrix S, where 

w = St (20) 

using the matrix elements of T in Eq. (16). 
If {ti}f + I are elements of the vector t in Eqs. (6) and 

(7) then 

and 

N+I 

en = I TnJi 
;=1 

N+I 

Wn = I SnJi· 
;=1 

( 16') 

(20') 

Initially, for n = 1, Sli = Tli/lldlil and subsequently, for 
n> 1, Sni is calculated using the following results. 

An expression for a ni follows on substituting Eqs. ( 16') 
and (20') into (19) for i = 1, ... ,n - 1. This gives for the 
Chebyshev case 

ani = -!1T {2SiI Tnl + Ni I Sij Tnj } . 
J~2 

(21) 

Coefficients in the expression 
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N+I 

dn = I DnJi (22) 
;=1 

are obtained on substituting Eqs. (16') and (20') into ( 18) 
n-I 

Dni = Tni + I anjSji , 
j~1 

(23) 

whence, again for the Chebyshev case, 

{ ( 

N+ I )} 1/2 

Ildn II = !1T 2D ~I + i~2 D ~i (24) 

It then follows from Eq. (17) that Sni = DnJlldn II . In the 
Fourier case the factors of !1T in Eqs. (21) and (24) are 
absent as they arise from the orthogonality relation of the 
Chebyshev polynomials. The scheme is required in the Four­
ier case to orthonormalize the set of functions in Eq. (12). 
The set offunctions {wn}f - I generated by this scheme were 
checked for orthogonality and no numerical difficulties were 
experienced for the applications discussed here. 

3. Basis transformation 

Comparison of Eqs. (8), (9), and (2) with the latter 
sum truncated at N - 1 as required in (17) shows that the 
coefficients in the expansions are different. This is because 
there is a change in basis {ti}f + I ..... {wi}f - I with the latter 
set satisfying the boundary conditions of the problem. In the 
Chebyshev case it is more convenient from the numerical 
point of view to use the set of Chebyshev coefficients {ai}~ 
rather than the set {Pi}f - I because Chebyshev polynomial 
properties may then be exploited. Therefore two mappings 
are required 

R: {aJ~ ..... {PJf-l, (25) 

R - I {P}N - I { }N : i 1 -. a j 0 • (26) 

Matrix representations of the mappings Rand R - I follow 
on comparing Eqs. (2), (8), and (9), 

N-I N+I 

I Pn (t)Wn (x) = I ' am _ I (t)tm (x) , (27a) 
n=1 m= 1 

where the prime on the second summation indicates that the 
first term is halved. In vector notation 

wTp = tTa. (27b) 

Left multiplication by the vector w or t followed by applica­
tion of the inner product Eq. (3) gives, respectively, 

p = Ra (28) 
and 

R-Ip = a. (29) 

It follows from the expression ofEq. (20) and the definition 
Eq. (9) of the vector a of coefficients that in the Chebyshev 
case R = (W,tT) is !1T times the matrix S with the first co~­
umn multiplied by 2. In the Fourier case the factor of !1T 1S 

absent. Similarly R -I = ST for both Fourier and Chebyshev 
cases. Note that the matrix R has N - 1 rows and N + 1 
columns while the converse is the case for R - I. 

c. The matrix problem 

In the following it is assumed that the inhomogeneous 
term of Eq. (1) has an expansion analogous to Eq. (2), 
namely, 

G. Delic 43 



                                                                                                                                    

N-I 
Q(r,t,u) = L qn (t)wn (x) . (30) 

n=1 

This expansion is obtained by a basis transformation of an 
expansion similar to Eqs. (8) and (28) 

(31) 

(32) 

is the vector of expansion coefficients of Q(r,t,u) on the basis 
{t;}~ + I . The procedure for obtaining these coefficients for 
nonlinear problems is described in Sec. III and here it is 
assumed that they are known. 

Substitution of Eqs. (2) and (30) into Eq. (1) gives the 
equation 

w T ( ~~) = p-2W"Tp + wTq, (33) 

where 

pT = {PI(t),P2(t)"",PN-I (t)} (34) 

and similarly for q. The double prime on w" indicates that 
the components are differentiated twice with respect to argu­
ment x where r = px. Left multiplication of Eq. (33) by w 
and application of the inner product Eq. (3) yields the result 

dp 
-=Hp+q, 
dt 

where, in the Fourier case, the matrix 

H = (W,W"T)/p2 

(35) 

(36) 

is diagonal. In the Chebyshev case H is neither diagonal nor 
symmetric but may be written in diagonal form as 

H = YAZT (37) 

where A is the diagonal matrix of (real) eigenvalues of H 
arranged in increasing magnitude. The matrices Y and Z 
have columns which are eigenvectors of Hand HT, respec­
tively, with normalization 

ZTy = YZT = 1. (38) 

Left multiplication ofEq. (35) by ZT yields the vector equa­
tion 

d (z) 
_P_ = Ap(Z) + q(Z) , 

dt 

which is the spectral resolution of Eq. (1) with 

p(z) = ZTp 

while from Eq. (38) it follows that 

p = Yp(Z). 

However, from Eqs. (28) and (29) 

p(z) = ZTRa = Fa 

and 

(39) 

(40) 

(41) 

(42) 

a = R-Iyp(z) = F-Ip(Z) (43) 

with similar results for f, q, and q(Z) • From Eqs. (42) and 
(43) F is seen to be a matrix representation of a mapping F 
from a "physical" to a "spectral" space, namely, 

(44) 
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and F -I is the inverse mapping. It suffices to consider the 
mapping as acting between the two sets of coefficients. This 
is because in either of the respective Hilbert spaces spanned 
by the orthogonal bases {tn } and {wn } the corresponding set 
of coefficients is a unique representation of an element in 
that space. This is a consequence of the Riesz-Fischer 
theorem. 13 

This section is concluded by showing how explicit ex­
pressions for the matrix elements H are obtained. The ma­
trix elements are easily found once the {w" n} are expressed 
on the {tm } basis. The first step is to note that from Eq. (20') 

N+I 
W" = '" S ·t". n £... m 1 

(45) 
i= 1 

and consequently the second step is to find an expression for 
t "i on the {tn } basis. 

At this point it is observed that the spectral basis of Eqs. 
( 10) and (13) is grouped into two parts consisting, respec­
tively, of odd and even powers in the argument x. This divi­
sion has numerical advantages and is adhered to here. 

For even powers of x in the Fourier case 

(46) 

and from Eq. (6) 

tlm+I(X) =cos(m1Tx), 0<m<N/2, (47) 

therefore the only term which survives in Eq. (46) is k = m 
with 

Cmm = _m2r. 
Similarly for odd powers of x 

Nil 

" '" 0 t 2m = L.. Cm_l,k_1 t lk , l<m<N /2, (48) 
k=1 

and 

tlm (x) = sin(m1Tx), l<m<N /2, ( 47') 

with the only nonzero term of Eq. (48) being 

C;'" _ I.m _ I = - mlr . 

The corresponding expressions in the Chebyshev case follow 
on application of results given in Section 8.5.1 of Luke. 20 For 
even powers of x 

m-I 

t"lm+1 = L cmktlk+I' l<m<N/2, (49) 
k=O 

and from Eq. (7) 

t2m + I (x) = T 2m (x), O<m<N /2, 

where 

cmO = 4m3
, k = 0 , 

cmk=8m(m2-kl),0<k<m-l. 

For odd powers of x 
m-I 

" '" 0 t 2m = L.. Cm _ l •k _ 1 tlk , 2<m<N /2, 
k=l 

and 

t2m(x)=T2m_l(X), l<m<N/2, 

where 
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C;',,-l.k-l = 4(2m - l)(m - k)(m + k - 1), 

l<k<m - 1. 

Substitution of Eqs. (46) and (48) or Eqs. (49) and (51) 
into Eq. (45) yields for even powers of x 

N3 

w"n = I Knkt2k+l' 
k~O 

where 
M2 

Knk = I Sn.2m+ 1 Cmk , 
m~k 

and for odd powers of x 
N3 

" '" KO w n = £.. nk t2k , 
k~l 

with 
M2 

KnOk = '" S CO £.. n.2m m-l.k-l , 
m~k 

(52) 

(53) 

(52') 

(53') 

with summation indices in the Chebyshev case N 3 = N / 
2 - 1, M2 = N /2, and in the Fourier case N3 = N /2, 
M 2 = k. The matrix elements of H in Eq. (36) then follow 
from the inner product appropriate to the Chebyshev or 
Fourier cases with the resulting expression 

-2( ") 1 -2 {2S K P Wn' ,W n = 21TP n'l nO 

N3 } + k.?l [Sn'.2k + 1 Knk + Sn'.2k K : k ] , 

(54) 

and the factor of ~1T is absent in the Fourier case. 

D. The single spectral function method (SSFM) 

The SSFM consists of the transformation from the phys­
ical space of Eq. (1) into the spectral space of Eq. (39) as 
described above. This mapping is accomplished through the 
matrix representation F as defined in Eq. (42), namely, 
p (z) = Fa. The vectors of coefficients a and p (z) both depend 
on time and an initial value is specified for p(z) by the vector 
a corresponding to uo(r) = u(r,O). If the inhomogeneous 
term Q of Eq. (1) is not zero and does not depend on time 
then q(z) in Eq. (39) is obtained from q(z) = Ff, where f is 
defined in Eq. (32). With these initial conditions the system 
of first-order ordinary differential equations (ODE's) in Eq. 
(39) can be integrated in time in the spectral space by either 
a predictor-corrector (PC) or Runge-Kutta (RK) meth­
od. 21 The solution at any time t in the physical space is ob­
tained by the inverse mapping of Eq. (43), namely, 
a = F-lp(Z). If Q does depend on time, as in the case for the 
nonlinear problems P5 and P6, then the spectral transforms 
ofEqs. (42) and (43) must be applied at each time step. The 
details of this case are described in Sec. III. 

Although a large amount of literature on numerical so­
lution of systems of ODE's exists, the text by Lapidus and 
Seinfeld2l was found to be useful from the point of view of 
the practitioner. Since this reference documents and com­
pares a substantial number of different integration formulas 
no detail is presented here. However, a full description of the 
ODE software package designed for the present application 
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will be the subject of a separate report. 22 Therefore the de­
scription here is a brief one referencing only the formulas 
used and the important numerical parameters determining 
accuracy. Second to sixth order formulas for both RK and 
PC methods were taken from Lapidus and Seinfe1d.21 The 
formulas used comefrom tables in Eqs. (2), (3)-(7), (10), 
(14), (19), and (32) and the Adams Bashforth cases ofTa­
ble 4.1 of that reference. Key parameters determining the 
numerical accuracy of the integrated solution were (a) the 
step size I1t, (b) the order of the formula k, (c) the number 
of iterations s, and (d) the number of components to be 
integrated in Eq. (39) N s • 

The iteration number s applies only to the PC formulas 
and its counts the number of times the predicted value is 
corrected. Thus s = 0 corresponds to prediction without 
correction, s = lone correction, etc. The procedure is de­
fined in detail in Eq. (4.1-5) of Lapidus and Seinfeld.2l In 
the present application the PC method is applied in prefer­
ence to the RK method because for the choice of the above 
parameters used here it requires two to four times fewer 
function evaluations. 

E. The double spectral function method (DSFM) 

Clenshaw23 observed that if an ODE has simple polyno­
mial coefficients then the expansion coefficients of the solu­
tion in Chebyshev series may be generated by recurrence. 
The technique has previously been applied to the evaluation 
of higher transcendental functions24 and in the present work 
it is applied to the system of ODE's of Eq. (39). In this 
equation each component of p(z) is a function of time and 
from Eq. (42) it also follows that 

p(z) =Fa. 

Therefore, for the components of a in Eqs. (8) and (9) intro­
duce the expansions (written in vector form) as 

a=At* (55a) 

and similarly for the coefficients f of the inhomogeneous 
term defined in Eqs. (31) and (32) 

f= Et*. (55b) 

The vector t* is 

t*T = {Tt(y),Tr<y), ... ,T~(y)}, (56) 

where T'!, (y) is the shifted Chebyshev polynomial20 and 
t=rywithtE[O,r],YE[O,I]. The first column of A (E) has 
matrix elements !Ano (~Eno) where Ano (EnO) is the first 
shifted Chebyshev coefficient of an (tHin (t»), n = 0,1, ... N. 
In view of Eqs. (6), (7), and (56) matrices A and E have 
M + 1 columns and N + 1 rows. 

Substituting Eq. (55a) into Eq. (42) yields 

p(Z) = Fa = FAt* = Pt* 

and similarly 

q(z) = Ff = FEt* = Qt* , 

while the converse follows from Eq. (43) 

a = F-lp(Z) = F-lpt* = At* 

with 

f= F-1q(z) = F-lQt* = Et*. 
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In the DSFM matrix elements of P are obtained by recur­
rence in spectral space and the matrix A ofEq. (55a) in the 
physical space is obtained by the transform 

A = F-1p, (59a) 

and similarly 

E=F-1Q. (59b) 

In the case that the inhomogeneous term of Eq. (1) is a 
known function of rand t the matrix E ofEq. (55b) is known 
and Q = FE. However, if the inhomogeneous term depends 
on the solution u (r,t), as is the case in the nonlinear prob­
lems P5, P6, then the DSFM described here has to be ex­
tended. This is done in Sec. III. This section is concluded 
with a description of how matrix elements ofP are obtained 
by recurrence in the linear problems PI to P4. 

Consider the nth component of the vector Eq. (39) 
where the inhomogeneous term is considered to be zero, 

d (z) 
'Pn _ A (z) Tt- nPn , 

with the change of variable t = ry this becomes 
d (z) 

'Pn A (z) 
dy = 7. n Pn , 

(60a) 

(60b) 

whereA n is the nth (real) eigenvalue of the matrix H in Eq. 
(37). Introducing the expansion Eq. (57a) 

M 

p~Z) (y) = I ' Pnm T! (y) , (6Ia) 
m=Q 

where the prime on the summation denotes that the first 
term contains the usual factor of !. For the derivative of 
p~Z) (y) with respect to y let 

dp(Z) M 
_n = I' P~m T!(y) 

dy m~O 
(61b) 

then, from the orthogonality property of the shifted Cheby­
shev polynomials, Eq. (60b) reduces to 

P ~m = rAnPnm . (62) 

From Clenshaw23 

4mPnm =P~,m-l -P~,m+l' 

which, when combined with Eq. (62), gives the three-term 
recurrence 

Pn,m-l =4mPnml(rAn) +Pn,m+l' (63) 

In the case that the inhomogeneous term is not zero, then 
from Eq, (57b) 

M 

q~Z) (y) = I ' Qnm T! (y) , ( 61a') 
m=O 

and in place of Eq. (63) one has 

+ (Qn,m+l -Qn,m-l)IAn · (64) 

At time t = ° it follows from T! (0) = ( - 1)m that Eq. 
(61a) becomes 

M 

p~Z)(O) = I ' ( - 1)mPnm . (65) 
m=O 

The downward recurrence Eq. (64) is started with 
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Pn,M + 1 = 0, PnM = 1 and the resulting coefficients are nor­
malized from Eq. (65). Numerical results are discussed in 
Sec. VI. 

III. APPLICATION TO NONLINEAR PROBLEMS 
A. Preliminaries 

The type of nonlinearity discussed in this study is of a 
relatively simple type, namely, a (positive) integer power of 
the unknown solution. Furthermore the nonlinearity is as­
sumed to occur only in the inhomogeneous term of the mod­
el problem given in Eq. (1). In the case ofP5 (see Sec. II A) 
the nonlinearity is cubic in the solution u (r,t) and in P6 it is a 
Volterra-like integral in time of a quadratic in u(r,t). Be­
cause of the occurrence of only integer powers a simple prop­
erty of both Chebyshev and Fourier series may be applied. 
The product of two series of N + 1 terms can be written as a 
single series of2(N + 1) terms. In the vector notation ofEq. 
(8) this is the convolution product 

u2 (r,t) = (tTa) ® (tTa) = t1b (66) 

and the relevant expressions for b in the Chebyshev case are 
to be found at the end of Sec. 8.6.1 of Luke. 20 Similar expres­
sions can be derived for the case of the product of two Four­
ier series, These results and the algorithm used to calculate 
the product ofEq. (66) for Chebyshev and Fourier cases are 
reported elsewhere, 25 

The remainder of this section discusses the application 
of Eq. (66) to problems P5 and P6 in both the SSFM and 
DSFM. In these applications the series which results from 
the convolution product ofEq. (66) is truncated at the same 
length as the component series namely N + 1 terms. This 
approximation is a good one if the coefficients of the compo­
nent series decrease sufficiently rapidly, 

B. The single spectral function method 

The SSFM performs a time integration of the vector Eq. 
(39) using either a RK or PC method. Therefore the time 
dependence of the inhomogeneous term must be computed 
at each time step. In the example of P5 the nonlinear inho­
mogeneous term is evaluated at each time step in three 
stages. 

Algorithm 1: 
(1) Back transform a = F-1p(z) . 
(2) Convolution product - 20(tTa) ® [(tTa) 

®(tTa)] =tTf. 

(3) Forward transform Ff = q(Z) , 

where F, F- 1
, f, and q(Z) are as defined in Sec. II C. Stage 2 

of the algorithm is a twofold product of the type in Eq. (66). 
Once q(Z) at the current time step has been calculated the PC 
or RK method can predict the vector p(z) at the subsequent 
time step. For time t = ° the algorithm commences at stage 2 
using for a the coefficients of the initial distribution 
uo(r) = u(r,O). 

In the case of problem P6 Algorithm 1 is modified in 
stage 2. After evaluation of one convolution product a qua­
drature is applied to determine the vector f at the current 
time step. Here the inhomogeneous term (Sec. II A) has the 
form 
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Q = f {I - u2 (r,t ')}dt' . (67) 

If the convolution product for u2 has been evaluated then 
N 

u 2 (r,t') = I' bn(t')tn+ 1 (x), (68) 
n=O 

and 
N 

Q= t- I' hn(t)tn+ 1 (x), (69) 
n=O 

where 

hn (t) = f bn (t ')dt' . (70) 

Therefore the coefficients f in the expression for the inhomo­
geneous term Eq. (31) are given by 

(71) 

where D n,O is the Kronecker delta function and the factor of 2 
in the first term arises because of the (usual) factor of! in the 
summation of Eqs. (31) and (32). In evaluating Eq. (70) 
numerically the simplest quadrature is the trapezoidal rule. 
For a time step At the coefficient hn (t) at the current time 
step t is computed from 

h n (t) = hn (t - llt) + ~At [bn (t - llt) + bn (I)] . 
(72) 

Therefore, for P6, the second stage of Algorithm 1 is as fol­
lows. 

(2a) Convolution product (tTa) ® (tTa) = t1b. 
(2b) Quadrature ofEq. (72). 
(2c) Form vector f from Eq. (71). 
The initial condition for P6 is that uo(r) = 0 and it fol­

lows from Eq. (67) that the inhomogeneous term is zero at 
t = O. Consequently the modified form of Algorithm 1 is 
first applied at the first time step t = llt. 

c. The double spectral function method 

This section describes the extension to the discussion of 
Sec. II E in applying the DSFM to nonlinear problems. The 
essence of the nonlinear DSFM is the solution for the coeffi­
cient matrix A of Eq. (55a) by an iterative technique. Sche­
matically the procedure is set out in the following steps. 

Algorithm 2: 
(0) Compute matrix P by downward recurrence ofEq. 

(63 ). 
(1) Back transform A = F-1p ofEq. (59a). 
(2) Compute coefficient matrix E ofEq. (55b). 
(3) Forward transform Q = FE ofEq. (57b). 
( 4) Compute new matrix P by downward recurrence of 

Eq. (64). 
Step 0 is only used to provide an initial matrix P and the 

iteration consists of repetition of steps 1 to 4 until the matrix 
A has converged. Only step 2 is dependent on the specific 
form of the nonlinearity in the inhomogeneous term Q ofEq. 
(1), and the discussion here is specific to cases P5 and P6. 

After back transformation A is known and E is comput­
ed as follows. From Eqs. (8), (9) and (55a), with €n = 1, 
n = 0 and €n = 2, n > O. 
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N 1 [M 1 ] 
u(r,t) = I -En I -€mAnm T!(y) tn+l(x), 

n~o2 m~o2 

(73) 

and, assuming that tn+ I (x) is the Chebyshev case of Eq. 
(7), the convolution product of Eq. (66) becomes 

NIl [M 1 
u 2 (r,t) = I -€, -€" I -€ ,A, ,T*,(y) 

n'n" 2 n 2 n m' ~ 0 2 m n m m 

X m~o ~ €m"An"m" T!" (y)] 
X [tn' + I (x)tn" + I (x)] . (74) 

For each n', n" the product of two series in the first parenthe­
ses is reduced to a single series 

M 1 
m.?;o T€mCn'n"m T!(y) 

similar to Eq. (66). For the second term in parentheses, 
from properties of Chebyshev polynomials, 

tn'+ltn"+1 =!t1n'_n"I+1 +!tn'+n"+I' 

Consequently the n', n" summations may be performed to 
give the coefficients Bnm of 

N 1 [M 1 ] 
u

2
(r,1) = I - €n I - €mBnm T! (y) tn + I (x) , 

n~o2 m~o2 

(75) 

where the term in the parentheses is the coefficient bn (t) of 
Eq. (68). ForcaseP6h n (t) ofEq. (70) then has the expan­
sion 

(76) 

and Elliot l8 has given expressions relating Chebyshev ex­
pansion coefficients of the integral of a function to those for 
the function itself. Applying these results in the present case 
gives, for m = 0, 

1 [ 1 M{(_I)k}] 
H nO =-7 BnO-- B nl- 2 I 2 Bnk' 

2 2 h2 k - 1 
(77a) 

and for m >0 

Hnm =7[Bnm_I-Bnm+I]/(4m). (77b) 

The first term of Eq. (69) has the first two expansion coeffi­
cients as 27 and 7, respectively, and therefore, for each n, the 
matrix E of Eq. (55b) is defined by 

Eno = 27 - Hno , 

Enl =7-Hnl , 

Enm = -Hnm' m> 1. 

(78) 

For case P5 the coefficients Enm ofEq. (55b) follow directly 
from a second convolution of - 20 times Eq. (73) with Eq. 
(75) and this is the exact analog of the reduction ofEq. (74) 
to Eq. (75). 

IV. RESULTS FOR THE EIGENVALUE PROBLEM 

In the trigonometric case, with the spectral basis of Eq. 
(11), the matrix H defined in Eq. (36) is diagonal. How-
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ever, in the case of the Chebyshev spectral basis of Eqs. (14) 
and (15), H is not diagonal and is reduced to the 'diagonal 
form of Eq. (37) numerically by use of routines FOIAKF, 

FOIAPF, and F02AQF of the NAG LIB scientific software pack­
age.26 Since solutions of all the model problems PI-P6 are 
odd functions of the spatial variable, it suffices to consider 
only the Chebyshev basis of odd polynomials given in Eq. 
( 14). This amounts to retaining only the first term of Eq. 
( 13) and the first N /2 - 1 rows and columns of H. The 
diagonalization of Hand HT need only be performed once 
before application to any of the problems PI to P6. However, 
in view of the transforms of Eqs. (40) and (41) and also Eq. 
(39), the accuracy of eigenvalues and eigenvectors deter­
mines the accuracy of subsequent operations. Therefore in 
this section typical results for eigenvalues are discussed and 
accuracy for eigenvectors is referred to in subsequent sec­
tions as appropriate. 

The exact eigenvalues are known to be - n2 for n = 1, 
2, ... , if p2 = ffl. However, convergence of approximate 
eigenvalues to the exact result in a numerical scheme has to 
be assessed. Two criteria have been proposed 14 to assess per­
formance of a finite rank spectral approximation to an eigen­
value problem. The two criteria aim to answer the following 
two questions: (i) how many eigenvalues have converged to 
within a prescribed error for a given matrix order, and (ii) at 
which rate does a given eigenvalue converge to within a pre­
scribed error as a function of increasing matrix size? The first 
criterion is determined by a plot of the magnitude of each 
eigenvalue as a function of the matrix order required for 
convergence to four significant figures. This type of plot 

shows the matrix size (i.e., the number of spectral functions) 
required to ensure convergence of all eigenvalues inside a 
bounded interval of the real line. For the present application 
this plot is shown in Fig. 3. Since eigenvalues are ordered in 
increasing magnitude it is seen that, typically, for a given 
matrix order, approximately half of the eigenvalues are ac­
curate to within four significant figures or better. Note that 
the slope of this type of plot changes if the spectral basis is 
changed. 15 The second criterion of convergence is deter­
mined for each eigenvalue from a plot of the rate of conver­
gence to a prescribed error of one digit in the S th significant 
figure versus matrix order. For the present work typical re­
sults are shown in Fig. 4 and the rate of convergence is seen 
to be even more rapid than was the case for a simple Schro­
dinger operator as shown in Fig. 1 of Ref. 14. From Fig. 4 it 
follows that eigenvalues of smaller magnitude converge to 
more significant figures than do larger eigenvalues for a giv­
en matrix size. 

Consequently it can be concluded that convergence of 
approximate eigenvalues to the exact ones is both rapid and 
stable in the present application of the Chebyshev spectral 
basis. 

v. RESULTS FOR THE SINGLE SPECTRAL FUNCTION 
METHOD 

The SSFM consists of time integration of the vector 
ODE ofEq. (39). If only the Fourier spectral basis ofEq. 
( 11) is chosen then the matrix H of Eq. (36) is diagonal. In 
this case solution of the linear problems PI to P4 is then 
trivial and reduces to time integration of a single component 

EIGENVALUE MAGNITUDE VS MATRIX ORDER 

MAGN 
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600 • 
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500 • 
• 
• 400 • • 
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n 

FIG. 3. The matrix order n required to produce convergence of one digit in the fourth figure in the Chebyshev case as a function of the magnitude of the 
eigenvalue of matrix H. The results are specific to the odd polynomial spectral function basis of the first term in Eq. (13) and consequently n = N /2 - 1 is the 
number of spectral functions used. 
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SIGNIFICANT FIGURES VS MATRIX ORDER 

S 
2 3 4 5 6 7 8 

8 
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FIG. 4. The rate of convergence to one digit in the S th decimal in the Chebyshev case as a function of the matrix order. The results are specific to the odd 
polynomial spectral function basis of the first term in Eq. (13) and consequently n = N /2 ~ I is the number of spectral functions used. The labels on the 
curves give the eigenvalue sequence when ordered in increasing magnitude. 

of the vector ODE Eq. (39) in the appropriate coefficient of 
Eq. (10), namely a 1 (t), a3 (t), and a7(t), respectively, corre­
sponding to eigenvalues - 12

, - 22
, and - 42

• However, in 
the Chebyshev spectral basis the matrix H of Eq. (36) must 
first be diagonalized as discussed in Sec. IV. In terms of the 
eigenvectors the spectral transforms F and F- 1 of Eqs. (42) 
and (43) are then defined. Again, in the case of the linear 
problems PI to P4, the forward spectral transform Eq. (42) 
of the vector a ofEq. (9) gives only a single component in the 
vector Eq. (39). Thus the linear problems P I-P4 are charac­
terized by a single eigenmode and each eigenmode corre­
sponds to a different eigenvalue of the matrix H. In the non­
linear problems P5 and P6 these eigenmodes are coupled 
together in physical space but the spectral transform of Eq. 
(44) in combination with the convolution product of Eq. 
(66) gives a system of uncoupled, simultaneous ODE's in 
spectral space. This coupling is manifest on inspection of the 
vector Eq. (40) in the nonlinear case. Several components 
are in evidence and the different components of p(z) vary 
considerably in magnitude. Only the dominant components 
ofp(~) need be retained for time integration and the remain­
der are set to zero. The number of components retained, 
denoted by Ns , is determined by the accuracy required in the 
solution and how well eigenvalues and eigenvectors of the 
matrix H have converged. 

Since the Fourier spectral basis has been investigated in 
detail by others,9,1l the present numerical experiments con­
centrate mainly on the Chebyshev case, Although the linear 
problems are trivial they are still useful in assessing the re­
solving power of the Chebyshev spectral basis, Furthermore 
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they also provide a benchmark against which performance 
for the nonlinear problems can be assessed. Figures 5-7 
show results for the linear cases PI to P3 obtained with the 
odd Chebyshev spectral basis ofEq, (14) which corresponds 
to retaining only the first term of Eq, (13), Therefore only 
the odd Chebyshev coefficients aI' a3, a5" .. ,are present. The 
exact Chebyshev coefficients at any time f follow simply by 
multiplying the Chebyshev coefficients of the sine function 
in the spatial degree of freedom by the appropriate exponen­
tial function in time as required from the corresponding ana­
lytical solution given in Sec. II A, Figure 5 shows typical 
results for the logarithm of the difference between exact and 
calculated values of a2n + I (t) for cases PI-P3. The values of 
the PC parameters I1f, k, and s as defined in Sec, II Dare 
shown in Fig, 5. The parameter N is defined in Eq. (7) and 
n = N /2 - 1 is the number of odd polynomial spectral func­
tions defined in Eq. (14). The times shown in Fig. 5 corre­
spond approximately to the points at half of the maximum 
magnitude of u (r,f), Since the number of (half) oscillations 
in the spatial degree of freedom doubles from PI to P2 and 
P2 to P3 (see Fig, 1) the number of spectral functions also 
doubles for a similar accuracy, These results suggest that 
four spectral functions per half oscillation in the spatial de­
gree of freedom are sufficient to provide a resolving power of 
the order of 10-4 or better. This estimate is substantiated in 
Figs, 6 and 7 which show error curves in the time and spatial 
degrees of freedom, respectively, Figure 6 shows the error 
curves as a function of time for fixed values of x. The values 
of x chosen correspond to maxima in the oscillations of the 
spatial part of the solution. Figure 7 shows the error curves 
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FIG. 6. Error curves as a function of 
time for the fixed values of x shown for 
the linear problems of cases (a) PI, (b) 
P2, and (c) P3, respectively. The unbro­
ken curves are exact solutions and the 
broken curves are exact minus approxi­
mate solutions amplified by the factor 
SCALE. The approximate solutions 
were generated with the number of odd 
Chebyshev spectral functions and PC 
parameters as given in the correspond­
ing parts of Fig. 5. 
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FIG. 7. Error curves as a function of x 
for the fixed values of time shown for the 
linear problems of cases (a) PI, (b) P2, 
and (c) P3, respectively. The unbroken 
curves are exact solutions and the 
broken curves are exact minus approxi­
mate solutions amplified by the factor 
SCALE. The approximate solutions 
were generated with the number of odd 
Chebyshev spectral functions and PC 
parameters as given in the correspond­
ing parts of Fig. 5. 
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FIG. 8. Error curves as a function of 
time for the fixed values of x shown 
for the nonlinear problems of cases 
(a) PS, (b) P6, and (c) P6, respec­
tively. The unbroken curves are ex­
act solutions and the broken curves 
are exact minus approximate solu­
tions amplified by the factor 
SCALE. The approximate solutions 
were generated from the PC param­
eters shown. For case PS only odd 
Chebyshev spectral functions were 
used and the number retained was 
n = 66/2 - I. For case P6 both even 
and odd Chebyshev spectral func­
tions were used in Eq. (13) and the 
number retained was, respectively, 
(b) n= 34-1 and (c) n =64-1. 
Here N, is the number of compo­
nents retained in the spectral space 
time integration of the vector p(z) of 
Eq. (39). For case PS the exact re­
sult was the finite element solution of 
Rektorys' while in case P6 the exact 
solution was computed from N = 64 
and N, = 7 and RK parameters of 
!:it = 0.000 001, k = S. 
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as a function of x for the fixed values of time t corresponding 
to Fig. 5. Note the correlation between the maximum error 
on the interval XE [0,1] as shown in Fig. 7 and the maximum 
error in the Chebyshev coefficients shown in Fig. 5. 

For cases P5 and P6 solutions in closed form are not 
known. However, Rektorys8 has computed approximations 
using a finite element method for case P5 and a time discre­
tized variational method for case P6. These solutions ofRek­
torys will be treated as "exact" although they are not as 
accurate as solutions obtained in the present work using the 
SSFM and DSFM (see Sec. VI). Case P5 has an initial value 
uo(r) which is triangular with a discontinuity at r = 0.5 (see 
Sec. II A). The finite element solution as shown in Fig. 2(a) 
has two additional discontinuities at r = 0.25 and r = 0.75 
which are not present in the initial value. The present work 
uses an approximation in continuous polynomial functions 
and it is to be expected that the convergence close to the 
discontinuity will be poor due to the Gibbs phenomenon at 
this point (see Gottlieb and Orszag9

). As a consequence an 
expansion of the solution in polynomial (or trigonometric) 

P5 TIME=0.05 SCALE=10 
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functions is slowly convergent. Thus case P5 is a particularly 
challenging one in comparing approximation schemes. 

In contrast to P5, case P6 is a continuous function which 
has a good approximation8 as a linear combination of 
sin ( 1TX) and sin (31TX) at each discrete time point. Therefore 
no difficulties are expected for a polynomial method in this 
case. Figures 8-11 show results of the SSFM applied to the 
nonlinear problems P5 and P6. For case P5 only the odd 
Chebyshev polynomial spectral basis is used. This corre­
sponds to retaining only the first term ofEq. ( 13). Therefore 
only the odd Chebyshev coefficients a l,a3 and as, ... , are pres­
ent. For case P6 both odd and even polynomial spectral 
bases are used and this corresponds to retaining both terms 
of Eq. (13). The even polynomial basis elements are neces­
sary because the inhomogeneous term of P6 has even poly­
nomial terms. 

Figure 8 shows the error curves as a function oftime for 
fixed values of x. The values of x chosen correspond to the 
maximum in the solution of case P6 and a point between the 
discontinuities of the finite elements chosen by Rektorys for 
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FIG. 9. Error curves as a function of 
x for the fixed values of time shown 
for the nonlinear problem of case P5. 
The unbroken curves are "exact" so­
lutions and the broken curves are 
"exact" minus approximate solu­
tions amplified by the factor 
SCALE. The approximate solutions 
were generated from the PC param­
eters of Fig. 8(a) and only n = !if 
- I odd Chebyshev spectral func­

tions were used. In this figure the 
"exact" result was the finite element 
solution of Rektorys." 
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FIG. 10. Error curves as a func­
tion of x for the fixed values of 
time shown for the nonlinear 
problem of case P6. The unbro­
ken curves are "exact" solutions 
and the broken curves are "ex­
act" minus approximate solu­
tions amplified by the factor 
SCALE. The approximate solu­
tions were generated from the 
PC parameters given in Fig. 
8 (b). Both even and odd Cheby­
shev spectral functions were used 
in Eq. (13) with the number re­
tained being n = 34 - I. In this 
figure the "exact" solution was 
computed from N = 64, Ns = 7, 
and RK parameters of 
!:;.t = 0.000 001, k = 5. 

G. Delic 55 



                                                                                                                                    

u P6 TlME=0.33 SCALE=1000 (a) 

0.03 

---
-- ---------------

.... ---_.... ---
O.OO~~------------------------------------------------------------------~~ 

------

-0.03~----_r------r_----_r----_.------,_----_r------~----_r----_.------T 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

P6 TIME=0.54 SCALE=1000 (b) 
u 

0.06 

O.OO~~----------------------------------------------------------------~~ 

-0.06 ~------,------.------_,------,_------,_--------------------,_--------------
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

P6 TIME=1.0 SCALE=1000 
(c) 

u 

0.12 

O.OO~~==~--------------------------------------------------------~~==~ 

-0. 12 Y-____ -, ______ ,-______ ,-____ -, ______________ ------,-----_,--

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

56 J. Math. Phys., Vol. 28, No.1, January 1987 

FIG. II. Error curves as a func­
tion of x for the fixed values of 
time shown for the nonlinear 
problem of case P6. The unbro­
ken curves are "exact" solutions 
and the broken curves are "ex­
act" minus approximate solu­
tions amplified by the factor 
SCALE. The approximate solu­
tions were generated from the 
PC parameters given in Fig. 
8 (c). Both even and odd Cheby­
shev spectral functions were used 
in Eg. (13) and the number re­
tained was n = 64 - I. In this 
figure the "exact" solution was 
computed from N = 64, N, = 7, 
and RK parameters of 
Il.t = 0.000 001, k = 5. 
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case P5. The values of the PC parameters fl.t, k, and s as 
defined in Sec. II D are shown. The parameter N is defined in 
Eq. (7) and n = N /2 - 1 is the number of odd polynomial 
spectral functions defined in Eq. (14). In case P6 N /2 is the 
number of even polynomial spectral functions defined in Eq. 
( 15). In case P6 the result of Fig. 8 (b) is obtained with the 
same number of odd spectral functions as was used in the 
linear problem shown in Fig. 6 (c) with N /2 even spectral 
functions added for the reasons given above. The error in this 
nonlinear problem is typically an order of magnitude larger 
than for the linear case of Fig. 6(c). Figure 8(c) demon­
strates the precision possible by reduction of the step size and 
increase in the number of spectral functions. At the end 
point the improvement is a factor of approximately 20. For 
case P6 Figs. 10 and 11 show the error curves as a function of 
x for the fixed values of time t given. Figures 10 and 11 
correspond, respectively, to the calculations of Figs. 8 (b) 
and 8 (c) and show that the relative error decreases as the 
solution grows with time. In Figs. 8-11 the exact solution 
was computed with N = 64 and Ns = 7 and RK parameters 
of fl.t = 0.000 001, k = 5. The solution so obtained is consid­
erably more accurate than that given by Rektorys which 
would correspond to using only eigenmodes Ns = 1 and 3. 

For case P5 Fig. 8(a) shows the error curve as a func­
tion of time for a fixed value ofx = 0.35 and Fig. 9 shows the 
corresponding error curves as a function of x for the fixed 
values of time t given. The exact result in this case is genera­
ted by Rektorys8 with three finite elements at each discrete 
time point. The three distinct ridges parallel to the taxis 
correspond to the knots at r = 0.25, 0.5, and 0.75. At these 
points the finite element method is more accurate and this is 
the reason for minima in the error curves of Fig. 9. The 
apparently larger error shown in Figs. 8 (a) and 9 is more the 
result of the finite element approximation rather than the 
spectral method. However, the latter method is not without 
problems, as discussed above, when the solution is a discon­
tinuous function. This is seen in the polynomial method on 
inspection of the Chebyshev expansion coefficients of the 
initial value Uo (r) which is triangular with a discontinuity at 
r = 0.5. These coefficients were calculated with a high preci­
sion Newton-Cotes quadrature correct to the sixth decimal. 
Only odd polynomials are present and it was found that 
while a) (t = 0) is of the order of 0.2 the last coefficient re­
tained in the SSFM calculation for case P5, namely, 
a6S (t = 0) is of the order of 0.000 27. This is a very slow 
convergence for a Chebyshev method, where the coefficients 
usually decrease exponentially with the index 2n + 1. This 
problem may lead to significant errors in the truncation of 
the convolution product discussed in Sec. III A. In view of 
the challenging nature of case P5 it was chosen to evaluate 
the DSFM as discussed in the next section. 

VI. RESULTS FOR THE DOUBLE SPECTRAL FUNCTION 
METHOD 

The DSFM as described in Sec. II E was applied to the 
linear cases P 1 and P4. The simplest example is case PI in the 
Fourier spectral basis of Eq. (11) where there is only one 
term, namely, sin(1Tx), corresponding to n = 1 with eigen­
value IL = - 12. In this special case the mappings of Eqs. 
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(42) and (43) have matrices with unit entries on the diag­
onal and zero elsewhere. Therefore the recurrence of Eq. 
( 63 ) generates the expansion coefficients of e - t in a series of 
shifted Chebyshev polynomials. It is a simple calculation to 
perform the recurrence from M = 6 and normalize the re­
sulting coefficients according to Eq. (65) which in this case 
is e - t evaluated at t = O. Working to seven decimals this 
gives exact agreement with the values tabulated on p. 313 of 
Ref.20. 

A less trivial example is the linear case of P4 in the odd 
Chebyshev spectral basis of Eq. (14). Inspection of case P4 
shows that the solution is simply the inhomogeneous term 
minus the solution of case Pl. Therefore the DSFM consists 
of the recurrence Eq. (63), normalization as in Eq. (65), 
and then the recurrence of Eq. (64). This is all performed in 
spectral space and the negative sign is included at the nor­
malization step. The matrix of coefficients in physical space 
defined in Eq. (55a) then follows from the back transform of 
Eq. (59a). The constant used in normalization is the for­
ward transform, as given in Eq. (42), of the Chebyshev coef­
ficients of the initial value in case PI. Similarly, the coeffi­
cients Qnm are obtained by the forward transform of the 
physical space coefficients Enm of the inhomogeneous term 
as defined by Eq. (57b). In case P4 the inhomogeneous term 
does not depend on time and the matrix E has only the first 
column as nonzero. This column is obtained from the vector 
f as described in the discussion following Eq. (56). 

Table I compares the DSFM on the Chebyshev spectral 
basis with results of the SSFM using both Chebyshev and 
Fourier spectral bases for the PC parameters shown. The 
exact result is calculated from the closed form solution. The 
DSFM result is for the two iterations described above, name­
ly, one application of Eq. (63) with M = 4, followed by one 
application ofEq. (64). All three methods usedN = 14 cor­
responding to n = 14/2 - 1 spectral functions although 
only n = 1 is nonzero in the case of the Fourier SSFM. All 
three methods agree with the analytical result to within one 
or two digits in the fifth decimal. 

While the matrix A is dense, the forward transformed 
matrix P has only one row for cases PI and P4 because there 
is only one eigenmode. Therefore there is only one set of 
recurrences Eqs. (63) and (64) corresponding to n = 1. 
This is self-evident if the problem is solved in the Fourier sine 
spectral basis. However, in the case of nonlinear problems 

TABLE L Solution for case P4 at x = 0.5. 

Chebyshev Fourier Chebyshev 
Exact SSFM' SSFM" DSFMb 

0.20 0.181269 0.181267 0.181267 0.181261 
0.40 0.329680 0.329676 0.329676 0.329681 
0.60 0.451 188 0.451 183 0.451 183 0.451 174 
0.80 0.550671 0.550666 0.550671 0.550668 
1.00 0.632 121 0.632116 0.632136 0.632107 

Timec 0.18 0.18 0.19 

"With N = 14, N, = 1, and PC parameters t:.t = 0.2, k = 4, s = 3. 
bWith N = 14, M = 4, and two iterations. 
C Execution time in seconds. 
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several eigenmodes n = 1 to Ns are present simultaneously 
in spectral space. Therefore each of the recurrences in Eqs. 
(63) and (64) has to be performed Ns times. The Chebyshev 
DSFM was applied to the nonlinear problem of case P5 us­
ing step 0 of Algorithm 2 (Sec. III C) for the initial iterate 
and steps 1-4 for subsequent iterates. The initial iterate con­
sists of the recurrence Eq. (63) applied Ns times followed by 
a normalization for each of the Ns sets of coefficients. In the 
case of P5 the initial value of the solution is known as an 
expansion in odd Chebyshev coefficients as discussed in Sec. 
V. Therefore the set of Ns normalization constants in spec­
tral space is obtained by the forward transform in Eq. (42). 
Subsequent iterations apply the same normalization require­
ment at each step. Inspection of the physical space coeffi­
cients defined by Eqs. (9) and (55a) at different times shows 
that nine iterations and M = 13 gives convergence to the 
accuracy of the initial value coefficients, namely, six deci­
mals. 

Table II compares the performance of the Chebyshev 
DSFM and SSFM. Values obtained from the finite element 
solution of Rektorys are also shown. The agreement between 
the SSFM and DSFM is better than with the finite element 
result. One source of error in the spectral function method is 
the truncation in the convolution product ofEq. (66). How­
ever, calculations with N = 50 and 42 for two iterations 
showed a maximum error of six digits in the fifth decimal. 
Thus the agreement between DSFM and SSFM results for 
times less than 0.l5 suggests that most of the error shown in 
Figs. Sea) and 9 is due to the finite element solution. A com­
parison of the computing times as given in Table II shows 
that in a nonlinear problem the DSFM is approximately six 
times faster than the SSFM. 

VII. CONCLUSIONS 

Two spectral function methods were applied to model 
studies of linear and nonlinear diffusion in one dimension. 
For the nonlinear cases the nonlinearity is in the inhomogen­
eous term and occurs as a (positive) integer power of the 
unknown solution. Although the linear problems are trivial 
they were used to assess the resolving power of the spectral 
functions and to provide a benchmark against which perfor­
mance for the nonlinear problems was compared. 

In the single spectral function method polynomial spec-

TABLE II. Solution for case P5 at x = 0.35. 

Chebyshev Chebyshev Chebyshev 
Rektorys· SSFMb DSFMC DSFMd 

0.05 0.200 311 0.227335 0.221357 0.220777 
0.10 0.119348 0.142407 0.138785 0.136602 
0.15 0.072 080 0.088087 0.083500 0.082105 
0.20 0.043745 0.054083 0.051316 0.050071 
0.25 0.026596 0.033093 0.027632 0.030462 

Time" 568 92 461 

• Reference 8. 
bWith N = 66, N, = 7, and PC parameters 1::..( = 0.0001, k = 4, s = 3. 
C With N = 66, M = 5, and two iterations. 
d With N = 66, M = 13, and five iterations. 
"Execution time in seconds. 
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tral functions in the spatial variable were introduced. Both 
Chebyshev polynomial and Fourier bases were used in the 
construction of spectral functions which were orthonorma­
lized. Since the Fourier spectral basis has been investigated 
in detail by others,9.11 the present numerical experiments 
concentrated mainly on the Chebyshev case. Because only 
integer powers of the solution occurred in the nonlinear 
term, a simple property of both Chebyshev (or Fourier) se­
ries was applied. This is the convolution product in which 
multiplication of two series is written as a single series. Pro­
jection of the diffusion equation onto the Hilbert space 
spanned by the orthonormalized set of spectral functions 
gave a matrix problem. Diagonalization of the matrix in the 
Chebyshev case showed that the rate of convergence of 
eigenvalues as a function of matrix size was more rapid than 
was the case for a simple Schr6dinger operator studied pre­
viously. 14 A spectral resolution of the diffusion equation was 
obtained by a spectral transform which mapped the equation 
from physical to spectral space. In the case of linear prob­
lems the spectral resolution showed a single eigenmode and 
each eigenmode corresponded to a different eigenvalue of 
the matrix. In the nonlinear problems these eigenmodes 
were coupled together in physical space but the spectral 
transform in combination with the convolution product 
gave a system of uncoupled, simultaneous ODE's in spectral 
space. The spectral space mapping of the diffusion equation 
was integrated in time using predictor-corrector or Runge­
Kutta integration methods and, for the nonlinear problems, 
this required computation of the inhomogeneous term at 
each time step. 

The double spectral method introduced polynomial 
spectral functions in both space and time variables and 
thereby eliminated the need for time integration. A recur­
rence scheme was applied in spectral space and nonlinear 
terms were evaluated by convolution in physical space after 
application of the inverse spectral transform. The method 
was iterated until it converged, typically within a few cycles. 

Both spectral function methods were compared against 
analytical solutions for the linear cases and against numeri­
cal solutions for the nonlinear cases. The DSFM was found 
to be faster than the SSFM by typically a factor of 6. Stable 
and accurate solutions were found in linear diffusion prob­
lems and also a nonlinear problem with a continuous initial 
value. Less accurate but stable solutions were found for a 
nonlinear problem with a discontinuous initial value. 

A general formulation of both methods was given to 
facilitate the application to more complicated transport 
equations. In particular, work is in progress on a system of 
highly nonlinear coupled diffusion equations which arise in 
plasma theory. 16 
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For complex mappings of the type Z-+AZ( 1 - z), universality constants a and 0 can be defined 
along islands of stability lying on filamentary sequences in the complex A plane. As the end of 
the filament is approached, asymptotic values aN -A: -1, oN/a;' -1 are attained, where 
f-loo = Aoo (Aoo - 2)/4, is associated with the limiting form of the universal function for that 
sequence, g(z) = 1 - f-loo Z2. These results are complex generalizations of the real mapping case 
(applying to tangent bifurcations and windows of stability) wheref-loo = 2 and o/a2-+j 
correspond to the filament running along the real axis. 

I. INTRODUCTION 

In many branches of physics there is a real gain in under­
standing by extending the analysis of real dynamical vari­
ables into the complex plane. For dynamical nonlinear maps 
in one variable the advantages of such a generalization are 
much less obvious, but this has not hindered several re­
searchers l

-
3 from pursuing these studies. In this report we 

wish to point out the existence of complex universality rela­
tions between the analogs of the Feigenbaum constants a 
and 0 as they pertain to various "kneading" sequences in the 
complex plane, thereby generalizing earlier work of ours4 

applying to the real case. 

II. THEORY 

We focus as usual on the Julia-Fatou mapping 

Z-+AZ(l - z), (la) 

or 

(lb) 

with f-l = A(A - 2)/4 providing the equivalence between 
(la) and (lb). The detailed fractal nature of these maps 
have been highlighted by Mandelbrot1 and Cvitanovic and 
Myrheim5 and many fascinating properties have emerged. 
One of the most interesting of these2 is the fact that "islands 
of stability" belonging to the Mandelbrot set are all connect­
ed to the main cactus by filaments. As a special instance, the 
real filament (with 1m A = 1m f-l = 0) will connect the win­
dows of stability that are seen in the counterpart real prob­
lem; that particular filament ends at A 00 = 4 or f-loo = 2. If 
one follows the kneading sequences of the same type along 
that real filament then one can discover that as the end is 
approached, the universal constants associated with N-repli­
cation attain the asymptotic values, 

a_4N- 1, o/a2-+j. 

Cvitanovic and Myrheim3
•
5 have shown that subcacti 

sprouting from the main Mandelbrot cactus allow one to 
define complex Feigenbaum constants which characterize 
their universal rates of shrinkage as one follows a particular 
Farey sequence. They have provided extensive lists of 0 and 
a values connected with Farey sets min. In this note we will 

be examining other sequences which represent the analog of 
tangent bifurcations for real nonlinear maps. These se­
quences correspond to isolated islands of stability associated 
with N-replication that lie outside the main Mandelbrot cac­
tus and its many leaves. It will be recalled that there exist as 
many as 2N superstable N-cycles for quadratic maximum 
maps some of which touch the main cactus (and thus belong 
to the Farey sets). The islands we are referring to are the 
ones which do not touch the cactus, and they are generally 
quite small in size. In fact some are so miniscule that they are 
not at all easy to locate without some finesse. In Table I we 
have listed all of the island locations up to N = 6 for the 
readers' convenience, while in Table II we give the main 
islands for N = 7 and 8 that are relevant to our work, in that 
they lie on certain filaments. Also listed are some of the com­
puted a and 0 values for those N-plications as one follows a 
filament (see Figs. 1 and 2), which were determined by solv­
ing the complex versions of the functional equations. 

III. ASYMPTOTIC RELATIONS 

The values of a and 0 are important only insofar as they 
relate to a particular kneading sequence. (The reader can 
convince himself that the asterisked sets do belong to the 
same sequences by tracing out the limit cycles in z.) There 
are of course an infinite number of such sequences or fila­
ments in the complex plane. Our point is that for each of 
these sequences one can find an asymptotic o-a relationship, 
showing that the two constants are not really independent of 
one another. In order to establish the a-8 relation, we tum to 
the renormalization group equations for them; they apply to 
complex just as well as real maps. The crucial observation is 
that as one approaches the end of a filament the renormaliza-

N 

tion group function g(z) that determines a, namely 
NN N 

[g] (z) = - g( - az)/a, (2) 

tends to the limiting quadratic form (N -+ (0), 
00 

g(z) = I-f-looz2, (3) 
where f-l 00 labels the end point of the filament. This result is 
readily verified by solving Eq. (2) for successively large val­
ues of N and noticing how quickly the coefficients gn in the 
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TABLE I. Superstable it-values and cycle constants. A single asterisk refers to the rightmost real filamentary sequence, a double asterisk to the main complex 
filament, and a triple asterisk represents a subsidiary filament sequence. A # connotes a leaf on the main cactus. There exist other complex conjugate 
sequences and constants as well as reflected ones (whereit~2 - it), which have been deliberately omitted. 

Cyc. No. Reit 1m it Rea 

2* 2.23607 0 2.503 
3* 3.831 87 0 9.277 
3 2.55265 0.95946 2.097 

4* 3.96156 0 38.82 
4#*** 1.99877 1.061 43 1.135 

4** 2.74122 1.18566 10.56 
5 3.74391 0 20.13 
5 3.90571 0 45.80 

5* 3.99027 0 160 
5 1.66762 0.98855 0.380 
5 2.84145 0.611 22 3.874 

5"* 2.04161 1.23369 9.554 
5 2.62710 1.21269 - 5.85 

5** 2.80889 1.21651 40.43 
5 3.473 87 0.30747 5.583 
6 3.62756 0 20.9 
6 3.844 57 0 115.0 
6 3.93754 0 207.6 

6* 3.99758 0 645.0 
6 1.48525 0.88966 -0.160 
6 3.36502 0.20324 
6 2.610 95 1.06840 
6 2.62484 1.256 12 27.65 
6 2.78141 1.23249 - 8.274 

6** 2.83089 1.21739 124.2 
6 2.960 83 0.67623 19.92 
6 1.67345 1.10762 8.284 

6*** 2.08040 1.26761 37.22 
6 1.97485 1.239 54 - 6.824 

expansion, 
NooN N 
g(z) = L gnrn = 1 +gt Z2 + "', 

n=O 

settle down to the limiting case (3). Of course the particular 
case of the rightmost cycle sequence for real maps, when 
floo = 2, is now well known. 6 In much the same way, the 
renormalization group function h(z), which determines 8, 

00 L h([g]N-m)[g]m'([g]N-m+t) = -8/a, (2') 
m=O 

also has coefficients h n (in a power series in rn
), which die 

off rapidly with n. The technique4 for deriving a relation 
between a and 8 makes great use of these facts. 

Ima Reo Imo 

0 4.669 0 
0 55.26 0 

- 2.358 4.600 8.981 
0 981.6 0 

- 3.260 - 0.853 18.11 
- 5.375 100.4 - 69.34 

0 255.5 0 
0 1287.1 0 
0 16931 0 

- 3.554 - 9.520 26.37 
-2.181 18.97 14.56 
-9.078 114.3 - 184.7 

- 17.47 281.9 54.46 
- 2.526 1399 253 

22.09 205.4 287.1 
0 218.4 0 
0 8508 0 
0 28020 0 
0 279130 0 

- 3.626 - 20.66 0 

64.54 - 1458 4208 
- 69.98 -4270 462.9 

41.97 8769 12142 
-7.643 421.8 - 188.9 

- 11.43 91.37 - 342.8 
- 8.569 1772 34.60 

- 23.89 -777.4 - 5.382 

One truncates the m" th iterate of g (here we drop the N 
superscript) , 

[g]m(z) = - am + bmz2 + ... , 
and uses the recurrence property [g] m + t = g ( [g] m) to de­
rive the recurrence relations of the truncated coefficients, 

am+t =flooa;" -1, bm + t =2flooambm. (4) 

These formulas become more and more accurate for large N. 
Referring to (2) we also readily see that 

aN = l/a, bN =flooa (5) 

offer separate ways of calculating a provided that the end 
point floo of the filament is known. Now, from the recur-

TABLE II. Superstable it-values and some cycle constants for selected islands of stability corresponding to N = 7,8,9 replication. 

Cycle Reit 1m it 

7* 3.99940 0 2603 
7** 2.83739 1.21505 310.8 
7"* 2.09849 1.27146 97.2 
8* 3.99985 0 10424 
8** 2.83903 1.21356 567.1 
8*" 2.10537 1.26936 179.7 
9* 3.9999 0 41715 
9** 2.8393 1.2126 
9*** 2.107 1.267 
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Rea Ima 

0 
269.8 

27.8 
0 
1142 
180.2 
0 

Reo 

4.5IE6 
- 2.2E4 

6436 
7.24E7 

- 1.1E6 
- 35140 

1.16E9 

o 
1.5E5 
10555 
o 
8.4E5 
70041 
o 

Imo 
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I. 
2.600 

:: ". ;. -;..~ .~} 
......... ~ 
~ 

.;,,:. 

2.856 

FIG. 1. Strings of islands in the range 2.600 < Re z < 2.856, 1.06 < 1m z 
< 1.252. The ** filament extends to the right and terminates. 

rence property (4), one easily derives 
N-I 

bN = (2J-l~ )n - IJ-l~ II am 
m=2 

or (6) 
N-I 

a=d(2J-l~)N-I with d= II am' 
m~2 

So it only remains to estimate the product d of the a-coeffi­
cients; this is possible by working downwards in m via (4), 
starting with (5): 

aN_ I = ± [(1 + l/a)/J-lp/2, 

am_ 1 = ± [(1 + am)/J-l] 1/2, m<N. 
(7) 

The only significant ambiguity in (7) is the choice of sign for 
the root. This depends on the kneading sequence and com­
pletely characterizes it in fact. For instance the rightmost 
real filamentary sequence has the same root sign through­
out. 

Let us define the branch cut of Zl/2 to lie along the nega­
tive real axis (i.e., larg zl < 1T). Then for the ** complex fila­
ment sequence (see Fig. 1), the roots have to be taken as 

1.288 ,.----..",---------------------, 

I. 250L.-___________________ ---J 

2.060 2.112 

FIG. 2. Strings of islands in the range 2.060 < Re z < 2.112, 1.25 < 1m z 
< 1.288. The *** filament branches to the right; another large filament 
straggles upwards. 
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am ~ +, m=N-l,N-2, ... ,3 

a2 and a l ~ - , 
(8**) 

whereas for the *** sequence the correct choice of signs is 

am ~ +, m = N - 1, ... ,4 

a3&a2&al~ -. 

[These choices can be verified directly by iterating (4) up in 
m, starting with a l = - 1, which method gives no sign am­
biguity.] The relevant point about this procedure is that for 
N asymptotic, we get to a good approximation, 

aN_ I = - (1/J-l~ )1/2, ... , a2 =J-l~ - 1, a l = - 1, 

with most of the coefficients am (of a particular root sign) 
settling down to solutions of the algebraic equation, 

or 

or 

a = J-l 00 a2 - 1 

a = [( 1 ± (1 + 4J-l00 ) I /2)12J-l 00 ] 

= (A 00 /2J-l00 ) 

Consequently a crude estimate of the asymptotic form of the 
product d is 

d •• = (A /2J-l)N-3J-l-1I2, a •• N =4J-l3I2A N-3, 

d ••• = (1 - J-l)(A /2J-l)N-4J-l-1/2, 

(9**) 

a ••• N=(2J-l)3(1-J-l)A.N-\ 

each evaluated at the respective end points of the filaments. 
Clearly these estimates can be much improved numerically, 
but the salient prediction is that as N --+ 00 

limaN+I/aN =A oo ' 

which is well substantiated by the numerical facts; thus 

a" S /a" 7 = 2.86 + 1.21i (cf. A~ = 2.84 + 1.20i), 

a"'S /a"' 7 = 2.20 + 1.23i (cf. Aoo = 2.11 + 1.27i), 

although N = 8 is hardly an asymptotic number. 
Turning next to the eigenvalue equation for 0, one finds 

that the coefficients hn in the expansion, 

00 
h(z) = L hnz2n=l+hlr+"" ( 10) 

h~O 

vanish very rapidly with n (> = 1) for large N, ensuring 
that the lowest order approximation of (2') has exactly the 
same form as in the real case,4 namely 

N L [g]m'([g]N-m+I(O»)= -o/a. (11) 
m=O 

N 

[g]n'([g]N-n+ 1(0») = (2J-l00)n II aj' 
j~N-n+1 

Remembering the definition d of (6), and its relation to a, 
we may rewrite ( 11) as 
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- ... - (2J-l )N - I; a .. 'a ] =C , 
00 23 N-I 

where c is completely fixed by J-loo and the kneading se­
quence of root signs for the am' Thus even in the complex 
case, we discover that 8 is proportional to a 2

• The facts bear 
out this prediction: 

(8ga g -2) ••• = 1.083 + 0.540 i, while (87/a7 -2) ••• 

= 1.081 + 0.544 i, 

and 

(8gas-2) •• = 0.837 + 0.245 i, while (8P7 -2) •• 

= 0.835 + 0.248 i. 

Of course one can also estimate the coefficient c by approxi­
mating a with (A, /2J-l) for the most part but the results are 
not especially reliable and we will therefore omit details at 
this point. There is one important point though that needs 
exposing. This has to do with the algebraic determination of 
the end. point ..1,00 • Consider the ** sequence. As N -+ 00, a3 

can be evaluated in one of two ways; either as J-l (J-l - 1) 2 - I 
by going up in N for N = 2, or as a solution (A, /2J-l) of 
J-la2 - a = 1. This means that 

2J-l2(1 - J-l)2 = A, + 2J-l, 

63 J. Math. Phys., Vol. 28, No.1, January 1987 

yielding a quartic in A, with roots A, = 0, 4, 
2.83929 ± 1.21258i, wherein we recognize the last pair as 
corresponding to the ** filament (see Table I). Similarly, 
the *** filament end point is obtained as a root of the equa­
tion 

2J-l2(1_J-l)2= -A,+2J-l, 

and occurs in the vicinity of A, = 2.107 ± 1.267 i. 
Clearly all the above considerations can be extended to 

other filamentary sequences. In all the cases we can antici­
pate that 

aN a: A, ~ - 1 and 8 a:aYv, 

with the proportionality constants depending on the end val­
ue J-loo of the filament and the kneading sequence. These 
results represent the complex generalization of the 8-a rela­
tion found in the real case.4 We envisage that the same ideas 
will find application in circle maps. 
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This work is motivated by the fact that it is impossible for an observer to know at time to all the 
initial data of a system, if that data is specified in the conventional manner on the spacelike 
surface t = to' A Hamiltonian formulation for classical mechanics, first given by Dirac, is 
exploited, in which dynamical variables are specified by their values on an observer's past light 
cones. Starting from initial data given on the past light cone of an observer at some initial 
space-time point, the values of the variables on the observer's current past light cone are given 
by a canonical transform of the initial data. The method is illustrated for a spin less particle of 
mass m, which is either free or interacts with an external electromagnetic field. The remarkable 
result is obtained that the dynamics of this classical one-particle spin-O system can be 
formulated in terms of a Dirac-like spinor, whose four components are formed from the 
generalized coordinates and momenta. 

I. THE PROBLEM 

In the conventional approach to both classical and 
quantum theory one predicts the future behavior of a system 
from initial data given at a certain time to, or more generally, 
given on a specified spacelike surface. Thus in a classical 
system with coordinates QI,Q2"" and conjugate momenta 
P I,P2"" the values of these variables at time to determine their 
values at all subsequent times t. The same is true of the corre­
sponding quantum operators in the Heisenberg picture or of 
the quantum state vector in the Schr6dinger picture. 

However a difficulty arises because the finiteness of the 
velocity oflight c rules out instantaneous information trans­
fer. At time to no single observer can ever know the initial data 
belonging to that time. While an infinite set of observers 
spread throughout the spacelike surface t = to could know 
all this data collectively, no individual observer can make 
any use of what his fellow observers currently know. Sup­
pose that at the present moment to an observer wishes to 
make predictions relating to an experiment he intends to 
perform at some future time t at his spatial origin. The only 
part of space-time that can have any relevance to the out­
come of the experiment will be within its past light cone 
(idealizing the experiment to be a point event). Thus in or­
der to make a prediction from the initial data at time to about 
the experiment to be performed at the later time t the observ­
er needs the to data within a sphere of radius c(t - to). He 
cannot know this data at time to but must wait for it to be 
transmitted to him by apparatuses or auxiliary observers 
spread throughout the sphere. If transmitted with the maxi­
mum signal velocity c, the data from the most distant regions 
will reach the central observer at time to + (t - to) = t, just 
as the experiment is being carried out! Thus even with a 
comprehensive and reliable deterministic theory an observer 
can make no firm predictions about the future, but at best 
can merely have the satisfaction of verifying the consistency 
of the theory with the outcomes of different experiments all 
performed within his past light cone. 

The observer can attempt to circumvent this dilemma 
by making the hypothesis that no event liable to infl uence the 

proposed experiment will occur outside some distance R, 
assumed to be less than c(t - to). Typically R might have 
dimensions less than or comparable with those of the labora­
tory. The observer can then restrict his attention to the re­
gion inside a sphere of radius R and make his prediction at 
time to + R /c, which is now earlier than the time t of the 
experiment. Ifhis predictions turn out to be correct he may 
feel some reassurance concerning the validity of the theory 
and of his supplementary hypothesis. But what should be 
concluded if his prediction is wrong? Is the theory inade­
quate, or did something, contrary to hypothesis, indeed ar­
rive from outside radius R ? As a safeguard against unexpect­
ed incoming influences one might imagine covering the 
surface of the sphere of radius R with appropriate detectors. 
Unfortunately the information that one of these detectors 
has fired must always arrive too late to enable the observer to 
update his predictions in time. 

The above discussion is on the basis of simple measure­
ments idealized as point events. The situation is even worse 
for more complex measurements that extend over finite re­
gions of space-time and hence involve auxiliary observers or 
apparatuses. In order to set up and effect such extended ex­
periments the central observer must send instructions to his 
collaborators at other locations. Using signals of the opti­
mum velocity c the most efficient extended measurements he 
can orchestrate lie on his future light cone. In summary, 
what an observer knows, and what he can have measured, 
lie, respectively, on or within his past and future light cones. 

In a classic paper I Dirac derived a number of alternative 
Hamilton forms of relativistic dynamics, which differ from 
the conventional "instant" form in how initial data is pre­
scribed. The present paper exploits a particular limiting case 
of Dirac's "point" form of dynamics in which the concept of 
initial data "at the present time to" is replaced by that of 
initial data on the observer's "current past light cone." The 
latter information, unlike the former, is available to the ob­
server "here-now" without any need to wait for the future 
arrival of data transmitted from distant apparatuses or auxil­
iary observers. The price to pay is that initial data on the past 

64 J. Math. Phys. 28 (1), January 1987 0022-2488/87/010064-07$02.50 © 1987 American Institute of Physics 64 



                                                                                                                                    

light cone is in general not sufficient to determine future 
behavior. This adds further uncertainty, over and above that 
inherent in quantum theory, to any predictions that an ob­
server makes. He must always qualify his predictions by 
some phrase such as "on the basis of my present knowledge." 

Accepting that past light cone data is the most that any 
observer can know, is there a "best" estimate he can make 
for the probability distributions of given dynamical variables 
in some future experiment? As a first step towards finding an 
answer to this question, the present paper develops a past 
light cone Hamiltonian approach to classical mechanics in 
preparation for quantum treatment in subsequent papers. 
The mode of treatment differs from that of Dirac in the 
choice of conjugate variables. 

II. LIGHT CONE COORDINATES 

Consider an observer whose (timelike) trajectory in 
four-dimensional Minkowski space is given in parametric 
form by 

x"=z"(r). (1) 

Here z"( r), A. = 0,1,2,3, are four functions of the parameter 
r, the latter being taken as the proper interval 
f ("hI-' dz" dzl') liZ measured along the trajectory from some 
arbitrary event. Z Thus r/ c is the time elapsed since this initial 
event until the current "here-now" as experienced by the 
observer and recorded on an ideal clock carried by him. The 
four-velocity zI = dz" I dr is required to be a future-pointing 
timelike unit vector, i.e., "IAI-'V"u!-' = 1, vO;;;d, but otherwise 
the observer is allowed to move arbitrarily. 

Let us focus attention on a particular value of r, corre­
sponding to the event z"( r) being the observer's current 
"here-now." Then 

x"=z"(r)+J"', 

yO= _y, 

(2) 

(3) 

where y = Iyl, is the equation of the past light cone with 
vertex at the observer. Here the past-pointing null vector J'" 
serves to parametrize the light cone. Only three components 
of J'" are independent on account of (3) and it is most con­
venient to choose as independent parameters the spatial 
components y = (yl,yZ,y3). 

We may regard (2) and (3) as defining a change of 
coordinates from the original inertial coord ina tes x A to a new 
set (r,yl,yZ,y3). These equations may be inverted and 
(r,y\yZ,y3) written as functions of x". We first solve 
zO( r) - XO = Iz( r) - xl to obtain r = r(xA), the unique pa­
rameter value where the future light cone with vertex xA 

intersects the trajectory (1). ThenyK=xK -zK(r(x"») de­
fines yK as a function of x". 

Writing (x°)' = r, (Xl)' =yl, (xz)' =yZ, (x3)' =y3, 

the metric tensor in the primed system has components 

( )'_ ax" axl-' 
g'K - "IAI-' a(x')' a(xK)' 

and 

(g'K)' = "IAI-' a(x')' a(xK)' 
axA axl-' 

given byZ 
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(goo)' = 1, (gOj)' = - (VOyj + vjy)ly, 

(gjk)' = (yjly) (yk Iy) - 8jk , (goo)' = 0, 

(gOj) , =/I(v"J"'), 

(gjk)' = (yjvk + ykvj)/( - v"J"') - tJi\ 
where 

v"J'" = VOyo - v·y = - (VOy + v·y). 

The volume element is 

d 4x = ( - vAJ"')dr(d 3yly) . 

(4) 

(5) 

(6) 

Note that the first factor ( - v"J"') is necessarily positive, 
while the last factor (d 3yl y ) is the standard Lorentz invar­
iant measure on a light cone.3 

What we now attempt is to express classical mechanics 
in a form where the observer's proper time ric replaces coor­
dinate time t = XO I c as the evolution parameter. Thus initial 
data is to be specified on the past light cones r = const rather 
than on the spacelike surfaces t = const. For the rest of this 
paper we shall restrict our attention to the specific problem 
of a single spinless particle of rest mass m, which is either free 
or suffers electromagnetic interactions. Section III first re­
views the conventional treatment of such a system, and then 
the subsequent sections reformulate the theory in terms of 
past light cone data. 

III. REVIEW OF CONVENTIONAL HAMILTONIAN 
THEORY FOR A CLASSICAL PARTICLE 

The free motion of a classical spinless particle of mass m 
may be derived from the variation principle 

8{ -mc J ("1"1-' dx"dXI-')I/Z} =0. (7) 

Let x = q (t) be the position vector of the particle at time t, 
and q = dqldt its three-velocity vector. Then (7) assumes 
the form 

8 J Ldt=O, (8) 

with 
L = - mcz(1- qZlcZ) liZ . (9) 

Introducing the conjugate momentum vector p = aL laq 
then leads to the Hamiltonian H = p.q - L 
= c(pz + mZcz) liZ and the associated equations of motion 

!!!!. _ aH _ cZp !!R. = _ aH = 0 . 
dt - ap - H' dt aq 

(10) 

Here H=cpo and p are interpreted as the energy and linear 
momentum, respectively, with the future-pointing timelike 
four-vector p"= (po,p) satisfying 

"IAI-'P"pI-l = mZcz . (11) 

As a consequence of (10) any dynamical variablej(q,p,t) 
evolves with time according to 

(12) 

where the Poisson bracket between any two functionsJ,g of 
q,p is defined by the convention 
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(13) 

The angular momentum tensor JAf-l, by assumption, has 
no spin content, and is given by 

(J23,PI,J12) =qXp, (J0I,J02,J 03 ) =ctp-pOq. (14) 

Together pA and J Af-l satisfy the Poisson brackets appropriate 
for the generators of the Poincare group: 

{PA,pp} = 0 , 

{J'K,pA} = TJKAp ' _ TJlApK , 

(15) 

(16) 

{J'K,JAf-l} = TJ'f-l JKA + TJKA J'f-l _ TJ'AJKf-l _ TJKf-l J'A. (17) 

With the aid of the above brackets and the evolution equa­
tion (12) we find that both pA and J Af-l are constant in time 
for a free particle. 

When an external electromagnetic field derived from a 
vector potential A A (x V) is present, (7) must be changed t04 

{) I{ - mC(TJAf-l dxA dxf-l) 1/2 - ~AA d~ } = 0, (18) 

where e is the charge of the particle. the new Lagrangian 
leads to the Hamiltonian 

H=.cpo = c[ {p - (elc)AF + m 2c2 ] 1/2 + eA 0. (19) 

Instead of ( 11) one has 

TJAf-l {PA - (elc)A A}{pf-l_ (elc)A f-l} = m 2c2 , (20) 

which corresponds to the standard prescription 
pA -+ pA _ (e/c)A A for incorporating an electromagnetic 
field. However the Poincare symmetry has been broken by 
the field, so that (15)-(17) are no longer true. To restore 
conservation of linear and angular momentum one would 
need to include the contributions from the electromagnetic 
field. 

IV. CLASSICAL LIGHT CONE THEORY FOR A FREE 
PARTICLE 

This section gives two alternative classical Hamiltonian 
formulations for the mechanics of a free particle of mass m. 
The first (Secs. IV A and IV B) uses y as past light cone 
coordinate, and the second (Secs. IV C and IV D) takes as 
coordinates spinor variables from which y may be construct­
ed. The modifications necessary to accommodate interac­
tion with an external electromagnetic field are considered in 
Sec. V. 

A. Classical Hamiltonian formulation for coordinates 
yeT) 

We can define a particle trajectory in a four-dimensional 
space by specifying what functions any three of the coordi­
nates are of the fourth coordinate for points lying on the 
path. In the conventional treatment of Sec. III we took iner­
tial coordinates (t,x) and wrote x = q(t). Here, instead, we 
shall take as coordinates the light cone coordinates (7,y) 
associated with an observer with the given world line (1), 
with the definitions of Sec. II. The particle trajectory is then 
specified by y = y ( 7). Thus when the observer's clock reads 
ric he sees the particle at relative position y( 7) by light 
which has just arrived from the particle. To y ( 7) we adjoin 
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the fourth componentyo( 7) = - Iy( 7) I to obtain thefour­
vector yA ( 7). 

As before the starting point is the variational principle 
(7). Transformation to our new variables with the aid of the 
metric tensor (gAf-l )' given in (4) yields 

(21 ) 

where 

L = - mc2 [ 1 - 2(vOy + v).u + (Y'U)2 _ u2] 1/2 

- mc2
[ 1 + 2VAUA + UAUA] 112. (22) 

In (22), y = y/lyl, uA = dyA Id7, and VA is the four-velocity 
of the observer, a given function of 7. On account of the 
identity YAUA = 0 we have UO = - y·u. The conjugate vari­
able to y is 

1i'=c-1 ~~ = -m2c3L-I[u+v+(uo+vo)y], (23) 

with corresponding Hamiltonian 

K = cU'1i' - L = - m 2c4L -1(1 + VKU K
) • (24) 

We must now solve (23) for u as a function ofy,1i',7 so 
that K may then be written in terms of these same variables. 
This yields 

uA = - VA - vKY(Y'1i')-lpA, (25) 

K Ic = VApA , (26) 

where the four functions pA =.pA (y,1i') are 

pO = !(Y'1i')-I(1i'2 + m 2c2 )y, 

p = 1i' - !(y'1i') -1(1i'2 + m 2c2 )y=.1i' _ pOy, (27) 

and satisfy the identity 

TJAf-lpApp = m 2c2 
• (28) 

The Possion brackets between any two dynamical vari­
ablesj(y,1i',7), g(y,1i',7) is now defined in the standard way 
ass 

{f,g} = (:~}(:!) - (:~}(:). (29) 

The evolution ofa dynamical variablej(y,1i',7) is then deter­
mined by its Poisson bracket with the Hamiltonian K of 
(26) : 

(30) 

withpA given by (27). By direct evaluation we find that 

{PA,pp} = 0 , (31) 

which combined with (30) shows that pA is constant. 
The form of (30) together with the identities (28) and 

(31) indicate that pA is the energy momentum four-vector, 
as anticipated by the notation. 

We now seek an angular momentum tensor 
If-l = 1f-l(y,1i') to act as the generator of Lorentz transforma­
tions. In addition to satisfying the Poincare group generator 
relations ( 16) and (17), the angular momentum must obey 
further constraints implied by the four-vector character 
ofyA: 
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{r,]I} = r().y' - 1JtAy K • 

A suitable definition is 

(j23,PI,/2) = yX1T, u{)l,l2,l3) = - Y1T. (32) 

Note the relation/IL =]1[1' - )f'p)., which follows from the 
definitions (27) and (32). 

Applying (30) now shows that the quantity J).IL = /IL 
+ zl ( T) [I' - zIL ( T) p). is a constant of motion. We interpret 

J).IL as the angular momentum referred to the fixed origin 
x). = 0, and/IL that relative to the observer whose trajectory 
is defined by (1). 

Equation (27) for the momentum p). is equivalent to the 
expression derived by Diracl when allowance is made for his 
different choice of conjugate variables, and for his use of 
light cones that are future rather than past. On making the 
trivial change to a past light cone formulation, Dirac's result 
becomes 

(33) 

In (33) there are four generalized coordinate-momenta 
pairs]l, p). satisfying {pA,)f'} = i'lL, with yO;:::: - Iyl being a 
subsidiary condition imposed weakly. We can convert (33) 
to (27) by taking yO = - Iyl as a strong identity and defin­
ing 1T = P + pay as the variable conjugate to y. 

B. The canonical transformation q,P ..... y,1T 

The change of phase space variables from the conven­
tional set q,p to our light cone set y,1T can be effected by a 
canonical transformation. Let us define the function 7[t] by 
ZO ( 7 [t]) = ct. The position vector of the observer at time t is 
then x = z( 7[t]), and that of the particle at the retarded 
time t - y( 7[t] )/c is x = z( 7[t]) + y( T[t]). Since the par­
ticle has the constant three-velocity cp/po its position vector 
at time tis 

x = q(t) = Z(7[t]) + Y(7[t]) + (p/po)y(T[t]) . 

Solving (34) for y ( T[ t]) yields 

y = q - Z - (mc) - 2 [D - (q - z)·p] p , 

y = (mc) -2[D _ (q _ z)·p]pO , 

where 

(34) 

(35) 

D = {[ (q - Z)·p]2 + (q - z)2(mc)2}l/2. (36) 

In (35) and subsequently in Sec. IV B the argument (t) for q 
and (T[t]) for z, y, and y is suppressed for brevity. The 
positive square root must be taken for D in (36) to ensure 
that y;;;'O. Substituting (35) into (27) then gives 1T as a func­
tion ofq,p: 

1T = {[D + (q - z)·p]l(q - Z)2}(q - z) . (37) 

The inverse transformation found by solving (35) and (37) 
for q,p is 

q = z + 2( 1T2 + m 2c2
) -ID1T, (38) 

p = 1T - ~(1T2 + m 2c2 )D -Iy, 

where 

D = y'1T. 

(39) 

(40) 

The quantities D in (36) and (40) are identically equal, and 
are Lorentz invariant and non-negative on account of the 
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identity D = - YAP).. An operator analog of D plays an im­
portant role in the corresponding quantum theory.6 

It remains to establish that the transformation q,p--y,1T 
defined by (35), (37) is canonical. A suitable generating 
functionS is 

F(p,y,t) = p.(y + z) + (p2 + m2c2)1/2y, 

the t dependence coming from the term z == z ( T[ t] ). That 
q = JF /Jpand1T = JF /Jydoindeedlead to (35) and (37) 
is seen most readily from Eqs. (27) and (34). The trans­
formed Hamiltonian is 

, ° JF ° (dz) H =cp -at"=cp _po dt 

). dT[t] 
=cv).p ---, 

dt 

which is consistent with the evolution equation (30) based 
on the Hamiltonian function K given by (26). 

C. Classical Hamiltonian formulation in spinor 
coordinates 

Any past-pointing null vector]l can be written in terms 
of a contravariant D «(1/2)0) spinor2 SA, A = 1,2, and the stan­
dard Pauli spin matrices aA. Writing s=[~~], 
st = [(SI)*,(S2)*] the correspondence is 

]1= -staAs· (41) 
Let us make this substitution in (22) with SA = SA ( 7) and 
develop a Hamiltonian formalism based on S A as coordi­
nates rather than y. The real and imaginary parts of SA give 
us four real coordinates, but since S may be multiplied by an 
overall phase factor without changing]l such a factor must 
be regarded as physically irrelevant. Writing ds /d7 =; we 
have 

d]l ==u). = _ ;taAs - staA;, 
d7 

which, when substituted into (22), yields 

L = - mc2
[ 1 - 2v). (;taAs + staA;) 

+ 4(;tsst;-;t;sts) jI12. 

(42) 

The term u). u). has been simplified using the standard Pauli 
matrix identities? atu).bctaAd = 2 (atbctd - atdctb), which 
hold for any four spinors a,b,c,d. Now define the conjugate 
variable to SA byS 1TA = c- I JL /J;A, noting that (1TA )* is 
then conjugate to (SA)* on account of the reality of L. Un­
der Lorentz transformations 1T A is a covariant D «(1/2)0) 

spinor. Writing 1T = [1TI,1T2]' 1Tt = [~:;~:], we have 

1T = - m2c3L -I [v).staA + 2(sts;t - ;tut)]. 
(43) 

Whence 

1TS==1TASA = - m2c3L -IV).StaAs, 

which, being real, implies the constraint equation 

1TS = ( 1TS)*==St1Tt . (44) 

Only three of the real and imaginary components of the mo­
menta 1TA and (1TA )* are independent owing to the con-
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straint (44), which has its origin in the physical irrelevance 
of overall phase factors in S. 

The Hamiltonian is 

K = c(rrt + ttrrt) - L 

= - m 2c4L -IVA [VA - (staAt + ttaAS)] . (45) 

On account of the constraint (44), a term A(rrs-strrt ) 
with A arbitrary may be added to the above K without alter­
ing the physical content of the theory. For simplicity we 
choose A = O. 

While (43) cannot be solved unambiguously for t in 
. terms of Sand rr, it is nevertheless possible to use (43) to 
eliminate t from (45) and express K as a function of Sand rr 
and their complex conjugates. To do this we need the follow­
ing identity: 

L(m2c2staAS + rr?rrt) 

- m22(rrs + strrt) [~- (staAt + ttaAS)]' 
(46) 

Here 

? = €(aA)*€t , (47) 

with € = ( _ ~ ~ ) takes the values (j0 = aD, (j = - a. The re­
lation (46) is most readily proved by invoking its manifest 
vector character. For any point along the observer's trajec­
tory it is possible to find an inertial system in which 
~ = (1,0,0,0) at that point. For ~ of this simple form (46) 
is easily proved from (43) by direct evaluation of both sides, 
and hence, being a four-vector, the relation holds in general. 

With the aid of (46) the Hamiltonian of (45) again 
assumes the form (26), but now with 

pA= (m2c2staAs+rr?rrt)/(rrs +strrt). (48) 

Once again pA will be interpreted as the energy-momen­
tum vector, the expression (48) actually being equivalent to 
(27). To see this, note that 1t', the conjugate variable to y, 
and rr, the conjugate spinor to S, are related by the equation 

(49) 

which follows from (23), (42), and (43) after some algebra. 
When this expression for 1t' is substituted into (27) the form 
(48) is obtained. A like substitution into (33) yields the 
spinor form of the angular momentum tensor: 

IfL = - Re[irraAfL5] , (50) 

where the spin coefficients aAfL = ~i(?d' - (jfLaA) are given 
by 

(51) 

The 7 evolution is once again given by (30). Direct applica­
tion of the definition (52) yields the following brackets: 

-fJi,D-D*}=O, (53) 

{PA,pf'} = _ 4im2c2(D _ D *) (D + D *) -3 Re[ rraAPs] , 

{j,k II'} = 17'PfA + 17I(Aj'p -17'AfP - 17l(pj'A , 

{j'\pA} = 17I(Ap ' _ 17'Apl( , 

ifp,S} = !iaAfLS , 

iffL,rr} = - FrraAfL . 

(54) 

(55) 

(56) 

(57) 

(58) 

Above we have written rrS = D and used the spinor expres­
sions (48) and (50) for pA and IfL, respectively. 

Ifwe now impose the constraint (44), i.e., D = D *, at 
some initial value of 7, then (53) and the evolution equation 
(30) ensure that this constraint is subsequently maintained. 
The rhs of (54) is then zero, as is necessary if ~ is to be 
interpreted as the energy-momentum vector, i.e., the gener­
ator of space-time translations. The brackets forj'1( given by 
(55 )-( 58) support the contention that this tensor be regard­
ed as the angular momentum. Equations (55) and (56) are 
necessary conditions for the Poincare generators, while (57) 
and (58) are required in order that Sand rr transform, re­
spectively, as contravariant and covariant D «(1/2)0) spinors. 

Finally let us note that when the constraint that rrs be 
real is satisfied, the quantity D == rrs is identical to the D 
appearing in (36) and (40). This follows readily from (49). 

D. Classical Hamiltonian formulation in Dirac spinor 
form 

The content of the previous subsection can be written 
economically and elegantly in terms of a four-component 
column vector E, whose elements EP

, P = 1,2,3,4, are de­
fined by 

[";;'1] ( )112 [':'3] ;2 = ~c S, ~4 = - (2mc)-1/2rrt . (59) 

Under an infinitesimal Lorentz transformation (xl()' 
= xl( + 17I(AUJAfLXfL, parametrized by the antisymmetric ma­

trix UJ AfL' the spinors transform according to 

S' = [I - (i/4)UJAfL aAfL ]5, 

rr'=rr[/+ (i/4)UJAfL aAfL ] , 

where 1 is the 2 X 2 unit matrix and aAfL is given by (51). 
Correspondingly E transforms as a Dirac spinor in the chiral 
representation 9: 

(60) 

Consider now the Poisson bracket structure with re- with the Dirac matrices given by 
spect to the spinor coordinate S and its conjugate variable rr. 
For this purpose we initially ignore the constraint (44) (that 
rrS is real) and regard the real and imaginary parts of the 
components of Sand rr as eight independent variables. The 
Poisson bracket between two functionsJ,g of these variables 
is defined ass 

{f,g} = aj ag + aj ag 
aS A arrA a(SA)* a(rrA )* 

- (j,g interchanged). (52) 
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fi==f3=( 0 
-I 

-I) =( 0 fl.) 
o ,y -fl. 0 . 

The adjoint spinor is 

E=Etf3= [(2mc)-1/2rr,- (mc/2)I!2st]. 

Denoting the components of E by EQ , Q = 1,2,3,4, 
yields the Poisson brackets 

{ -P-;::;-} I(_--')P {-P-Q} 0 {-;::;- -;::;- } .= ,':'Q = 2 r Q' .:.,.::. = = '=p,'::::'Q ' 

where 
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(61) 
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The energy-momentum vector pA and the angular momen­
tumfll given by (48) and (50), respectively, become 

pA = mcE1'E/ (2E) , 

fll = !Er(1'y"- y"1')E, 

(62) 

(63) 

while the constraint that 1Ts be real is simply 

Ey'iE = O. (64) 

In summary, we can reproduce the free motion of a clas­
sical spinless particle by the following scheme. The dynam­
ics is described by a Dirac spinor E whose physically realiza­
ble values are constrained by the relation ( 64 ). The 
evolution of E as seen by an observer with trajectory 
XA = zt( 1') and four-velocity VA = dzt /d1' is governed by 

dB = VA {B,pA} = VA (EE)-lr(mc1' _ pA)B. (65) 
d1' 

Here pA is the energy-momentum given by ( 62) and the Pois­
son bracket has been evaluated according to (61). When his 
proper time is dc the observer sees the particle at the point 
with Minkowski coordinates XA = zt( 1') + 1', where 

(66) 

It should be emphasized that we are dealing here with 
the classical motion of a particle with zero spin. Despite the 
appearance of the Dirac spinor E with transformation law 
(60), the angular momentumfll given by (63) is the orbital 

angular momentum relative to the observer, viz. 
I'pIl- ]l'pA, and as such has no internal content. A like para­
doxical appearance of a four-spinor occurs in Dirac's quan­
tum mechanical description of a spin-O particle. 1O In that 
model one has a Dirac spinor that satisfies an equation su­
perficially like the spin-! Dirac equation, but nevertheless 
the spin is certainly zero. This raises the question of whether 
the present formalism is a classical analog of Dirac's quan­
tum model. The answer appears to be no. The Dirac particle 
may be interpreted as a bound state of two particles interact­
ing via harmonic oscillator potentials, II with the four-spin or 
being formed from two Hermitian harmonic oscillator co­
ordinates and their conjugate momenta (also Hermitian). 
In contrast, the four-spinor E of (59) is constructed from the 
two complex coordinates S and the complex conjugates of 
the associated generalized momenta 1T. The Poisson brackets 
given by (61) do not correspond to the commutator brackets 
of the Dirac model oscillator variables. Further, a simple 
prescription [see (72) below] exists for incorporating elec­
tromagnetic interactions into the present theory, whereas 
the Dirac model allows no such ansatz. 

Finally it should be noted that E is not a twistor in the 
sense of Penrose. 12 In the first place the present formalism 
applies to particles of nonzero rest mass, unlike twistors as­
sociated with massless particles. In the second place E does 
not obey the twistor transformation law for translations. In­
deed a translation of the origin of Minkowski coordinates 
leaves E unchanged, while (65) shows that a translation of 
the observer's trajectory (1) changes E by a nonlinear func-
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tion of E and E. In contrast twistors belong to a linear repre­
sentation of the Poincare group. 13 

V. ELECTROMAGNETIC INTERACTIONS 

We consider here a Hamiltonian formulation in light 
cone coordinates for the classical motion of a particle of 
charge e and mass m in an external electromagnetic field 
derived from the vector potential A A(XK). Inserting the light 
cone coordinates 1',yA ( 1') into the variation principle (18) 
yields a Lagrangian of the form (22) but with an additional 
term - eAA (VA + uA). This adds a term (e/c) (A +A 0y) to 
the expression (23) for 11'. Thereafter the algebra follows 
that of Sec. IV A with 

(67) 

replacing 11'. One finds the same form K = CV ApA for the 
Hamiltonian as before, but with pA modified according to 

po _ (e/c)A 0 = !(y'O) -I (02 + m 2c2 )y, 

p - (e/c)A = 0 - !(y'O) -1(02 + m 2c2 )y. 
(68) 

Hence to the usual prescription pA -> pA - (e/ c)A A we add 
the ansatz 11' -> 0, with 0 given by (67). Note that here A A 

means the function of 1',y obtained by evaluating A A(XK) at 
x K 

= r( 1') + yK. The identity (20) is satisfied by the expres­
sions (68). 

As in the noninteracting case, we may base an alterna­
tive Hamiltonian formalism on theD «(1/2)0) spinor coordinate 
S, which is related to yA by (41). Following an argument 
parallel to that of Sec. IV C we obtain the Hamiltonian 
K = CVApA with 

pA _ (e/c)A A = (m2c2st~s + IlaAIlt)/(Ils + stIlt), 
(69) 

where 

II = 1T - (e/c)AAst~. (70) 

As before 1T= (1T 1,1T2 ) is the row vector of the conjugate vari­
ables to S I,s 2, and satisfies the constraint that 1Ts be real. 
Hence we have the further rule that electromagnetic cou­
pling requires the replacement 1T-> II with the definition 
(70). 

Finally, in terms of the Dirac spin or E defined by (59), 
( 69) becomes 

pA _ (e/c)A A = mcA1'A/(AA), (71) 

A = [I - e (2mc) - IA A l' (1 + r) ] B . (72) 

VI. DISCUSSION 

It is interesting to ask what effect it would have on our 
formalism if a different choice were made for the space-time 
path (1) of the observer. The answer is that the conjugate 
pairs (y,1I') and (S,1T) depend only on the observer's current 
here-now zt and on the trajectory of the particle. How the 
observer moved prior to arriving at zt is of no consequence. 
This is obviously true for y, because this variable is defined 
by the point of intersection of the particle trajectory with the 
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past light cone with vertex atzl. That the conjugate variable 
'IT also does not depend on the observer's past history can be 
seen by expressing 'IT in terms of lif, the four-velocity of the 
particle at this point of intersection. We have the relations 

lif = (if + u")/[ (va + Ua ) (va + Ua )] 112, 

'IT = mc(w + WOy) + (e/c)(A + A 0y), 

the fields A " being evaluated at the point of intersection. 
As a consequence of this independence on the past his­

tory of the observer, we can define functions y"(r),'IT(r) 

whose dependence on the four independent variables r is 
determined by 

(73) 

In a similar manner we find that the spinor variables 5,1T,'E. 
do not depend on the route by which the observer reached r, 
so that we may write equations analogous to (73) for these 
variables also. 

At first sight it might appear that the one-particle sys­
tem considered here is a counterexample to the assertion of 
Sec. I that knowledge of past light cone initial data is insuffi­
cient to enable prediction of future behavior. The point is 
that the observer cannot be sure that the system will contin­
ue to involve only one particle. There could well be, for ex­
ample, incoming photons, for which there is no indication in 
the observer's initial past light cone data. This point was 
made by Dirac. I 
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Hodge-deRham theory is applied to Maxwell's equations for a transverse electromagnetic 
wave with a given wave-front surface S. It is shown that the E and B fields, considered as 
tangent fields to S, are harmonic in the sense of Hodge theory. If S is a spheroid it is known 
that the space of harmonic fields on S has dimension zero, and hence transverse fields with 
spheroidal wave fronts do not exist. The same result holds, but for a different reason, if S is a 
noncircular cylinder or a surface of revolution, and it is conjectured that smooth, singularity­
free, transverse solutions to Maxwell's equations exist only if S is a plane or a circular cylinder. 

J. INTRODUCTION 

A. Statement of the main results 

We shall consider an electromagnetic wave propagating 
in free space along lines normal to a family of wave-front 
surfaces, each of which is given by z = const, where z is a 
function that satisfies the eikonal equation IVzl2 = 1. Then 
for a general point P, z(P) is equal to the signed perpendicu­
lar distance from P to the wave front So given by z = 0 (Ref. 
1, p. 30). Let u = (u I ,u2

) be a system of surface coordinates 
on So, and let 1] = 1] (u) be the unit normal vector to So, 
which will be taken to point along the direction of propaga­
tion. If X denotes the position vector of a general point on So, 
then X = X(u) for some vector-valued function X(u) with 
values inE 3 ( = Euclidean three-space). The position vector 
R = R(u,z) ofa general point Pin E 3 can then be written in 
the form 

R = X(u) + z1](u). (1) 

The correspondence that assigns to each point P the triple 
(u,z) = (u\u 2,z) will be referred to as a "surface-normal" 
coordinate system, and the wave front obtained by setting 
z = const in (1) will be denoted by Sz. Thus (1) has two 
uses, the first being a description of a surface-normal coordi­
nate system for E 3, and the second, obtained by setting 
z = const, being a parametric representation for the wave­
front surface Sz. 

The E and B fields will always be required to satisfy 
Maxwell's equations, viz., 

VXE = -:8, V·E = 0, 

VXB = (l/c2 )E, V·B = O. 
(M) 

In addition, it will be assumed that the fields are transverse, 
and it turns out that a necessary (but not sufficient) condi­
tion for (M) is that, considered as tangent fields to Sz' the 
fields E and B are harmonic in the sense of Hodge theory. 
This implies that 

V2E = 0, V2B = 0, (2) 

where V2 is the Hodge operator, a certain second-order dif­
ferential operator on the tangent vector fields to Sz which is 
the analog to (but different from) the ordinary Laplace op­
erator V2 in three-space. These results are formalized in the 
following two propositions. 

Proposition A: Suppose there exists an open interval of z 
values such that for each value of z in this interval both 
E(u,z,t) and B(u,z,t) are tangent toSz over some interval of 
t values. Then (M) is satisfied only ifE and B are harmonic 
on each of the surfaces Sz. 

Proposition B: For monochromatic fields the tangency 
condition can be relaxed to require that it hold over some 
interval of z values, but only for a single value of t. 

Suppose now that the wave-front surfaces are "closed" 
in the technical sense of modem differential geometry, i.e., 
they are compact (hence finitely extended) surfaces without 
boundary curves. Recall that the topological type of a closed 
surface is determined by its genus g ( = number of holes); 
i.e., two surfaces with the same genus are "topologically 
equivalent" in the sense that one can be smoothly deformed 
into the other. A "spheroid" is any surface topologically 
equivalent to a sphere, and for spheroids we have g = O. For 
tori we have g = 1, and for "double tori" we have g = 2, etc. 
Moreover, for closed surfaces it is known from deRham co­
homology theory that the space of harmonic tangent vector 
fields has dimension 2g. In particular, this dimension is zero 
if the wave fronts are spheroids, and hence transverse fields 
with spheroidal wave fronts cannot satisfy Maxwell's equa­
tions (except for the trivial case when E and B are identically 
equal to 0). 

The same result holds (but for a different reason) if the 
wave fronts are noncircular cylinders or surfaces of revolu­
tion, and we conjecture that transverse solutions to (M) ex­
ist only if the wave fronts are (flat) planes or circular cylin­
ders. However, the "fields" in our discussion are always 
assumed to be smooth singularity-free functions of time and 
position, and the "wave fronts" are always assumed to be 
closed submanifolds of three-space. If either of these condi­
tions is removed, then the solution set to (M) is enlarged and 
our results must be modified, as will be shown in Secs. I B 
and IV B. 

B. General discussion 

1. Comparison with Luneburg's work 

As discussed by Luneburg in Ref. 1, a wave front is the 
furthest-on position of an expanding pulse of electromagnet­
ic energy, and is taken to correspond to a "sudden discontin-
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uity" in the field quantities. At any instant of time such a 
wave front occupies only a single surface position, and Lune­
burg shows that at this instant the E and B fields are tangent 
to this surface. The wave fronts discussed by Luneburg can 
be spheroidal, but there is no contradiction between Lune­
burg's results and ours since in our discussion the field quan­
tities are assumed to be smooth functions of time and posi­
tion, and the tangency condition is required to hold over an 
interval of z values. The wave fronts discussed in this paper 
are more akin to those discussed in geometrical optics (cf. 
Ref. 2), and perhaps might be described as the "ghosts" of a 
departed Luneburg front. The space in a neighborhood of an 
instantaneous wave-front surface position S will remain ex­
cited for some time after the Luneburg front passes through 
S, and if S is spheroidal at least one of the fields E or B will 
lose its tangency property immediately after the time of pas­
sage. In fact, in the examples of spheroidal waves given by 
Luneburg in Ref. 1, Sec. 13 one of the fields remains tangent 
to S while the other does not. 

2. Comparison with geometrical optics 

Geometrical optics provides a description of how a field 
attenuates as it recedes from its source. Assuming that the 
power density is proportional to IEI2 (or IBI2), and that 
energy is conserved along tubes of rays that span two surface 
patches on So and Sz, one obtains the representation2 

E(u,z,t) = Eo(u)exp\::kz) , 
[1 + 2H(u)z + K(u)z2] 1/2 

(3) 

where Eo ~ EoLu) are the values of E on So, k is the wave 
number, H = H(u) is the mean curvature on Sand _ _ 0' 

K = K(u) is the total (or Gaussian) curvature on So. A sim­
ilar expression holds for B, and we now ask whether these 
fields can be made to satisfy (M) by an appropriate choice of 
the boundary data Eo and Bo. It turns out that the answer is 
"no." However, it will be shown that when transverse fields 
with a given wave front exist, (3) is essentially correct in the 
far field, i.e., for values of z that are large with respect to the 
radii of curvature and the wavelength. 

3. Physical considerations 

One does not expect to find strictly transverse fields gen­
erated by a physically realizable system of sources located in 
a finite region of space. Such fields generally contain longitu­
dinal components whose amplitudes vary as 1/r, whereas 
the transverse components vary as 1/r (where r is the range 
from source to observer). For example, considering this 
matter at its most "elementary" level, we note that Feyn­
man's formula for the field generated by a moving charge 
contains two longitudinal components (one being the Cou­
lomb field) (Ref. 3, Vol. I, Sec. 28-2; Vol. II, Sec. 21-1). 
However, theoretical fields generated by infinitely extended 
sources, such as Sommerfeld's solution to scattering from an 
infinite half-plane, can still provide insight into real physical 
problems. These classical solutions can also be used to esti­
mate high-order scattering effects from finitely extended bo­
dies, and for a recent account of this subject we refer the 
reader to Knott. 4 
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II. HARMONICITY OF TRANSVERSE FIELDS 

A. Vector operators in surface normal coordinates 

We shall use the formalism of tensor analysis to obtain 
formulas for the calculation of vector operators in a general 
coordinate system, and then specialize these results to sur­
face normal coordinates. In the discussion below we follow 
the notation and conventions given by Eisenhart in Refs. 5 
and 6. 

Let u = (U I ,U
2
,U

3
) be a general coordinate system 

whose metric tensors and Christoffel symbols are denoted by 
g ij' i j

, and r;k' Let R = R (u) denote the position vector of 
a general point in three-space, set Ri = a RI au i

, and let 
{RI,R2,R3} be the basis dual to {RI,R2,R3}, so that 

Ri.Rj = 8; (= Kronecker delta). 

Then employing the tensor summation convention, for a 
general vector field E = E (u) we have 

V.E = R i • aE 
aui

' 

VXE=R i aE Xa ., 
u' 

V2E=ij[~-rk. aE). 
au i aui Ii auk 

(4) 

(5) 

(6) 

We recall that a surface normal coordinate system is a 
triple (U\U

2
,U

3
), where (U

I
,U

2
) are surface coordinates on 

So and u3 = z. From (1) the pair (ut,u 2) can also be used as 
surface coordinates on Sz, and the following conventions 
will sometimes be used to distinguish between surface quan­
tities defined on Sz and space quantities defined on three­
space: The former will be marked with a tilde (-), whereas 
the latter will be unmarked; Latin indices will have the range 
{1,2,3}, whereas Greek indices will have the range {1,2}. 
Thus the metric tensors, Christoffel symbols, and the coeffi­
cients of the second fundamental form of S will be denoted 
by gaP' gaP, rpy, and wa/J' We also defin~ a tensor Qp of 
mixed type according to 

Qp = -gaywyp . 

The matrix (Q p) will also be called the "second fundamen­
tal form," and by definition the principal directions at a 
point on a surface are the unit eigenvectors of Q, and the 
principal curvatures YI' Y2 are the corresponding eigenval­
ues. The mean and total curvatures on Sz are defined accord­
ing t05 

2H = Tr(Q) = YI + Y2' 

K = Det(Q) = YIY2' 

As before we set 

R _aR aR 
a - auu ' R3 = --a; = 1]. 

The vectors R I' R2 are tangent to Sz, and R3 = 1] (u) is nor­
mal to Sz. It follows that in the dual basis the vectors R I ,R2 
are also tangent to Sz, and that R3 = 1]. We recall that a 
vector field E has a covariant description (Ei ) and a contra­
variant description (E i) defined by 

E=EiRi=EiRi· 

William B. Gordon 72 



                                                                                                                                    

The tangential component of a vector field E will be denoted 
by E; i.e., 

E = EaRa = EaRa. 

The space quantitiesgij and r;k are defined according to 

a2R k 
gjl = Rj"R" --- = r .. Rk , 

, J au j azl I] 

whereas the corresponding surface quantities on Sz are de­
fined by 

- R R a 2R - r-r R - (7) gaP = a" P' P - ap r + WapTJ· auaau 
The space quantities and surface quantities can be related by 
comparing these two sets of results, and the surface quanti­
ties on Sz can be related to those on So by differentiating (1) 
with respect to the surface coordinates ua and using the well­
known relation 

~=Q-rR. aua a r 

Using all these relations, by straightforward calcula­
tions one can show that in surface normal coordinates (4)­
(6) become 

VeE = Ea + (2iI)E3 + aE
3 

.a az ' (8) 

VXE = E2
.) - E).2 TJ + [VE 3 _ aE - QE] XTJ, 

~ [det(gaP)] az 
(9) 

V2E = ga p [ a 2E _ r~ p a E] + iiI a E + a 2E , 
aua auP aur az az2 

( 10) 

where E ~ P and Ea. P denote the surface covariant derivatives 
of the tangential component of E, VE 3 is the surface gradi­
ent of E 3 ( = E ~a Ra ), and Q is the operator that sends tan­
gent fields E into tangent fields F according to Fa = Q pEP. 

B. Maxwell's equations for a transverse field 

We now use (8) and (9) to express (M) in surface­
normal coordinates. It will be assumed that the E and B 
fields are transverse; i.e., E 3 = B 3 = 0 over some intervals 
of z and t values, so that E = E and B = B. Then from (8) 
the divergence equations in (M) yield the equations 

Ea =Ba =0. .a ,a 

In other words, the surface divergences of E and B vanish. 
We now consider the curl equations in (M). Setting 

E3 = 0 in (9), we get 

-:8= E2
.) -E).2 TJ- [aE +QE]XTJ. 

~[det(gap)] az 
By assumption the left-hand side of this equation is tangen­
tial, but the first term on the right-hand side is normal and 
the second term is tangential (since it is a cross product with 
'T/). Therefore the first term vanishes, and -:8 is equal to the 
second term. Similar remarks apply to the other curl equa­
tion in (M), and putting everything together we see that 
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Maxwell's equations for a transverse field reduce to 

E a =Ba =0, ,a ,a 

(MT) 

The tildes over E and B have been deleted in these last two 
equations since these fields are assumed to be tangential, but 
the tildes have been retained in the first two equations to 
emphasize that the covariant derivatives appearing there are 
surface quantities. 

c. Hodge-deRham theory 

The elements of Hodge and deRham theories are dis­
cussed in many texts in modem differential geometry, of 
which we shall only refer to Ref. 7 for definitions and nota­
tion. We recall that a tangent vector field E on a surface S is 
said to be closed if it satisfies 

E).2 - E2.) = 0, 

and coclosed if its surface divergence vanishes; i.e., 

Ec;. =0. 

A tangent field E is harmonic if and only if it is both closed 
and coclosed. Every harmonic field satisfies (2), and the 
converse is true on closed surfaces but untrue on open sur­
faces. From the first two equations in (MT) it follows that 
transverse solutions to (M) are harmonic. 

The structural properties of harmonic fields will be of 
importance in our subsequent analysis, and to discuss these 
we shall follow the customary practice of identifying the co­
variant description (Ea ) of a tangent field E with the differ­
ential form E + defined by 

E+ =Ea dua. 

The differential formE + is said to be exact if it is the (exact) 
differential d/ofsome function/on S; i.e., if Ea = a/laua. 
Every exact form is closed, but the converse is not true unless 
S is simply connected. More specifically, a closed form E + is 
exact if and only if its line integral around every closed cir­
cuit is zero, and using Green's theorem it is easy to show that 
this is necessarily the case if S is simply connected. 

Every harmonic field E has the decomposition 

where/is a harmonic function on S, the An are constants, 
and the fin are certain closed but nonexact differential forms 
independent ofE (i.e., are the same for all harmonic fields E 
on S), each having the form dO, where 0 is a multivalued 
angular coordinate on S. We shall call d/ the "exact" part of 
E, and the other terms will be called the "angular" part. If S 
is a closed surface, then the only harmonic functions on S are 
constants, and therefore the exact part ofE vanishes. In this 
case there are 2g differential forms fin' where g is the genus 
of S (cf. Sec. I A). If S is simply connected, then every closed 
form is exact, and therefore the angular part ofE vanishes so 

William B. Gordon 73 



                                                                                                                                    

that E is the gradient of a harmonic function. If S is both 
closed and simply connected, i.e., if S is a spheroid, then both 
parts vanish and E is identically zero. 

D. Monochromatic fields 

Monochromatic fields E = E(u,z,t) have the form 

E(u,z,t) = p(u,z)cos(wt) + q(u,z)sin(wt). 

We shall follow the customary practice of identifying E with 
its space-dependent part E(u,z) defined by the complex 
quantity 

E(u,z) = p(u,z) + iq(u,z). 

Then in (M) and (MT) the time derivatives Band E are 
replaced with - iwB and - iwE, respectively, and the curl 
equation in (M) relating B to E becomes 

iwB = VXE. 

Hence if the fields are tangential at only a single instant of 
time, the left-hand side of this equation is tangential, and the 
same argument used before goes through to show that E and 
B are harmonic. 

III. THE WAVE EQUATION FOR TRANSVERSE FIELDS 

A. The equations (WT) 

We have seen that the nonexistence of transverse solu­
tions to (M) with spheroidal wave fronts is a simple conse­
quence of the fact that a spheroid cannot support a nonzero 
harmonic field. However, there exist surfaces S which do 
support harmonic fields, but which still cannot be the wave 
fronts for transverse solutions. Results of this type will be 
obtained by analyzing a wave equation for transverse fields. 
This equation, denoted (WT), involves space derivatives in 
only the single space variable z, and (WT) will also be used 
to analyze the z variation of transverse solutions to (M) 
(when they exist). 

We recall that a field E = E(U I ,U2,z,t) is said to be trans­
verse if it is tangent to Sz over some intervals of z and t values 
(which by convention will be assumed to contain the value 
z = 0), and that a transverse field is harmonic if it satisfies 
the first two sets of equations in (MT). 

In standard field theory the solutions to (M) are shown 
to satisfy the wave equations 

(l/c2):E = V2E, (l/c2):8 = V2B. (W) 

Conversely, every solution to (W) is a solution to (M),pro­
vided that one of the fields, say E, satisfies the divergence 
equation div(E) = O. Equation (W) can be derived by tak­
ing the time derivatives of the curl equations in (M) and 
making the appropriate substitutions. If one applies the 
same process to the last two equations in (MT), they one 
obtains a wave equation for transverse fields, viz., 

(WT) 

with a similar equation for B. Here I denotes the identity 
operator, and Q is the second fundamental form defined in 
Sec. II A. This equation will be derived in the next section. 
The corresponding equation for the space-dependent parts 
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of monochromatic fields is 

_ k 2E = [2KI _ 2HQ]E + 2H JE + J2~. 
Jz Jz 

(WTM) 

Every transverse solution to (M) or (MT) is a solution 
to (WT), but the converse is not necessarily true. A solution 
to (WT) is a solution to (MT) if and only if it is harmonic, 
and we shall see that solutions to (WT) need not propagate 
as harmonic fields, even if harmonic initial data are pre­
scribed on So. 

B. Derivation of (WT) 

Recall that the principal directions SI,S2 are unit vectors 
satisfying 

(11) 

The principal directions are orthogonal, and we can there­
fore assume that SI X S2 = 11, so that 

(12) 

In our notation we shall ignore the dependence of the Ya on 
the surface coordinates u, and we shall write YI (0), Y2(0) for 
the functional values of these quantities on So, and 
YI (z),Y2(z) for their corresponding values on Sz. Letpl and 
P2 be the principal radii of curvature (the reciprocals of the 
principal curvatures). Then from simple geometrical argu­
ments or otherwise, we have2 

p(z) = p(O) + z, 

and therefore 

(13) 

(14) 

In our derivations we shall resolve tangent fields E in 
two different ways: 

E = EISI + E2s2, 

E=EaRa=EaRa , 

(15) 

(16) 

and we note that quantities (Ea) and (E a) transform like 
tensors, whereas the components (E I,E2) appearing in ( 15) 
do not. 

Our derivation of (WT) from (MT) will use the repre­
sentation (15) . Using (11), (12), and (15) to express the 
last two equations in (MT) in terms of components, we get 
the system 

BI = (Y2E2 +E;), 

B2 = -(YIEI+ E ;), 

(l/c2)EI= -(Y2B2+ B ;), 

(1/c2)E2 = (yIBI + B;), 

(17) 

where overdots are used to denote time derivatives and 
primes denote derivatives with respect to z. 

Next we differentiate the last two equations in ( 17) with 
respect to time, and substitute the first two equations into the 
right-hand sides. In these manipulations we have to calcu­
late y'(z), and from (14) we have 

y'(z) = - [y(z) ]2. (18) 
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Finally, putting everything together we get 

(1/c2)E\ = (YIY2 - ri )E, + (y, + Y2)E; + Ei', 

(1/c2)E2 = (YIY2 - ~ )E2 + (YI + Y2)E; + E;, 
(19) 

with similar equations for Bland B2• These equations are 
merely the equations (WT) written out in components, and 
hence the derivation of (WT) is complete. The correspond­
ing equations for monochromatic fields are 

_k2E, = (YIY2-ri)E1 + (YI +Y2)Ei +Ei', 
(20) 

C. Analysis of (WT) 

We shall now hold the u variables fixed and use (20) to 
analyze how the monochromatic solutions to (WT) vary 
with z. There are three cases to consider, depending on 
whether both, one, or none of the principal curvatures van­
ish. 

When both principal curvatures vanish, (20) reduces to 
the scalar wave equation in the variable z, and hence E pro­
pagates as a pure sinusoid in kz with no attenuation with 
increasing z. 

Next we consider the case when YI = 0 and Y2,t:0. In 
this case (20) reduces to the system 

E i' + (1/ P2) E; + k 2 E, = 0, 

P~ E; + P2 E; + (k 2 P~ - 1 )E2 = O. 

Expressing Eland E2 as functions of P2' the general solutions 
are given by 

E, = b,Jo(kp2) + c IYo(kp2), 

E2 = bzJI(kp2) + c2Y,(kp2), 
(21) 

where the b 's and c's are independent of z and theJ's and Y's 
are Bessel functions of the indicated order and type. From 
the asymptotic properties of the Bessel functions it follows 

that the components of E vary as exp( ± ikz)l-!Z for large 
values ofz. 

Finally, although we suspect that transverse solutions to 
(M) do not exist when neither of the principal curvatures is 
identically zero, a discussion of this case is included for theo­
retical completeness. Referring to (14), we wish to avoid the 
singularities that occur when any ofthe curvatures becomes 
infinite for positive z. Therefore, setting 

we assume 

o <a l ';;a2 • 

We set 

F, =p,E
" 

F2 =P2E2' 

and substituting into (20) we eventually get 

Fi' - (2alpIP2)F; + k 2FI = 0, 

F; + (2alpIP2)F; + k 2F2 = 0, 

where 

a = (a2 - a , )/2. 
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(22) 

(23a) 

(23b) 

LetFbe a solution to (23a), and let Y be the two-vector 

Then (23a) can be written in the form 

dY 
-=kJY+V, 
dz 

where the matrix J and the vector V are defined by 

J = [_ ~ ~], V = [2aF~PIPJ 

(24) 

Then using the method of variation of constan ts, 8 the general 
solution to (24) can shown to satisfy 

IY(z) - ek(Z- zo)Jy(zo) I.;; [2aIY(zo) I/pI (zo)]' 

This result shows that Y(z) is sinusoidal in the far-field lim­
it, since expanding exp(kzJ) as an infinite series using the 
relation J 2 = - I, we get 

ekzJ = cos(kz)I + sin(kz)J. 

The same results hold when F is a solution to (23b), and 
from (22) it follows that in the far field the components of E 
have the form exp( ± ikz)lz. 

IV. SOLUTIONS WITH PLANAR OR CYLINDRICAL 
WAVE FRONTS 

A. Planar wave fronts 

The discussion in the last section was concerned with 
the z variation of solutions for fixed values of the u coordi­
nates, and we shall now allow u to vary and examine the 
global behavior of fields with planar or cylindrical wave 
fronts. Special solutions E to (W) in these cases are usually 
obtained by the method of separation of variables, and solu­
tions to (M) are then obtained by imposing the additional 
condition, div(E) = O. In our discussion equation (WT) 
will be combined with the structure theory for harmonic 
fields (discussed in Sec. II C) to establish rigorously that 
these are the only transverse solutions to (M) in these cases. 
We begin with the planar case. 

Let (X I,X2,X3) be rectangular coordinates, let {e"e2,e3} 

be the corresponding unit basis vectors, and let So be the 
plane x 3 = O. Let E = E(XI,X2,X3

) be a general solution to 
(M) whose boundary data on So is given by Eo = Eo(X',X2). 
From the discussion in Sec. II C we know that Eo must be the 
gradient of a harmonic function on So (since the plane is 
simply connected), and from the last section we know that E 
must be sinusoidal in kz. In our present notation z = X3, and 
it follows that the most general transverse solution to (M) 

must be of the form 

E(XI,X2,X3) = eikx' grad ( U) + e - ikx' grad ( V), (25) 

where U= U(XI,x2) and V= V(XI,x2) are harmonic func­
tions on So, and grad denotes the surface gradient 

au au 
grad ( U) = -I el + -a 2 e2' 

ax x 
Conversely, it is easily seen that every vector function E of 
the form (25) is a solution to (W) and the divergence equa­
tion div(E) = O. Hence (25) represents the most general 
transverse solution to (M) when the wave front is a plane. 
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B. Solutions with singularities 

We illustrate by means of an example how the solution 
set to (M) must be enlarged, and our conclusions modified, 
if the fields are allowed to have singularities or if the wave 
fronts are not required to be closed submanifolds of three­
space. Let So now be an angular region in the x I_X2 plane that 
excludes the origin. Then the general structure theory for 
harmonic fields still holds, but in this case So is not simply 
connected and every harmonic field Eo on So has the covar­
iant form E 0+ = d/ + a dB, where/is a harmonic function, a 
is an arbitrary constant, and B is the angular polar coordi­
nate. Setting r = [(XI)2 + (X2)2]1/2, we have 

and the contravariant field corresponding to dB is therefore 
(1/r)(x l e2 -x2el ). Hence, referring to (25), the most 
general solution to (M) in this case is now given by 

E(X I,X2,X3
) = eikx3 grad ( U) + e - ikx

3 grad ( V) 

+ (alr)(x le2 - x 2e l )· 

C. Cylindrical wave fronts 

Let So be a cylinder, i.e., the surface swept out by a 
generating line perpendicular to a plane as its intersection 
with the plane moves around a base curve. In the next section 
it will be shown that transverse solutions to (M) cannot exist 
when the curvature Yo of the base curve is nonconstant. We 
shall therefore assume that Yo is a nonzero constant. [The 
plane is a special case of a cylinder for which Yo = 0, and 
requires the separate treatment (given in Sec. IV A) from 
the nonzero case.] Then each of the wave frontsSz is a circu­
lar cylinder, and from ( 14) the principal curvatures are giv­
en by YI (z) = 0 and Y2(Z) = yoI( 1 + zYo). The general so­
lution to (M) must therefore have the form (21), where the 
coefficients must now be chosen to be functions of the sur­
face coordinates that make E harmonic. It turns out that E is 
harmonic if and only if the coefficients are constants. 

To prove this result let the base curve for So lie in the x 1-

X 2 plane, and let its parametric equations be given by 
{Xl =xl(s), X2=X2(S)}, where the parameter s is arc 
length along the base curve. Let h denote the height of a 
general point on Sz above the plane, and take (h,s) to be the 
surface coordinates on Sz. Then (1) becomes 

R(h,s,z) = X(h,s) + zT)(s), 

and since dT)1 ds = Yo a XI as along the base curve, we have 

ax 
RI=XI =-, 

ah 

and therefore 

RI=XI, (26) 
R2 = (1 + zYo) -IX2• 

We recall that the result (21) is based on the decomposition 
( 15) of E into components along the principal directions, 
which in the present case are the unit vectors XI and X2• 
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Therefore the representations (15) and (16) become 
- I - 2 

E=EIXI +E2X2=EIR +E2R. 

Taking the dot product of the second pair of equations with 
RI and R2, from (21) we get 

EI = EI = bIJo(kp) + cIYo(kp), 

E2 = (1 + zYo)E2 (27) 

= (1 +zYo) [bzll(kp) +C2 YI(kp)], 

where the b 's andc's are functions of hands, andp = p(z) is 
the radius of curvature on Sz given by (13) with Po = 1/ Yo' 

From the definitions in Sec. II C, E is closed if and only 
if 

(28a) 

From (26) the components of the metric tensor are given by 

gil = 1, g12 = g21 = 0, g22 = (1 + zYo) -2, 

and all the Christoffel symbols vanish since these compo­
nents are constant on Sz. It follows that E is coclosed if and 
only if 

O 
-II aEI -22 aE2 =g --+g --. 

ah as 
(28b) 

Applying Eqs. (28) to (27) we get certain linear relations 
between the Bessel functions whose coefficients are the par­
tial derivatives of the b's and c's with respect to hand s. 
Hence all these partial derivatives must vanish, and there­
fore the b 's and c's are constants. 

V. OTHER CASES FOR WHICH TRANSVERSE FIELDS 
DO NOT EXIST 

A. Alternate forms of (MT) and (WT) 

We shall now give examples of surfaces So that support 
harmonic tangent fields, but for which (WT) has no har­
monic solution. From the discussion in Sec. III A we recall 
that such surfaces cannot be the wave fronts for transverse 
solutions to (M). The examples are noncircular cylinders 
and surfaces of revolution, and as previously mentioned, we 
suspect that singularity-free transverse solutions to (M) are 
only possible when the wave fronts are planes or circular 
cylinders. We shall confine our discussion to the monochro­
matic case. 

In Sec. III we used the decomposition ( 15), and we now 
wish to express (MT) and (WT) in terms of the components 
given in the decomposition (16). However, for typographic 
ease we shall no longer use tildes to mark surface quantities. 
For example, ga fJ will now denote the surface metric tensor 
defined by (7). 

We begin by writing out a well-known representation 
for the "star" operator (*), which is the mapping that sends 
tangent fields E into EXT). Settingg = det(gafJ)' the result 
is? 

*E = (1/v'i) [( - g21EI + gIlE2 )RI 

+ ( - g22EI + g12E 2)R2]. (29) 

For a general tangent field E, **E = - E since * is a rota­
tion of90degrees. Using (29) one can also show that * sends 
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closed fields into coclosed fields, coclosed fields into closed 
fields, and hence * sends harmonic fields into harmonic 
fields. 7 

Next we write out the following intermediate results, 
which will be proved at the end of this section, and in which 
we setM = Q2: 

aa~a = - Qp RP, 

aQ = _Q2= -M 
az ' 

a2
R =2M a RP ar p, 

0= Q 2 - 2HQ + KI. 

(30a) 

(30b) 

(30c) 

(30d) 

Then, applying (a / az) to (16) and using (30a) we get 

a E = aEa Ra + Ea a Ra = aEa Ra _ Ea Q P RP. 
az az az az 

Hence 

aE + QE = (aEa )Ra, 
az az 

and using this result, the monochromatic form of the last 
two equations in (MT) can be as 

_ iwB = *[ (a:; )Ra], 
~~E = *[ (a:; )Ra]. 

(31) 

Similarly, using (30) to simplify the results, we find that 
(WTM) reduces to 

a 2E aE aE 
- k 2Ea = __ a + 2H_a - 2Q~ -p-. (32) 

az2 az az 

Proofs of (30a)-(30d): Using the well-known relation5 

aT) = _ wapRP, 
aua 

from (1) we get 

aRa = ~ = aT) = _ wapRP. 
az azaua aua 

Then differentiating the relation Ra·Rp = Dp, we get 

aRa a aRp 
--·Rp +R ·--=0, 

az az 

which combined with the above result gives (30a). 
Equation (30b) is a consequence ( 18) and the fact that 

the principal directions SI' S2 are independent of z, i.e., do 
not vary along a ray normal to the surfaces Sz. Equation 
(30c) is obtained by differentiating (30a) and using (30b). 
Equation (30d) is the characteristic equation for Q. It is a 
consequence of the fact that Q is a symmetric operator (with 
respect to thegmetric) with eigenvalues YI' Y2' This relation 
can be used to reduce any rational expression in Q to an 
expression which is linear in Q. 

B. Noncircular cylinders and surfaces of revolution 

We now specialize (31) and (32) to the case when a 
surface coordinate system u exists for which the tangent ba-
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sis vectors R I , R2 are scalar multiples of the principal direc­
tions. The principal directions are orthogonal, and from the 
relations ga p = Ra ·Rp and the definition of Q we get 

gl2 =g21 = 0, W 12 = W2l = 0, 

Qi =Qi =0, Q: =YI' Q~ =Y2' 
(33) 

Using (1) it is easy to show that these properties propagate 
from So to Sz. Applying (29) and (33) to (31), we reduce 
(MT) to theform 

(iw/c2)EI = (gll/g22) 1/2B~, 

- (iw/c2)E2 = (g22/g11)1/ 2B;, (34) 
- iwBl = (gll/g22)1/2E~, 

iwB2 = (g22/g11) l/2E;, 

where the primes again denote derivatives with respect to z. 
Similarly, (32) reduces to 

E;'+ (Y2-YI)E; +k2EI=0, 

with similar equations for the B 's. 

(35a) 

(35b) 

The conditions for (33) and therefore (34) and (35) 
apply to cylinders and surfaces of revolution endowed with 
the appropriate coordinate systems. For cylinders, we use 
the (h,s) coordinates discussed in Sec. IV. For a surface of 
revolution obtained by rotating a curve around the X3 axis, 
we let (r,e) be polar coordinates in thexl-x2 plane so that the 
parametric representation of the surface is given by 

{Xl = r cos e, x 2 = r sin e, x3 = - f(r)}, 

where for simplicity it is assumed thatf = f(r) is a monoton­
ically increasing function withf(O) = O. Then by straight­
forward calculations one can show that 

YI =f"(r)/[F(r) ]3/2, Y2 =f'(r)/[r~F(r)], 

where we setF(r) = 1 + [f'(r)]2. 
We now differentiate (35a) with respect to u l

, (35b) 
with respect to u2

, and subtract the results. Setting 
d = Y2 - Yl' we get 

d2E; +dIE~ =0, 

wheredl = ad /au l
, d2 = ad /au2. But for the specialcoor­

dinate systems described above, the principal curvatures and 
hence d depend on only one of the surface coordinates. Call 
this coordinate u2

• Then d l = 0, and from the above equa­
tion we get 

d2E; =0. 

For the cylinder, d is the curvature of the base curve, and is 
nonconstant for noncircular cylinders. Hence d2 #0 in this 
case, and it can be shown that the same result holds for sur­
faces of revolution. We therefore conclude that E; = 0, 
from which it follows thatE I = o since (WTM) has no non­
zero solutions whose derivatives are identically zero inz. The 
same arguments apply to the B vector, and we conclude that 
B; = 0 and B I = O. But from (34) the vanishing of E; im­
plies the vanishing of B2, and the vanishing of B ; implies the 
vanishing of E2. Hence E I = E2 = B I = B2 = 0; in other 
words, for noncircular cylinders and surfaces of revolution 
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we have shown that E = 0 and B = 0 are the only solutions 
to (MT). 
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A hyper-relativistic system is defined as one whose equation of motion is form invariant under 
coordinate transformations induced by a semisimple group whose algebra is contractible to the 
algebra of the Poincare group. Such a system lies, categorically, in the domain between the 
special theory of relativity and the general theory, for whereas the former requires covariance 
un~er transfo~mations between inertial systems, the latter imposes covariance with respect to 
arbitrary contmuous transformations. In this paper, a new interpretation of a particular fiber­
bundle structure constructed on the timelike homogeneous space M = SO ( 4,2) ISO ( 4, I) is 
presented, and Minkowski space-time is realized as a subspace of the standard fiber of the 
ta~gent bundle ove~ this hyperquadric. Through the process of group contraction, coupled 
with the commutatIOn of the momentum vector fields with the principal bundle of linear 
frames with which the tangent bundle is associated, a hierarchy of "Heisenberg commutation 
relat~ons," parametrized by the point spectrum of the center of the contracted algebra, is 
obtamed. The classical Newtonian gravitational potential field enters as the fifth coordinate of 
an extended space-time manifold. 

I. INTRODUCTION 

In quantum mechanics, one usually represents physical 
observables as self-adjoint linear operators acting on a suit­
able inner product space, normally taken as Hilbert space. 
The quantization of classical mechanics is achieved through 
the postulation of the Heisenberg commutation relation 
21T(Xp - px) = ih, between the (self-adjoint) operator rep­
resentatives x, p, of the position and momentum observables, 
respectively. In spite of the undoubted successes of this con­
struction, there have been serious questions of internal con­
sistency raised in the literature. For instance, it is desirable to 
find a map F: [ , ] ..... { , } from the Heisenberg commuta­
tor [ , ] to the Poisson bracket { , } of classical mechanics. 
It would appear, however, that there is no such map. 1 There 
are other problems. These problems seem to derive from our 
conventional interpretation of the Heisenberg commutator 
as a Hilbert space operator equation. The operators that one 
would associate with x and p are both unbounded, and have 
no eigenvalues. It is thus necessary to make special arrange­
ments to fit them into the measurement postulates of quan­
tum mechanics. 

Suppose x = (X 1,X2, ••• ,xn ) is a local coordinate system 
for a manifold M, and p is a vector field. Then the derivation 
properties of p are enough to yield the relation 
21T(Xp - px) = ih. This is because a basis for the space of 
vector fields is the set of derivatives {a / ax i }, x itself being 
regarded as a function of x. 

Thus the Heisenberg postulate amounts to saying that p 
is a vector field and, in particular, a generator of translations 
in x. The position operator concept, by which we mean an 
operator whose effect on a wave function/(x) is to multiply 
it by x, is not required at this stage, and one need not concern 
oneself with its spectral properties. Neither is it necessary to 
regard momentum as an operator in Hilbert space. 

There has in the recent past been some effort to exploit 
the properties of homogeneous spaces of Lie groups in the 
formulation of quantum mechanics. Amongst many others, 

Doebner and Tolar2 considered a homogeneous G-space M, 
where G is a Lie group. They studied the kinematics of quan­
tum systems on M using Mackey's theory of imprimitivity 
systems. 3

-
5 They looked at particle kinematics on M as kine­

matics on a G-orbit equivalent to M in some Euclidean space 
Rn. Nevertheless, their approach involves the retention of 
the conventional characterization of all observables as Hil­
bert space operators over the base space M. The attitude one 
adopts in the present paper is that position x and/ree particle 
momentum p are properties of space-time, and are to be han­
dled differently from other observables. 

The complete geometrization of quantum mechanics 
proceeds most naturally within the framework of the theory 
of fiber bundles. 6

,7 Within this framework, the problem of 
describing relativistic particle kinematics on afiat pseudo­
Euclidean space, and of making this consistent with a quan­
tization scheme based on the curved manifold M, does not 
pose a serious problem. Beginning with the conformal group 
of space-time SO(4,2), we systematically show how the 
structure of the tangent bundle on SO ( 4,2) ISO ( 4, I ) is rich 
enough to provide the required Heisenberg commutation re­
lations on the one hand, and the relativistic frame-to-frame 
transformation equations on the other hand. 

The general framework for this construction is given in 
Sec. II for an arbitrary dynamical group G. In Sec. III, we 
actualize this construction by choosing G to be the confor­
mal group. This choice derives from the fact that the local 
properties of the conformal gorup directly provide the dy­
namical variables of quantum mechanics. On the other 
hand, its global properties in relation to its de Sitter subgroup 
SOC 4, I) ultimately provide the space-time structure needed 
to relativize quantum mechanics. 

II. THE GENERAL SCHEME 

Let G be a noncompact Lie group whose Lie algebra g 
supplies all the dynamical variables needed for the descrip­
tion of any physical system, namely, angular momentum, 
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energy momentum, world point variable or position four­
vector, etc. Let G possess a maximal subgroup H (with Lie 
algebra h) such that the homogeneous space M = G / H is of 
unit rank, that is, there is only one independent invariant of 
any pair of points of M with respect to the action of the group 
G on M, or equivalently,8 there is only one independent in­
variant differential operator on M. Such an invariant differ­
ential operator is the Laplace-Beltrami operator9 

D(M) =g-l/Z~(mjkgl/Z~), (2.1) 
JX k JXj 

where g is the determinant of the metric tensor with compo­
nents m jj , and the m

jj 
are the components (elements) of the 

matrix inverse of m. Thus mij = (m-I)jj' and the Xj are 
coordinate vectors defining the invariant elementary inter­
val 

dsZ = mjj dX j dXj . (2.2) 

The choice of a homogeneous space of unit rank is made for 
simplicity. The dimension of M is required to be small, typi­
cally 5, in the spirit of the Kaluza and Klein theories 10 which 
are currently being reexamined in the literature within the 
context of elementary particle physics. 

We then construct the principal H-bundle P on M, and 
hence the tangent bundle over M, which is, in the terminol­
ogy of Kobayashi and Nomizu,7 thefiber bundle associated 
with P, with structure group H, and standard fiber E(p,q), 
where E(p,q) is a physically relevant pseudo-Euclidean 
space with metric gij = (l,l, ... (p times), - 1, - l, ... (q 

times»), and p + q = 5. Then the difference space Q = g - h 
has five linearly independent vector fields as its basis. It is the 
elements of the basis of Q that we commute with the mo­
menta, which are also vector fields belonging to g, in order to 
obtain the Heisenberg commutation relations in a suitable 
limit. This limit is provided by the classical Inonii-Wigner­
Saletan contraction scheme. ll

•
lz 

The standard fiber E(p,q) of the tangent bundle turns 
out to consist of Minkowski space-time plus one extra coor­
dinate intimately connected with the distribution of matter 
in space-time. 

As is explained in Sec. III, there is a duality between the 
spaces E(p,q) and Q provided by the quotient map 

f: E(p,q) XQ->E(p,q)Q (2.3 ) 

that defines the total space of the tangent bundle. This duali­
ty replaces the usual quantum mechanical prescription of 
replacing position coordinates with operators in order to be 
able to commute them in a nontrivial way with the momenta. 
In this approach, we now have vector fields associated in a 
natural way with the position coordinates, as part of the fiber 
bundle structure, and these vector fields are commuted with 
the momenta, which already are vector fields, being ele­
ments of the Lie algebra g of the group G of the bundle. 

III. EXPLICIT CONSTRUCTION OF THE 
GEOMETRIZATION SCHEME 

Consider the pseudo-Euclidean space E( 4,2) with diag­
onal covariant metric tensor mij = (1,1,1, - 1, - 1,1). Let 
G=SO(4,2), H=SO(4,1), and let W= (w l ,WZ ,W3 , 

W4'W5'W6 ) be an arbitrary point of E( 4,2). Consider the ho-
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mogeneous space M = SO(4,2)/SO(4,1). Let z be an arbi­
trary point of M. Then M is topologically equivalent to the 
five-dimensional hyperquadric 

(3.1 ) 

which we also denote by M. Thus M is suitably parametrized 
by l3,l4 

WI = cos rp\ sin 8z sinh 8 , 

Wz = sin rpl sin 8z sinh 8 , 

W3 = cos rpz cos 8z sinh 8 , 

W6 = sin rpz cos 8z sinh 8 , 

W 4 = cos rp3 cosh 8, 

W5 = sin rp3 cosh 8 , 

where 

(3.2) 

0.:;;8<00, 0.:;;8z':;;1T/2, 0.:;;rpl,rpZ,rp3<21T. (3.3) 

The group H acts freely on G on the right and the canonical 
map 

p: G->M=G/H (3.4 ) 

is differentiable. The collection {G,p,M} is the principal H­
bundle over M. We denote it by P. 

A linear frame Y at a point z of M is an ordered basis 
(YI,YZ,Y3'Y4'Y5) of the tangent space T z (M) at z. Thus with 
the parametrization given in (3.2), we could choose 

However, anticipating the quantum mechanical applica­
tions we have in mind, and noting that the generators of 
Q = g - h are also a possible linear frame, we take for the Yj, 
not the entries in (3.5), but rather such suitable CCM)-linear 
combinations of the entries in (3.5) as would in a suitable 
Lie algebra contraction limit provide a basis whose dual is 
indentifiable with space-time coordinates plus a fifth coordi­
nate. Here C(M) is the space of COO - functions on M. 

The group SO ( 4,2) has a Lie algebra g generated by the 
15 left-invariant vector fields Mba = - Mab,Pa.Aa,D, 
a,b = 1,2,3,4, with the commutation relations l3 

[D,Pa] =Pa , 

[ D.Aa ] = - Aa , 

[Mab,pc] = gcaPb - gcbPa , 

[Mab.Ac] = gcaAb - gcbAa , (3.6) 

[ Mab ,Mcd ] = gacMbd + gdaMcb + gcbMda + gdbMac , 

[Ab,Pa] = Mab - gab D , 

[Aa.A b ] = [Pa,Pb] = [D,Mab ] =0, 

where gab is the metric (1,1,1, - 1). 
Now D is the dilatation field, Mab are angular momenta, 

Pa are linear momenta, and Aa are the so-called special con­
formal transformations. Let r = 211z. We choose as a basis 
for the tangent space Tz (M), 

(Y\,Yz'Y3'Y4'YS) = (rA 2 ,rA\,rA3,rA4,rD) . (3.7) 

Let L (M) be the set of all linear frames Y at all points z of M. 
Thus a typical point of L (M) is denoted by (z,y) or by Yz. 
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Also let 

1T: L(M) ..... M 

denote the projection 

(3.8 ) 

Yz = (z,y) -.z (3.9) 

onto the first entry. Any two linear frames Y, Y' are de Sitter 
equivalent if they are connected to each other by a de Sitter 
transformation. For two such frames, 

(3.10) 

where qESO( 4,1). It follows that Mis the quotient of L(M) 
by the equivalence relation induced by this action ofSO( 4,1) 
onL(M). The collection {L(M),1T,M} isaprincipal de Sitter 
bundle, which we denote by S. 

Now let E=E(4,1) be the pseudo-Euclidean space 
with metric (1,1,1,1, - 1). We construct "thefiber bundle 
F, associated with S," and with standard fiber? E. Consider 
the map 

f (L(M) XE)-.F 

defined by 

(Yz,x) -'XYz ; 

(3.11 ) 

(3.12) 

Yz = (YI'Y2'Y3'Y4'YS), written as a column matrix, and x is a 
row matrix (XI,X2,X3,X4'XS), where Xi is a real number. Thus 

(3.13 ) 

Eachyz may, therefore, be regarded as a linear isomor­
phism of E onto Tz (M). To get from one point of Tz (M) to 
another, we keep Y z, that is, the basis, fixed, and vary x, that 
is, the components (or coordinates). 

The group SO ( 4,1 ) acts on E covariantly from the right, 
and on L (M) contravariantly from the left. For each q in 
SO(4,1), we have 

q: Xi ..... Xjqji' q: Yi -+ (q-l)ikYk . 

This gives the induced action 

q: XiYi-+Xjqji(q-l)ikYk =XiYi (3.14) 

on the quotient space F, the space of all vector fields on M, 
with coefficients in E. In order to bring out the quotient 
structure, F may be written as 

F= (L(M) XE)modH. (3.15) 

Then F, taken together with the projection 1T onto M [Eqs. 
(3.8) and (3.9)], is the tangent bundle over M. 

We now introduce physics into the system by identify­
ing the standard fiber E with space-time, augmented with an 
as yet undefined fifth coordinate XS' In the sequel, E will be 
referred to as extended space-time. The isomorphism 

Yz:E ..... Tz(M) (3.16 ) 

induced by each YzEL(M) enables us set up a one-to-one 
correspondence between each position coordinate X and a 
vector Zx = XiYiETz (M). If we further identify the subset of 
generators p = (PI,P2,P3,P4) of SO(4,2) with energy-mo­
mentum, we obtain the result that the dynamically meaning­
ful commutation rules between momentum and position ob­
servables are given by the C(M) -linear commutators of the 
form [p,zx], between the vector fields. Due to this C(M) 
linearity, this reduces to a commutation of the energy-mo­
mentum vector fields with the vector fields Y, dual to ex-
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tended space-timex with regard to the action of the groupH 
on the total space F of the tangent bundle over M. 

In order to obtain the Heisenberg commutation rules, 
we have to perform a suitable Lie algebra contraction that 
will collapse SO ( 4,2) into a doubly inhomogeneous Lorentz 
group. This is studied in the next section. 

IV. HEISENBERG COMMUTATION RULES 

Let e be a positive fractional parameter, and let 
B(e): g-+g' be an e-parameter-dependent linear transfor­
mation of the Lie algebra of g into its isomorph g', which 
transformation, however, becomes singular in the limit e -. O. 
Let [ , ] and [ , ] e denote the Lie products in g and g', 
respectively. 

Explicitly, 

[U,Vle =B(e)-I[B(e)U,B(E)V], U,vEg. (4.1) 

We now use the symbol U to denote either Aa or Pa' 
a = 1,2,3,4, and choose for the definition of B(E), for e dif­
ferent from zero, 

B(e)U=eU=U', B(e)-IU'=e-1U', 

B(e)D=e2D=D', B(e)-ID=e-2D, 

B(e)Mab =Mab =B(e)-IMab , a,b= 1,2,3,4. 

(4.2) 

Using this in (3.6), then going to the limit e -. 0, and replac­
ing [ , ]0 with [ , ], we obtain 

[Ya'P;'] = - gabYS = - 21/2gabD' , 

[Ya'YS] = [p~,ys] = [p~,p;'] = 0, 

[Ya'Yb] = [Mab,ys] = o. 

(4.3 ) 

(4.4 ) 

All other commutators remain the same as in (3.6). This 
contracted algebra is that of the (doubly) inhomogeneous 
group KC!<Q, where K = SO (3,1) C!< T4 is the Poincare group, 
and Q is the five-dimensional Abelian group generated by 
the contracted frame yEL (M). The T4 are four-dimensional 
translations. 

Equations (4.3) and (4.4) have important quantum 
mechanical implications. We note first thatys = 21/2D' acts 
as a constant vector field in the sense that it commutes with 
all other vector fields. It belongs to, and in fact generates, the 
center of the contracted algebra L. This algebra L induces 
infinitesimal motions of M = SO ( 4,2) ISO ( 4,1) into itself. 
Hence M is an L-module, and the natural action of L on M 
defines a representation R: L -+ gl (M). By Schur's 
Lemma,15 given such a representation R: L-.gI(M) of the 
algebra L, if R is irreducible, then the only endomorphism of 
M commuting with all R (V) (VEL) are the scalars. Thus 
Ys = 21/2D' is a scalar multiple of the identity. We denote it 
by hj , wherej = 1,2,3, ... ,n, n>2. 

Ordinarily, before contraction, the spectrum of Dis con­
tinuous. 16 However, thecontractedoperatorys = 21/ 2D', be­
longing as it does to the center of the algebra L, will have a 
discrete spectrum, which we have written hj • That is, the 
process of contraction partitions the continuous spectrum 
into discrete groups, much as a magnetic field collects the 
energy levels of an erstwhile free electron into a countable set 
of Landau levels in solids. These eigenvalues hj define the 
limits of uncertainty in measurement. For j = 1, we expect 
that hi = 0, and we would then have classical mechanics. 
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Forj = 2, we put h2 = - 2- 1
/

2ih 1(2lT), whereh is Planck's 
constant. Then 

(4.5 ) 

which includes the Heisenberg commutation rule. For j 
greater than 2, we indeed have a hierarchy of quantum me­

chanics. 

V.INTERPRETATION OF THE FIFTH COORDINATE 

The special theory of relativity is based on the assump­
tion that space-time is homogeneous, and has an existence 
independent of matter or field. 17 Then the Poincare group, 
p= SO(3,I)CxT4, is the invariance group of the laws of 
physics. "On the basis of the general theory of relativity, on 
the other hand, space, as opposed to what fills space, which is 
dependent on the coordinates, has no separate existence.,,17 
For hyper-relativistic systems such as we are now studying, a 
middle course has to be charted. First one must admit that 
uneven distribution of massive matter in the neighborhood 
of any point alters the properties of space-time at that point. 
At any given world point, it should not be enough to indicate 
the values of the four variables Xa that make up space-time. 
It would seem to be necessary also to indicate the value of the 
variable that allows for the effect at that point of a nonuni­

form and nonstatic distribution of matter in the universe. In 
general relativity, a pure gravitational field is described in 
terms of the metric tensor gij obtained from the solution of 
the Einstein field equations. For hyper-relativistic systems, 
it is enough to use the classical gravitational potential field g 
given by the Newtonian theory, subject to the so-called Ein­
stein equivalence principle. 17 Thus g is locally equivalent to 
an acceleration. In addition to specifying Xa , we also have to 
indicate the mean gravitational potential field g at the world 
point due to ambient mass distributions. It is therefore rea­
sonable to take as the fifth coordinate of the space E( 4,1), g, 
the classical (that is, Newtonian) gravitational potential 
field at that point due to all matter as they are distributed at 

that instant of time. We multiply this with aphysica/ constant 

"a," so that the object ag has the dimension oflength. 
The standard fiber E( 4,1) is a five-dimensional metric 

space spanned by three ordinary coordinate variables 
(X I,x2,X3) by one timelike variable Xo = ct, and by one po­
tential-like variable, X 4 = ago The metric 
(-1,1,1,1,1) =gij,i,j=0,1,2,3,4. Let W=dgldt. Wmay 
or may not vanish, even though JgIJt necessarily vanishes. 

VI. de SITTER TRANSFORMATIONS OF INERTIAL 
FRAMES 

Let us consider the action of SO ( 4,1) on E ( 4,1 ). It has 
been shownl8 that any element q of SO(m,n) may, for 
3<;m < 00, O<n < 00, m,>n, be factorized in the form 
q = A 'B(B) 'C, where A,C belong to the group 
SO(m,n - 1) X 1, andB(B) belongs to a one-parameter sub­
group ofSO(m,n). With a slight variation of the arguments 
used in Ref. 18, one can show that an arbitrary element of the 
group S0(1,4) may be factorized in the form 
q = A 'B(B) 'C, whereA,Cbelong to S0(1,3) X 1, andB({}) 
belongs to a one-parameter subgroup of SOC 1,4). Here A 
and C are Lorentz transformations in the subspace spanned 
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by the coordinatesxo'x I'X2,X3, The result is that one can have 
a pure de Sitter transformation without Lorentz boosts, just 
as one can have a pure Lorentz transformation without rota­

tions. 
A more useful factorization is, however, obtained as a 

deduction from the factorization of the n-dimensional rota­
tion group SO(n) given by Murnaghan. 19 His construction 
can be extended to the pseudo-orthogonal groups SO(m,n) 

by analytic continuation. Murnaghan's construction con­
sists in factorizing any element of SO (n) into a product of 
plane rotations through an angle qJ in the half-open range 
[ -IT,lT). Considering SOC 1,4), we note that due to the in­
definite metric of E( 4,1), the rotations connecting Xo with 
anyone of XPX2,X3,X4 is hyperbolic, rather than circular. 
Thus in going from the parametrization ofSO(5) to that of 
SOC 4,1), it suffices to make the replacement qJ~iqJ, with 
respect to the angles of rotation for the planes (01), (02), 
(03), (04). There are thus two types of "rotation" matrices, 
R, T, the (mn)th element of which are defined by 

(Rij(qJ»)mn = (cosqJ-1)(OmiOni +omjOnj) 

+ (OmjOni - OmiOnj )sin qJ + omn , (6.1) 

(Tij({}»)mn = (coshB-l)(omioni +omjOnj) 

+ (OmiOnj + 0mjOni )sinh {} + omn , (6.2) 

where 

(6.3 ) 

and the subscripts (ij) denote "the ij plane." In terms of 
these, an arbitrary element of SOC 4,1) is factorized as 

q = R34(qJ4)R23(qJl)R24(qJs)RI2(qJ2)R13(qJ3)RI4(qJ6)S, 

S= TOI({}I)To2({}2)T03({}3)To4({}4)' (6.4) 

We impose the following simplifying restrictions: 
qJI = qJ2 = qJ3 = 0, which implies no rotations in three-space, 

and {}4 = 0, which implies no (XoX4) rotations. Also we con­
sider an inertial frame S' moving with speed V in the z direc­
tion of the inertial frame S. This induces Lorentz boosts in 
the z direction only. The corresponding de Sitter boosts ex­
ists only in thez direction also. For this condition, we require 
to set {}I = (}2 = qJs = qJ6 = O. Hence we left with 

q = R 34 (qJ4)T03 (B3) (6.5) 

=R(qJ)T({}), for simplicity, 

cosh {} 0 0 sinh {} 0 

0 1 0 0 0 

0 0 0 0 

cos qJ sinh {} 0 0 cos qJ cosh {} 

sin qJ sinh {} 0 0 sin qJ cosh {} cos qJ 

(6.6) 

We consider the motion with speed v = (O,O,V) in S of the 
origin 0' of the inertial frame S '. Applying this to the trans­
formation 

dxi = %dxj = 0 , 

we readily obtain 

At = V- WAg, 
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where 

A = (
aX3) 

t at g' 
A = (

aX3) 
g ag t' 

w= dg. 
dt 

(6.9) 

If, as we suppose, g is the classical gravitational potential at a 
given world point, then 1IAg is thez component of the gradi­
ent of g at any given time, while W is the total time rate of 
change of g. Both of these quantities are properties of ex­
tended space-time, and not of the particular transformation 
of coordinates induced by V. We write 11 Ag = K. Then 

cos qJ(c sinh 0 + cosh OAt) 

+ (cos qJ cosh(O)IK - a sin qJ)W = O. (6.10) 

For any given W, one solution is 

c sinh 0 + cosh OAt = 0 , 

cosh 0 - a K tan qJ = 0 , 

that is, 

At = - c tanh 0, a K tan qJ = cosh O. 

Now put 

cBt =A" Bg =Agla = 1I(aK), 

B = Bg (1 - B; ) -1/2 . 

Then 

tan qJ = B, tanh 0 = - B t • 

We also define the three G variables 

Gt = (1_B;)-1/2, 

G= (1 +B2)-1/2. 

Hence 

tanqJ = GtBg =B, 

G =(1_B2)-1/2 
g g' 

cosh 0 = G" sinh 0 = - GtBt , 

cos qJ = G, sin qJ = BG . 

(6.11 ) 

( 6.12) 

(6.13 ) 

(6.14 ) 

(6.15 ) 

(6.16 ) 

Substituting all these in (6.6), and then in dx' = q dx, we 
obtain the de Sitter transformations in extended space-time: 

t'=Gt(t=x3B.!c), x;=x l , 

x~ =x2, xi = G(Y3 -Bag), 

g/ = G (g + hB I a) , 

whereY3 = Gt (x3 - Btct). 

( 6.17) 

The set of equations (6.17) is valid for any W. The spe­
cial theory of relativity assumes that V is constant, but puts 
W = O. Hence V = At = const. For hyper-relativistic sys­
tems, as defined here, we admit of cases for which W does not 
vanish, and, in the next section, investigate its effect on the 
kinematics of free particles as mirrored in the energy-mo­
mentum mass relation. 

VII. ENERGY-MOMENTUM RELATION 

The invariant interval in E( 4,1) is 

d~ = (dX I )2 + (dX2)2 + (dX3)2 - (c dt)2 + (a dg)2 . 

(7.1) 
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We put 

c2 dT 2 = - ds2, k = alc , 

dXi dx· 
Vi =-, Wi =-', i= 1,2,3, 

dt dg 
(7.2) 

Gv = (1- v2/c2 _ k2W2)-1/2. 

Hence 

c2dT2=C2dt2/Gv2. (7.3) 

Dividing (dx l ,dx2,dx3,c dt,a dg) by c dT, we obtain a five­
velocity 

U = Gv (V\>V2,v3,c,aW) , 

whose invariant square is 

UTmU = Gv 2(V/ + v/ + v/ - c2 + a2W2) 

(7.4 ) 

(7.5 ) 

(7.6) 

the same result as the usual square of the four-velocity of 
special relativity. Here, m is the metric of extended space­
time. 

In order to make contact with speciallelativity, we in­
troduce a number mo by rewriting (7.5) as 

UTmU = m~ G~ (v·v - c2 + a2W2)lm~ (7.7) 

where 

p = moGvv, 

E = moGvc2( 1 _ a2W2) 1/2. 

(7.8) 

(7.9) 

(7.10) 

We identify p with momentum, and E with energy. There is a 
contribution to the energy from W = dgldt. From (7.8), we 
see that the energy momentum relation remains 

E2 = C
2p2 + m~ c4

• (7.11) 

However, the definition of E in terms of the velocity v now 
takes the form 

E = (moc
2(1 - a2W2) 1/2(1 _ V2/c2 _ a2W2) -1/2) 

= moc
2 ( 1 - Rv2/c2 ) -1/2, 

R = 1I(1-a2W 2). 

(7.12) 

(7.13) 

VIII. CONTRACTION OF THE STRUCTURE GROUP OF 
THE BUNDLE 

The group SOC 4,1) is the group of 5 X 5 matrices q, sat­
isfying the relations 

detq=l, qTQq=Q, (8.1) 

where the matrix Q has elements 

Qij = oij - C200i OjJ + a204iOj4, i,j = 0,1,2,3,4. (8.2) 

The associated invariant quadratic form in E( 4,1) is then x T 

Qx, where x = (t,X\>X2,X3,g). 
From (8.1) and (8.2), we have 

0= qmiQmnqnk - Qik 

= C2(OOi OkO - qOiqok) + a2(q4iq4k - 04iOk4) 

+ qniqnk - 0ik . (8.3) 

If we now imagine "g" switched off, but at the same time 
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letting "a" go to infinity in such a way that "ag" remains 
finite, then we have a local nongravitational situation in the 
sense of the free-falling test experiments of Will. zo 

In the limit aZ going to infinity, there are two distinct 
possibilities: (a) both i and k less than 4, 

q4jq4k = (Ojk - qnjqnk + cZ(qOjqok - 00jOkO »)laZ 

tends to zero; (b) i = k = 4, 

q~ - 1 = (1 + CZ q~ - q n4 q n4 ) I aZ , 

and q4/ tends to 1. Thus we have the affine transformation 

t' 

g' 

where 

0 

J jk 

0 0 

aO 
a l 

az 
a3 

0 

aj = qj4' J jk = qjk, i,k = 0,1,2,3. 

(8.4 ) 

(8.5) 

The 4 X 4 matrix J with elements J jk belongs to 
SO(3,1). The contracted group is therefore the Poincare 
group P, which as a subgroup of SO(4,2) acts on 
M = SO(4,2)/SO(4,l), and can therefore be used to con­
struct an affine tangent bundle over M. Our construction is 
akin to what Drechsierzi has called "the contraction of the 
SOC 4,1) de Sitter bundle over space-time to the affine tan­
gent bundle over space-time." Under the contraction, the 
variable g becomes an absolute quantity, a spectator variable, 
in the same way that time is absolute in Galilean relativity. 
Gravity is thus essentially decoupled from special relativistic 
systems. Be that as it may, the intrinsic five-dimensional na­
ture of the space of special relativity is clear from the above. 

Now let us relate the limit aZ 
-+ 00 to Eqs. (7.2) and 

(7.12), in which we note that it is the same a = kc that is 
involved in the contraction process. Therefore, in order to 
have k Z W Z vanish even under the limit aZ 

-+ 00 , we must have 
W Z I CZ tending to zero sufficiently fast. This is achieved in the 
special theory of relativity by setting W identically zero at 
the outset. Then the term k W does not arise at all. For hyper­
relativistic systems, however, which include all quantum 
mechanical systems, W need not be zero. 

IX. CONCLUSION 

We have derived the hyper-relativistic transformation 
laws for free particles on the SOC 4,1) de Sitter bundle over 
SO(4,2)/SO(4,1), and shown how the Heisenberg commu-
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tation rules of quantum mechanics naturally arise from a 
particular contraction of the structure group of the bundle. 
An intrinsic five-dimensional flat space emerges as the con­
figuration space of relativistic quantum mechanics. The first 
four coordinates are conventional space-time, but the fifth 
coordinate is identified with the classical Newtonian gravita­
tional potential field g. In the special theory of relativity, this 
variable is an absolute variable. One special feature of this 
theory is that the coordinate variables Xj are not represented 
by operators in a Hilbert space, but rather by a set of vector 
fields dual to them in the sense explained in the text. There is 
also a suggestion that there might indeed be a hierarchy of 
Heisenberg commutation rules in nature. 
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The results obtained earlier have been generalized to show that the path integral for the affine 
coherent state matrix element of a unitary evolution operator exp( - iTH) can be written 
as a well-defined Wiener integral, involving Wiener measure on the Lobachevsky half-plane, 
in the limit that the diffusion constant diverges. This approach works for a wide class of 
Hamiltonians, including, e.g., - d 2/dx2 + Vex) on L 2(R+), with V sufficiently singular 
atx = O. 

I. INTRODUCTION 

The observables that are the quantum kinematical oper­
ators are usually defined to have commutation relations 
analogous to the Poisson bracket structure of the associated 
classical kinematical variables. Examples are a single ca­
nonical pair and the Heisenberg commutation relation, or 
angular momentum variables and the Lie algebra of angular 
momentum operators. We shall say that p, q are classical 
affine variables if q > 0 (or p > 0), for example, with the oth­
er variable p (or q) being unrestricted. Since one variable is 
the generator of translations of the other, it follows that 
some conflict with the range restriction is possible, a situa­
tion that reflects itself in the quantum theory by the fact that 
the operators Q and P cannot both be observables (self-ad­
joint operators) satisfying the Heisenberg commutation re­
lation if Q>O (or P>O). An acceptable substitute for the 
nonobservable operator is the dilation operator 
D = !(QP + PQ), which can always be chosen self-adjoint 
along with the positive operator. The Lie-algebra relation 
[Q,D] = iQ with Q > 0 is just the quantum image of the Pois­
son-bracket relation {q,d} = q, q> 0, where d = qp. The 
generator D preserves the positivity of Q just as the classical 
counterpart d preserves the positivity of q. The indicated Lie 
algebra relation is that of the affine group, sometimes called 
the (ax + b)-group, which is the group of translations (b) 
and scale changes without reflection (a > 0) of the real line 
into itself, x - x' = ax + b. Thus we refer to Q (or P) and D 
as quantum affine kinematical variables, and in view of the 
simple relation between d, p, and q, we loosely refer to p, q 
with q > 0 (or p > 0) as classical affine kinematic variables as 
noted earlier. 

Focusing on the p > 0 case for the moment, we may ima­
gine a formal phase-space path integral quantization of such 
a system given by 

ff-J exp{i J [pq-H(p,q)] dt} If [dptdqrJ, (Ll) 

0) "Bevoegdverklaard Navorser" at the National Foundation for Scientific 
Research. Belgium. 

where all paths satisfy the condition p(t) > O. This expres­
sion is plagued by two problems. The first problem relates to 
what (1.1) could possibly represent since it cannot be the 
propagator expressed in the Q-representation for the simple 
reason that if [Q,P] = i and P> 0 then no Q-representation 
is possible. A satisfactory answer to the first problem was 
given earlier! in which ( 1.1) was formally interpreted as the 
propagator expressed in the affine coherent-state representa­
tion (which makes fundamental use of the operators P and D 
rather than P and Q; see Refs. 2, 3). The second problem 
with ( 1.1 ) pertains to the formal nature of the path integral. 
In Ref. 1 meaning was given to (1.1) as the limit of a fairly 
standard lattice-space regularization. This approach made 
little direct contact with paths defined for continuous time as 
in the classical theory, and besides, it was relatively heuris­
tic. On the other hand, in recent work4 pertaining to the 
usual canonical case (and also for spin kinematical vari­
abies), it was shown how the appropriate coherent-state rep­
resentation of the propagator can be defined as the limit of 
well-defined path integrals over pinned Brownian-motion 
measures as the diffusion constant diverges. The purpose of 
the present paper is to extend this alternative form of regu­
larization and its associated rigorous definition of a path­
integral representation to systems involving affine variables. 
To begin with, however, it is useful to give a brief description 
of the construction in Ref. 4 for the canonical case. 

For a given Hamiltonian H, we defined4 the path inte­
grals 

21Te v (,"-t')/2 J exp[ ~ J (pdq-qdp) 

- i J h(p,q)dt ] dp'W(p)dp'W(q) , (1.2) 

where dp'W (p) and dp'W (q) are Wiener measures associated 
to two independent Brownian processes (one in p, one in q) 
with diffusion constant v, and pinned at p',q' for t = t', at 
p" ,q" for t = t ". The function h in (1.2) is the antinormal 
ordered symbol2 of H. For finite v, (1.2) is a perfectly well­
defined path integral on phase space. It has been proved4 

that for a wide class of Hamiltonians, the limit for v- 00 of 
( 1.2) gives the coherent state matrix element 
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(p" ,q" lexp[ - iCt" - t ')H] ~J',q') . 

This procedure is not restricted to only the canonical 
kinematical variables. In Ref. 5 an outline is given of how the 
above construction can be extended to general semisimple 
Lie groups. One has then to use the corresponding general­
ized coherent states.6 One can define a metric on the group 
manifold associated to these coherent states,5 and use the 
corresponding Laplace-Beltrami operator to define a gener­
alized Wiener measure. Examples of interest outlined in Ref. 
3 are (i) the Weyl-Heisenberg group, (ii) the group SU(2), 
and (iii) the affine (ax + b)-group, corresponding to, re­
spectively, canonical, spin, and affine kinematic variables. 
The first two were extensively discussed in Ref. 4. Here we 
present a more detailed study of the affine variable case. In 
particular, we derive explicit conditions characterizing the 
class of Hamiltonians that can be treated by our methods, 
and we give several examples as well. 

This paper is organized as follows. In Sec. II we review 
the definition and some properties of the coherent states as­
sociated with the (ax + b)-group.2.3 We shall adopt nota­
tion related to that in Ref. 3, which is different from the 
notation in Refs. 1 and 2. We shall also indicate how to pass 
from one notation to the other. It is convenient to break the 
construction into two parts. In Sec. III we study the path 
integral for zero Hamiltonian. We introduce the Brownian 
process on the half plane, use it to construct the path inte­
gral, and show that in the limit of diverging diffusion con­
stant the path integral converges to the coherent state over­
lap function [as it should, since exp ( - itH) = 1 if H = 0] . 
In Sec. IV we discuss the path integral with a nonzero Ham­
iltonian, and we derive sufficient conditions on the Hamilto­
nian so that the limit for diverging diffusion constant leads to 
the appropriate coherent-state matrix element of the evolu­
tion operator. 

II. THE (ax+b)-GROUPAND THE AFFINE COHERENT 
STATES 

Let us review the definition of the (ax + b) -group and 
the associated coherent states, and give some of their proper­
ties. Most of this discussion is analogous to what happens for 
the Weyl-Heisenberg group and its associated coherent 
states, the more familiar canonical coherent states. Both the 
affine and the canonical coherent states are examples of the 
construction of coherent states associated with general Lie­
groups.6 

A. The (ax+b)-group 

The "(ax + b)-group" is the setM +: = lR~ XlR, where 
lR~ = (0,00 ), with the group law 

(a",b") (a',b') = (a"a',b" + a"b') . 

This group has two (faithful) inequivalent irreducible uni­
tary representations U + and U _. We shall consider their 
following realizations on L 2(lR+). For t/!EL 2(lR+), one de­
fines 

[U± (a,b)t,b] (x) =aI/2e±ibxt,b(ax). (2.1 ) 

We shall mainly use U +, except when specified otherwise. 
The subscript + will often be dropped. 
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Both representations U + and U _ are square integrable. 
This means7 that there exists an (unbounded) positive self­
adjoint operator Con L 2(lR+) such that 

"iIt,b I ,t,b2ED ( C 1/2), "iI¢I'¢2EL 2(lR+): 

f dj1(a,b) (¢I'U ± (a,b)t,bl)(U ± (a,b)t,b2'¢2) 

= (C 1/2t,b2'C 1/2t,bl) (¢h¢2) . (2.2) 

Here dj1(a,b) = (1I21T)a- 2 da db is the left-invariant mea­
sure on the (ax + b) -group. The operator C is given by 

(Ct,b) (x) = x-1t,b(x) . (2.3) 

In particular (2.2) implies that, for all t,bED( C 1/2), 11t,b11 = 1, 

f dj1(a,b)U± (a,b) It,b) (t,bIU± (a,b)* = c(t,b) 1 , (2.4) 

with 

c(t,b) = IC-1/2t,b12 = L" dx(llx)It,b(xW· (2.5) 

The closed spaces JIl" ± spanned by the sets 

{(U± (.,)t,b,¢); t,bED(C I/2 ), ¢EL2(lR+)} 

are mutually orthogonal subspaces of L 2(M+) 
: = L 2(M+;dj1). Together, JIl" + and JIl" _ span the whole 
space L 2 (M + ). This can easily be checked by explicit calcu­
lation. 

All this enables us to build orthonormal bases of 
L 2(M +), starting from orthonormal bases in L 2(lR+). Let 
{¢j: jEN}, {t,bj: jEN} be two orthonormal bases in L 2(lR+) 
such that t,bj ED ( C -1/2) for all j. Define elements f if of 
L 2 (M+) by 

(2.6) 

It is clear that for all i, j, fijEJll"E (€ = + or - ). On the 
other hand, both {f if; i,jEN} and {f;;; i,jEN} are ortho­
normal sets, as a consequence of (2.2). One easily checks 
that, for € = + or -, {fij; i,jEN} constitutes a basis for 
JIl"E' The set {fij; i,j3N, € = + or -} is therefore an 
orthonormal basis for L 2 (M + ). 

Let now B be a Hilbert-Schmidt operator on L 2(lR+) 
such that C -1/2B is trace class. Then 

B= IAjlt,b)(¢jl, 
j 

where {¢j; jEN}, {t,bj; jEN} are orthonormal bases in 
L 2(lR+), with t,bj ED(C-1/2) for all j, 2.jIAjI2< 00. Since 
C -1/2 B is trace class we can define 

[F(B)](a,b) = (l/vL)Tr[(U+(a,b) + U_(a,b»)C- 1/2B] 

= (l/vL) I Aj(¢j,U
E

(a,b)C-1/2t,b) . 
j,E 

(2.7) 

From the preceding paragraph it is clear that (2.7) can be 
considered as an expansion of F(B) with respect to an ortho­
normal base in L 2 (M + ). Since the sequence of coefficients is 
square summable, 2.j.E IAj 12 = 2 Tr(B *B), we immediately 
see that F(B)EL 2(M +), with 
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J d,u(a,b) 1 [F(B) ](a,b) 12 = J... L IAj 12 = Tr(B *B) . 
2 j.€ 

(2.8) 

The set of Hilbert-Schmidt operators B for which C - 1/2 B is 
trace class is dense in the space 72 of Hilbert-Schmidt opera­
tors. One can use this to extend the mapB-+F(B) to all of 72. 
This extension is a unitary map from 72 to L 2 (M + ). This is 
the (ax + b)-group analog of a well-known result for the 
Weyl-Heisenberg group. 8 

B. The affine coherent states 

A special role in our path integral results below will be 
played by extremal-weight vectors for the unitary represen­
tation under consideration (see Ref. 5). In our case these are 
the vectors I (normalized to 1) 

'I/Ip(x) =2pr(2f3)-1/2xP- 1I2e- x . (2.9a) 

In order for cp ==c('I/Ip) to be finite, one has to impose,8>!. 
One finds 

Cp = (,8 _ p-I . (2.9b) 

We shall use these minimal weight vectors '1/113 as "fidu­
cial vectors" 6 for the construction of the affine coherent 
states, 

la,b;l3) = U(a,b)'I/Ip. 

From (2.4) one now immediately has the affine coherent 
state resolution of the identity 

Cp I J d,u(a,b) la,b;l3) (a,b;l31 = 1 . (2.10) 

The "overlap function" of different coherent states 
(same value of,8) is given by 

(a" ,b ";I3la',b ';13) 

= [a" + a' + i(b" - b ') ] -213 

2~a"a' 

= [ 1 + cosh d(!",b ";a',b ') r 
X exp - 2f3i tan-I , ( btl - b') 

a" +a' 
(2.11 ) 

where d denotes the metric distance9 on the Lobachevsky 
half-plane M + 

d(a",b ";a',b') 

= cosh -I 1 + ....:.----=-......:...-=---......:.-[
(a" - a')2 + (b " - b ')2] . 

2a"a' 
(2.12) 

For every f3 >! one can define the following map on 
L 2 (lR+): 

(Up¢J )(a,b) = Cp- 1/2(a,b;l3I¢J) 

= Cp- 1I22P [r(2,8)] -1/2ap 

X 100 

dx xP- 1I2e- (a + ib)X¢J(X) . (2.13) 

It is clear from (2.10) that Up is an isometry from L 2 (lR + ) 
toL 2(M +). These maps Up are the analogs of the Bargmann 
transform for the Weyl-Heisenberg case.lO The image 
Yr'p == UpL 2(lR+) consists of exactly those elements f of 
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L 2 (M +) that can be written as 

f(a,b) = ap¢J(a + ib) , 

where ¢J(z) is an entire analytic function on the half-plane 
Rez>O. 

The Hilbert space Yr'p is a reproducing kernel Hilbert 
space,!1 with reproducing kernel cp-'(a",b ";I3la',b';I3). In 
other words, for I in Yr'P' 

I(a,b) =cp- I J d,u(a',b')(a,b;l3la',b';I3)f(a',b'). 

This means in particular that the orthogonal projection op­
erator Pp mappingL 2(M +) ontoYr'p is an integral operator 
with integral kernel 

Pp(a",b";a',b') =cp-'(a",b";I3la',b';I3). (2.14) 

C. Correspondence with the pq-notation 

We mentioned in the Introduction that our notation 
would not coincide with that in Ref. 1. To conclude this 
section we give the correspondence between our present no­
tation and the pq-notation in Ref. 1. 

For fixed,8, define p = ,8a-I, q = - b. We shall also 
rescale the measure; dji(p,q) is the image of cp- 'd,u(a,b), 
i.e., 

d - ( ) - , ,8 -I dp dq 1 - l/2f3 d d 
p p,q =cp ~= 21T P q. 

With this change of notation, (2.13) becomes, for instance, 

(Up'l/l)(p,q) = (2f3)p [r(2f3)] -1/2p-P 

X 100 

dkkpe-k(pr'-iq)'I/I(k). (2.15 ) 

This corresponds exactly with Eq. (24) in Ref. 1. 
Using this correspondence every result we shall obtain 

here can be translated into the pq-notation used in Ref. 1, 
and vice versa. At the end of Sec. IV D we shall state our 
main result inpq-notation as well as in the ab-notation which 
will be used throughout this paper. 

III. THE PATH INTEGRAL FOR ZERO HAMILTONIAN 

In the ab-notation, with the correspondence rules of 
Sec. II C, (1.1) becomes 

.AI-I J exp [ - i,8 J a-I db - J h(a,b) dt] 1} da~~bc , 

(3.1) 

where A > 0 throughout the integration domain. We shall 
give a sense to this expression by a regularization that leads 
to a Wiener measure, on the Lobachevsky half-plane, for 
diffusion constant v. In the end we take the limit V-+ 00. For 
related ideas (regularization by extra factors that formally 
disappear in the limit as a diffusion constant diverges), see 
Ref. 12. 

In this section we restrict ourselves to the case h = O. 
The general case h =1= 0 will be handled in the next section. 

Let us first define the Wiener measure on the Loba­
chevsky half-plane. The Laplace-Beltrami operator is given 
by 

(3.2) 
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(in the pq-notation, fl. = ap p2 ap + f3 2p-2 a ~). This is a 
symmetric operator in L 2(M +), essentially self-adjoint on 
CO' (M + ), the COO-functions on M + with compact support 
away from a = ° (this essential self-adjointness is most easi­
ly checked in the pq-notation). 

The heat kernel for this Laplace-Beltrami operator is 
given by9 

K t (a" ,b ";a' ,b ') = [exp(tfl.)] (a" ,b ";a',b ') 

e-tl4 (00 xe-x2/4t 
= JD ~, 

2fi1it 3/2 D ~cosh x - cosh 8 
(3.3 ) 

where 8 = d(a",b ";a'b') is the metric distance (2.12). We 
define the affine (pinned) Wiener measure with diffusion 
constant v, denoted dllv,ifa",b";a',b" as the measure on path 
space, pinned at a' ,b ' for t = 0, at a" ,b " for t = T, such that 

fd v,T K ("b" 'b') IlW;a",b";a',b' = vT a, ;a, . (3.4 ) 

Requiring (3,4) for all (a",b "), (a',b ')EM+, and all T>O 
defines dll"w unambiguously. We shall drop the super- and 
subscripts T, a", b " , a', and b ' in the sequel. 

We use this measure to regularize (3.1) in the following 
way. We define 

ge (a" ,b ";a',b ';T) 

= cpevTP f exp( - if3 f a-I db ) dll"w(a,b) . (3.5) 

The expression Sa - I db should be considered as a stochastic 
integral, to be calculated using the Stratonovich (midpoint 
rule) procedure. Formally (3.5) can be written as 

ge (a" ,b ";a',b ';T) 

=fff exp[ -if3fa-Ibdt- ~fa-2(a2+b2)dt] 

rr daj dbt 
X --2-' 

t at 

where the factors cp and eVTBhave been absorbed in the (infi­
nite) normalization constant ff. This formal expression 
shows how (3.5) can indeed be viewed as a regularization of 
(3.1) (for the case h = 0). In the final step of our regulariza­
tion procedure we take the limit for v-- 00; in this limit the 
regularizing factor in the above formal expression vanishes. 

It is our aim in this section to prove that 

lim ge(a",b";a',b';T) = (a",b";I3la',b';I3). (3.6) 
v_ 00 
This is exactly what the general expression (3.1) or (1.1) 
should lead to l in the case h = 0. 

We start by studying ge for finite v. 
Lemma 3.1: cp- I ge is the integral kernel of a semi­

group on L 2(M +): 

ge(a",b";a',b';T) =cp[exp( -vTA)](a",b";a',b'). 
(3.7) 

The operator A is given by 

A = -f3-a2[a; + (ab +if3/a)2] (3.8a) 

88 J. Math. Phys., Vol. 28, NO.1, January 1987 

In particular, A is a positive self-adjoint operator, with do­
main D( -fl.). 

Proof: It is clear that the ci 1 ge satisfy a semigroup 
property, i.e., 

f dll(a,b) ge (a" ,b ";a,b;t2) ge (a,b;a',b ';t l ) 

= cp ge (a" ,b ";a',b ';t l + t2) . 

On the other hand, we have 

ICi 1ge (a,b;a',b ';t) I <evtPKvt (a,b,a',b') . 

This already implies that ci 1 ge is the integral kernel of a 
semigroup of operators, i.e., Eq. (3.7), with 

A>-f3+!. (3.9) 

Here we have used that - fl.>! on the Lobachevsky half­
plane. Following the standard procedure, and using the mid­
point rule for the stochasticintegral Sa - 1 db, one obtains the 
following differential equation for ge: 
at ge (a,b;a',b ';t) 

= { - f3 - a2[ a; + (ab + if3 /a)2]}ge (a,b;a',b ';t) . 

This implies that the infinitesimal generator A is given by 
(3.8). We have 

A = - fl. - f3 + f3 2 - 2if3aab • 

Since, for all ifJED ( - fl.), and for all E > 0, 

Ilaab ¢11 2 = - (¢,a2a~¢)«¢,( -fl.)¢) 

<Ell - fl.¢11 2 + (1/4E) 11¢11 2 
, 

we see that A - ( - fl.) is ( - fl.) -bounded with infinitesi­
mally small bound. Hence A is self-adjoint, with domain 
D( - fl.). Finally it follows from (3.8b) that A is positive. 

Note: It follows from the proof that every core for - fl. 
is a core for A. In particular, A is essentially self-adjoint on 
CO' (M + ), the set of COO-functions on M + with compact 
support away from a = 0. 

We shall see below that we can do much better than 
Lemma 3.1. We shall see that A has an isolated eigenvalue at 
0. Ifwe denote by Po the projection onto the eigenspace of A 
for the eigenvalue 0, we then see that 

This will then lead to statement (3.6). 
To carry out this program, we have to determine the 

spectrum of A and the corresponding eigenspaces. We shall 
reduce this to a spectral problem on L 2 (lR+) rather than on 
L 2(M+). 

We first introduce the infinitesimal generators of 
U ± (a,b). Both V ± (b) = U ± (l,b) and W(a) = U(e"',O) 
are strongly continuous unitary one-parameter groups. 
Their generators are, respectively, Q and D, i.e., 

V ± (b) = e±ibQ , W(a) = ei",D, 

where Q and D are defined by 

(Q¢)(x) =x¢(x) , 

(D¢)(x) = - ix¢'(x) - (i/2)¢(x) . 

One easily checks that these are indeed self-adjoint operators 
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onL 2(R +). The set CO' (R+) of all C "'-functions with com­
pact support away from 0 is a core for both D and Q. Then 
U ± (a,b) can be written in terms of Q, D as follows: 

U ± (a,b) = e ± ibQei(logalD 

= ei(logalDe ± (ib/alQ • (3.10) 

Note that C = Q - I. With the help of all this we prove the 
following lemma. 

Lemma 3.2: On L 2(R+) we define the operators 
D 2 + Q 2 += 2{3Q + (fJ - !)2, with domain CO' (R+). These 
are symmetric operators; we denote their closures by H ± . 

Then 

( 1) H ± are self-adjoint, 

(2) V"p,tjJeCO' (R+), (U± (',)C- 1/2"p,tjJ)eD(A), 

and 

A (U± (a,b)C- 1/2"p,tjJ) = (U± (a,b)C- 1/2H± "p,tjJ). 

(3.11 ) 

Proof To prove the first statement it is convenient to 
I 

We have 

make a unitary transformation fromL 2(R+) toL 2(R). We 
define, for"peL 2(R+), 

(U"p)(s) = e'/2"p(e') . (3.12) 

Accordingly UC 0' (R +) = CO' (R), the set of C '" -functions 
with compact support. On the other hand, 

U [D 2 + Q 2 + 2fJQ + (fJ _ !) 2] U - I 

= _ ~ + e2s + 2{3e' + (fJ _ .!.)2 . 
ds2 2 

(3.13) 

Since the potential V ± (s) = 2es + 2{3e' + (fJ - !)2 is the 
sum of a bounded potential and a positive smooth potential, 
the operators (3.13) are essentially self-adjoint on Co(R) 
by Theorem X.29 in Ref. 13. This proves the first statement. 

It is easy to check that for "p,tjJeC a (R+) the functions 
fJ.",(a,b) = (U± (a,b)C- 1/2!/1,tjJ) are well-defined C"'­
functions in a,b. Their support is contained in a set of the 
form [C I ,C2 ] XR, with CI > 0; they decrease more rapidly in b 
than any inverse polynomial, and this uniformly in a. This is 
sufficient to ensure that f J.",eD( - Il) = D(A), and also to 
justify the calculations below. 

(AfJ.",)(a,b) =a2« -iaa +ab -ifJ/a)( -iaa -ab +ifJ/a)U± (a,b)QI/2!/1"tjJ) 

=a2« -iaa +ab -ifJ/a)U± (a,b)(lIa)(D +iQ+ifJ)QII2!/1,tjJ) 

=a2(U± (a,b)[a- 2(D±iQ-ifJ)(D +iQ+ifJ) +ia-2(D +iQ+ifJ)]QI/2"p,tjJ) 

= (U± (a,b)(D±iQ-ifJ+i)(D +iQ+ifJ)QI/2"p,tjJ) 

= (U ± (a,b)Q 1/2(D ± iQ - ifJ + i/2)(D + iQ + ifJ - i/2)!/I,tjJ) 

= (U± (a,b)QI/2[D 2 + Q 2+2fJQ+ (fJ-!)2]!/I,tjJ), 

where we have repeatedly used that [D,Qa] = - iaQa. 
Hence (3.11) follows. As a consequence of (3.11) the sub­
spaces K ± are invariant subspaces for A. Moreover the 
spectrum of A Iy ± is exactly the spectrum of H ± . 0 

Lemma 3.3: Let A ± be the restrictions of A to K ± ' 

with domains D( -Il) nK ± . Then £T(A ± ) = £T(H ± ). 

Proof Let P if be the family of spectral projection oper­
ators associated with H ± . 

Let "pj be an orthonormal base in L 2 (R + ), with 
!/IjeD(H 2±). This ensures that !/IjeD(C- 1/2 ) and H±!/Ij 
eD(C -112). Define now Pif on K ± by 

Pif (? Cjk (U ± (',)C -1/2"pj,,,pk») 
j,k 

(3.14 ) 

Using (2.2) one finds IPifl<1 and (Pif)* = Pd'. On the 
other hand clearly (p,;t )2 = P if, Pi = Iy , and p,;t P if ",,, ± ""I 2 

= P 5. no,' This implies that the family {p if ; n. Borel set in 
R} is the set of spectral projection operators for some self­
adjoint operator on K ± . It follows from (3.11) that this 
self-adjoint operator is exactly A ± . Since it is clear from 
(3.14) thatthe two projection-valued measuresP ± and P ± 

have the same support, £T(A ± ) = £T(H ± ) follows immedi­
ately. 0 
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Remark: Suppose that A. is an isolated eigenvalue of H + 
(we shall see below thatH _ has only continuous spectrum) 
with eigenvector tjJ}. (we assume the multiplicity of A. to be 
1). Then A. is an isolated eigenvalue of A +. It follows from 
the proof of Lemma 3.3 that the associated eigenspace E}. of 
A + is given by 

E}. = {(U(-,)C -1I2tjJ;..tjJ); tjJeL 2(R+)}, (3.15) 

E}. is an infinite-dimensional closed subspace of K +' and 
every eigenvalue of A + is infinitely degenerate. This is com­
pletely analogous to what happens in the Weyl-Heisenberg 
case.4 In order to find the spectrum of A and the associated 
eigenspaces we have thus only to determine the spectrum 
and eigenspaces for H ± . This turns out to be very easy, 
because H ± are related to the exactly solvable Morse Schro­
dinger operator. 14 

Lemma 3.4: (1) H _ has only the continuous spectrum 

£T(H_) = [(fJ-D 2,oo), (3.16) 

and (2) H + has the same continuous spectrum, and If! + 11 
eigenvalues lying below it: 

£T(H+) = {(fJ - p2 - (fJ - n - p2; n = 0,1, ... ,~ - iJ) 

U[(fJ-!)2,oo). (3.17) 

Note: Here we have used the notation Lx J for the largest 
integer strictly smaller than x: 
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Ixl = max{nEN; n <x}. 

Proof: Again it will be convenient to consider 
UH ± U - I rather than H ± itself, with U as defined by 
(3.12). We have [see (3.13)] 

d 2 

UH ± U -I = + V () - ds'2 ± S , 

with V ± (s) = e2s += 2/3e' + (/3 _ !)2 . 

Since /3 > 0, V _ (s) is a continuous, monotonously in­
creasing function of s, tending to (/3 - p2 for s- - 00 

and to 00 for s - 00 . It is clear therefore that 
u(H_) C [(/3 - p2,(0). On the other hand wave functions 
with support in [ - 2L, - L ], with L very large, will "see" 
only the constant part (/3 - p2 of the potential V _. This 
means that the spectrum of H _ will at least contain 

Hence (3.16). 
The operator - d 2/ ds'2 + v + (s) is really the Morse op­

erator. 14 Putting several constants equal to 1, one finds in 
Ref. 14 that the operator 

-!!..:... + D(e- 2y - e- Y ) on L 2(R) 
dy2 

has discrete spectrum 

{- [v'D - (n + 1»)2; nEN, n <V'D -!}. 

(3.18 ) 

Its continuous spectrum is [0, 00 ). Putting s = - y + log /3, 
D = /3 2, one finds that - d 2/ds2 + V + (s) - (/3 - !)2 re­
duces to (3.18). Hence 

u(H+) =0-( - :s: + V+(S») 

= {(/3 - !)2 - (/3 -! - n)2; nEN, n </3 - n 
u [(/3 - !)2,00) . 0 

Remark: Reference 14 also gives explicit formulas for 
the eigenvectors of - d 2/dy2 + D(e- 2y - e-Y ). We shall 
only need the ground state. This is given by 

rPo( y) = [r(2v'D - 1)] -1/2(2v'De- Y ),[D -1I2e -,[De-
Y

• 

Substituting y = - s - log /3, and making the inverse 
transformation U - I, we find the ground state rPo of H +: 

rPo(x) = [r(2/3 - 1)] - 1/22.8 - 1I2X.8 - lex. (3.19) 

If we bring together the results of Lemmas 3.2,3.3, and 3.4 
we see indeed that A ;;..0 and that 0 is an isolated eigenvalue of 
A. The associated eigenspace Eo is given by [see (3.15)] 

Eo={<U(·,)C- 1/2rPo, rP); rPEL2(R+)}. 

Here rPo is the ground state of H +, as defined by (3.19) . Note 
that 

(C -1/2rPO )(X) = [r(2/3 - 1)] - 1/22.8- 1I2X.8 - 1I2e - x 

= ~/3 - ! [r(2/3)] -1/22.8x.8 - 1I2e - x 

= c;; 1I2tP.8 (x) , 

with cp , tPp as defined by (2.9). 
Hence, with the notations of Sec. II B, 
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(3.20) 

Eo ={<a,b;[3lrP); rPEL2(R+)} 

= U.8L 2(R+) =~.8 . 

This implies that the spectral projection operator P 0+ of A 
associated with the eigenvalue 0 is exactly P.8' Since A;;..O, 
and since the eigenvalue 0 of A is isolated, we have therefore 

s-lim exp( - vTA) = P.8 (T>O). 
v-oo 

This implies at least in a distributional sense, convergence of 
the corresponding integral kernels. In other words, and tak­
ing into account (2.14) and (3.7), 

9~(a",b";a',b';T) - <a",b";[3la',b';[3) (T>O). 

This is exactly what we set out to prove [see (3.6)]. 
We can do better, however, than only distributional 

convergence. In order to prove pointwise convergence of the 
9~, we first derive a formula relating the integral kernel of 
exp( - vAT) with H ± . This is done in the following two 
lemmas. 

Lemma 3.5: For t>O, the operators C- 1/2 

X exp [ - tH ± ] C -112 are trace class. 
Lemma 3.6: 

[exp( - At) ](a" ,b ";a',b ') 

L Tr[ U€ (a",b") -IU€ (a',b ')C -1/2 
E= +.-

(3.21 ) 

Proof of Lemma 3.6: We shall first derive (3.21), al­
ready assuming that C - 112 exp [ - tH ± ] C - 112 are trace 
class. 

Let {tPj; jEN} be an orthonormal base of L 2 (R +) such 
that tPjED(C + 1/2) nD( C -1/2) for all j. Define, as in (2.6), 

f if (a,b) = <U ± (a,b)C -1/2tPiOtPj ) . 

The f if constitute an orthonormal base of L 2 (M + ). Hence, 
at least in a distributional sense, 

[exp( - At) ](a" ,b ";a',b ') 

= L Lfij(a",b")(fij, e-A'fl/) fl/(a',b'). 
i.j.€ k,l.€' 

(3.22) 
It is clear from the proof of Lemma 3.3 that 

(e-A'fl/)(a,b) = (U€,(a,b)C- 1/2e- HE"tPkotP/)' (3.23) 

Note that C - 1/2e - HE"tPk is well defined. since tPk ED( C 1/2). 
hence tPk=C- 1/2rPk for some rPko and since 
C- 1

/2 exp ( -H€,t)C- 1/2 is a bounded (even trace-class) 
operator. From (3.23). (2.2). and the orthogonality of ~ + 

and ~ _ we obtain 

(f € -A'f€') _ '" '" ( -H.'.I, .1,) ij.e kl - u€,€,ujI e 'f'k.'f'i' 

Substituting this into (3.22) leads to 

[exp( -At)](a".b";a'.b') 

= L (U€(a",b")C- 1/2 tPi •tP) 
E,i.j,k 

X (tPj.U€ (a'.b')C -1/2tPk ) (e - H"tPk .tP;) 

= L Tr[ U€ (a",b") -IU€ (a',b ')C - 1/2e -H"C -1/2] . 
€ 
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Since the final result of this calculation is clearly a con­
tinuous function in (a",b "), (a',b '), we may conclude 
(3.21) pointwise, even though a priori (3.22) was true only 
in a distributional sense. 0 

We now tum to the proof of Lemma 3.5. In the 
course of the proof we shall not only prove that 
C -1/2 exp( - tH ± )C -1/2 are trace class, but also calcu­
late an estimate of the trace. The method used in this estima­
tion will be useful again in the next section, as well as the 
estimate itself. 

Proof of Lemma 3.5: Again it is convenient to use the 
unitary transfonn (3.12). We have 

UC- 1I2U- 1 = (21T)- 1I2e'12, 

UH ± U -I = _ d: + V ± (s) , 
ds 

with V ± (s) = e2s + 2/3e' + (/3 _ p2. 
We thus have to study 

e'12 exp [ - T( - !:J. + V ± )] e'12 

on L 2(R). By the Feynman-Kac fonnula 
exp [ - t( - !:J. + V ± )] and therefore also 
e'12 [ - T( - !:J. + V ± )] e'12 has a positive integral kernel. 
It is therefore trace class if and only if this integrable kernel is 
integrable, i.e., if 

J~ 00 ds e'12{exp[ - T( -!:J. + V ± ) ]}(S,s)e'/2 < 00 • 

(3.24) 

By the Feynman-Kac fonnula we have (see, e.g., Refs. 13 
and 15) 

{exp[ - T( -!:J. + V ± ) ]}(s,s) 

= J dpW,T;S,s exp { - iT dt V ± [w(t)]} . (3.25) 

Here dpW.T;S"s, is the familiar pinned Wiener measure. We 
have denoted it by p in order to distinguish it from our Wie­
ner measure df.L"w on the Lobachevsky half-plane. The mea­
sure dpW,T;S"s, is pinned at Sl for t = 0, at S2 for t = T. It is a 
Gaussian measure with normalized connected con variance 
(t1<t2 ) 

(W(tI)W(t2»C= (W(tI)W(t2» - (W(tI»(W(t2» 

= 2t I (1 - t21T) . 

Substituting (3.25) into (3.24) gives 

J~ 00 ds eS J dpW,T;s,s exp { - iT dt V ± [w(t)]} 

<J~ 00 ds e' J dpW,T;S,s T -I iT dt 

X exp{ - TV ± [w(t)]} (by Jensen's inequality) 

= J~oo dse
s J dpW,T;O,O T-

I 
iT dt 

X exp{ - TV ± [w(t) + s]} 

= J dpW,T;O,O T- I iT dt J:oo dse' 
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X exp{ - TV ± [w(t) + s]} 

= J dp . T -I iT dt Joo ds e' - ",(I) W,T;O,O 
o - 00 

X exp[ - TV ± (s)] 

[translates s -s + w (t) for every t]. (3.26) 

(This technique, using first Jensen's inequality and then, 
after pennuting the integrals over t and s, shifting s by w (t), 
was used by Lieb l6 to derive bounds on the number of bound 
states for -!:J. + V; see also the discussion of the Lieb in­
equality in Ref. 15.) 

One easily calculates 

J
dP e-",(I) =_I_ et(T-t)IT W,T;O,O , 

.j1iT 
(3,27) 

and 

T- I iT dtet(T-t)IT = il dreTr(l-r)<eTI4. (3.28 ) 

On the other hand, 

J: 00 ds e' exp[ - TV ± (s)] 

= i oo 
dx exp{ - T [X2 + 2/3x + 0 -+ y]} 

< ~ exp[ (/3 - ! )T ] . (3.29) 

Putting together (3.26), (3.27), (3.28), and (3.29) shows 
that condition (3.24) is fulfilled. This means that 
C- 1

/2 exp ( -H± T)C- 1/2 is trace class, and 

Tr[C- I/2 exp ( -H± T)C- 1/2] <(1IT)eliT . (3.30) 
o 

With the help of Lemmas 3,5 and 3.6, and of estimate (3.30), 
we can prove (3.6) pointwise. 

Proposition 3.7: Let 9~ be defined by (3.5). Then, for 
all T> 0, and for all (a" ,b "), (a',b ')EM +, 

lim ge (a",b ";a',b ';T) = (a",b ";{3la',b';{3) . 

Proof By the definition of the affine coherent states in 
Sec. II B, and by (3.20), we have 

(a" ,b "; /3la',b'; /3) 
= (tPP IU+ (a",b ")-1 U+(a',b')tPp) 

= cp (C -1/2</>01U + (a" ,b ") -I U + (a',b ')C -1/2</>0) 

= cp Tr[ U + (a",b") -I U + (a',b ')C -1/2 PoC -1/2] , 

(3.31) 

where Po = 1</>0) (</>01 is the zero-eigenvalue spectral projec­
tion operator of H +. 

Comparing (3.31) with Lemma 3.6, we find 

ICp-
1 [9~(a",b";a',b';T) - (a",b";{3la',b';{3)]1 

< ITr[ U _ (a",b ") -IU _ (a',b ')C -1/2e - vH_'C -1/2] I 

+ ITr[U+(a",b ,,)-IU+(a',b') 

XC- 1/2(e- vH
+

T -Po)C- 1/2 ]1 
<ITr[ C -1/2e - vHJC -1/2] I 

+ ITr[C- 1/2(e- vH
+

T -PO)C- 1/2]1· (3.32) 
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The estimate (3.30) is not sufficient to conclude that this 
converges to 0 for V--+ 00. We can improve this estimate in 
the following way. For all AE[0,1], 

e - H_'.;;;t!l-A' lie - H_(I -A)' II 
.;;;e- H_A'e-(I-A)({3-I/2)" . 

Hence, for all AE [ 0, 1 ] , 

Tr[ C -1/2e - H_'C -1/2] 

';;;e - (\ -A)({3 - 112)', Tr[ C -1/2e - AH_'C -1/2] 

/' _ ({3-112)', exp{[ ({3 - 1/2)2 + {3 ]At} 
~e . 

Ut 
If t> [{3 2 + 1/4] - I, we can choose A = [t ({3 2 + 1/4)] - I 
.;;; 1, and we find 

Tr[ C -1/2e - H_'C -1/2].;;; ({32 + Del - ({3- 112)" . 

If t.;;; [{3 2 + l] - I, we take A = 1, and we find 

Tr[C -1/2e -H_,C -1/2] ';;;(elt) e- ({3-112)". 

(3.33 ) 

(3.34 ) 

Combining (3.33) and (3.34) we find that there exists a 
constant ¢ such that, for all t> 0, 

Tr[C -1/2e -H_,C -1/2] .;;;¢(l + t -I)e- ({3-112)". 

(3.35) 

The same can be done for e - H +' - Po. There, the basic in­
equality is 

e- H+' _ Po';;; (e- H+A' - PoHle- H+(\ -A)' - Poll 
.;;;e-H+A'·exp[ - (l-A)B(/3)t] , 

with 

{

({3 - p2, if {3 < ~ , 
B({3) = 2({3 - 1), if {3> ~. (3.36) 

This distinction is due to the fact that H + has more than one 
bound state if {3 > ~. In this case 2 ({3 - 1) is the energy dif­
ference between the ground state and the first excited state. 
The estimate for H +, corresponding to the inequality (3.35) 
for H _, is then 

( 3.37) 

Substituting the estimates (3.37) and (3.35) into (3.32) 
leads to 

1ge(a",b";a',b';T) - (a",b";{3la',b';{3)1 

.;;;¢[1- (vT)-I]exp[ -B({3)vT] , (3.38) 

where ¢ denotes a constant [not the same as in (3.37) or 
(3.35)] which depends on {3, but not on v or T. It is clear 
that (3.38) --+0 for V--+ 00. This concludes our proof. 

For zero Hamiltonian, we have thus achieved our aim. 
We have given a sense to the formal expression (3.1) by 
regularizing it by means of a Wiener measure with diffusion 
constant v, and we have proved that we obtain the expected 
result for v --+ 00 • 
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IV. THE PATH INTEGRAL FOR NONZERO 
HAMILTONIAN 

For nonzero Hamiltonians our strategy will essentially 
be the same as for the zero-Hamiltonian case. We regularize 
(3.1) by means of a Wiener measure with diffusion constant 
v, i.e., we define 

9~ (a" ,b ";a',b ';T) = c{3evT{3 J exp [ - i{3 J a-I db 

- i f h(a,b)dt ] dp,"w(a,b). (4.1) 

Again the stochastic integral Sa-I db should be understood 
in the Stratonovich sense. We shall show that in the limit for 
v tending to 00, 9 ~ tends to the affine coherent state matrix 
element (a" ,b ";{3lexp( - iTH) la',b ';{3), where 

H=ci l f dp,(a,b)la,b;{3)h(a,b)(a,b;{3l· (4.2) 

Our proof of this statement will run along the same lines 
as for the Weyl-Heisenberg case, in Ref. 2. We shall there­
fore not repeat the whole argument. We shall prove some 
basic estimates and show how, given these estimates, the 
proofs in Ref. 4 carry over to the affine path integrals studied 
here. 

The proof, in Ref. 4 of the convergence, for V--+ 00, of the 
v-dependent path integral 9 ~ proceeded in essentially three 
steps. First it was shown that 9 ~ was the integral kernel of a 
contraction semigroup. Then strong convergence, as V--+ 00, 

of these contraction operators was proved; this led to conver­
gence of the 9~ in a distributional sense. Finally, pointwise 
convergence of the 9~ was proved. For these three steps, 
different conditions of a technical nature were imposed on 
the function h. 

We shall distinguish these same three steps here. We 
start however with a subsection listing different conditions 
on h and estimates following from these conditions. These 
estimates will be needed in the following three subsections, 
outlining the proof of our main result. 

A. Conditions on the function h and various estimates 

The first estimate will ensure that 9 ~ is a well-defined 
expression, i.e., that 

exp { - i iT dt h [a(t),b(t)] } 

is integrable with respect to dp, "w. For this it is sufficient that 

J dp,"w iT dt Ih [a(t),b(t)] 1< 00 . (4.3a) 

This can be rewritten as 

iT dt f dp,(a,b)KT_, (a",b ";a,b) 

X Ih(a,b)IK,(a,b;a',b ') < 00, 

with K, as defined by (3.3). 

(4.3b) 

The following lemma gives a sufficient condition on h 
for (4.3) to hold. 

Lemma 4.1: Define 

Daubechies, Klauder, and Paul 92 



                                                                                                                                    

_ [1+a
2
+b

2
] D(a,b): = d(a,b;l,O) = cosh I 2a (4.4) 

[see (2.12)]. If, for all a> 0, 

ka (h) = I djL(a,b) Ih(a,b) 12 exp[ - aD(a,b)2] < 00 , 

(4.5) 

then, for all (a',b '), (a" ,b ")EM +, and all T> 0, 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a,b;a'b') 

<;¢ [k(l6n-' (h)] 1/2 

X exp{1I16T [D(a',b ')2 + D(a" ,b ,,)2]} . (4.6) 

Note: We shall, throughout this section, denote all con­
stants by ¢ without further identification. A constant ¢ may 
depend on {3. Occasionally as in (4.6) the constant ¢ may 
also depend on T. In all the cases where the T dependence is 
important, however, we shall explicitly keep track of it. 

Proof' By (3.3) we have 

iT dtKT_,(a",b";a,b)K,(a,b;a',b') 

roo -X'IBT 
<;¢ J~ dx --;:::::=:;::x=e==:::=;;-;-

~' ~cosh x - cosh 8' 
roo - JlIBT 

X J~ dy ye I(x,y) , 
~" ~coshy - cosh 8" 

where 8' = d(a,b;a',b '), 8" = d(a,b;a",b "), and with 
I(x,y) given by 

I(x,y) = iT dt[t(T_t)]-3/2 e -X'IBt e - JlIB(T-,) 

[ 
T] -3/2 {T12 

<; 2 e- JlIBT Jo dt t -3/2 e-x'IB, 

[ 
T] -3/2 (T12 + 2 e-x'IBT Jo dt t -3/2 e- JlIB' 

<;¢T -3/2(X- 1 + y-I) i
OO 

ds S-3/2 e - IIBs 

<;¢T-3/2(X- 1 + y-I) . 

On the other hand 

lOO d e- ax
' 

o x ~coshx _ cosh 8 
1 roo e-a(u+O)' 

<; Jo du-------
~sinh 8 0 .JU 

-aO' 
<;¢a- I/4 _e __ 

~sinh 8 

loo d xe- ax
' 

o x ~coshx _ cosh 8 
roo (u + 8)e- a (u+O)' 

= 1 du~~=;~~===;;=~~~~== 
o ~cosh 8(cosh u - 1) + sinh 8 sinh u 
- ao' i oo - ao'8 

<; e du u + e ¢a-I/4 

~cosh 8 0 ~cosh u - 1 ~sinh 8 
<; (1 + a- I/4 8 1/2)e - ao' <;¢(1 + a- I/2)e - a~'12 . 
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Hence 

iT dt K T_, (a",b ";a,b)Kt (a,b;a',b') 

<;¢T-5/4(1 + T- I/2) [ 1 + 1 ] 
~sinh 8' ~sinh 8" 

_ (0" + 0-')/16T Xe . (4.7) 

This implies 

iT dt I djL(a,b)KT_t(a",b";a,b)lh(a,b)IK,(a,b;a',b') 

<;¢T-5/4(1 + T- I/2) 

X ([I djL(a,b) Ih(a,bWe - d(a,b;a',b')'IBT f/2 

X [IdjL(a,b) e-d(a,b;a-,b-)'IBT ]1I2} 
sinh [d(a,b;a",b ")] 

+ idem with roles of a' ,b ' and a" ,b " reversed. 

Since 

D(a,b) <;d(a,b;a'b ') + D(a',b') 

hence 

_ d(a,b;a',b ')2;;;. _ ¥J(a,b)2 + D(a',b ')2, 

the first factor is finite by (4.5). We only need to prove still 
that, for all a > 0, 

I

djL(a,b) e-ad(a,b;a',b')' < 00 , 

sinh [d(a,b;a',b ')] 

in order to conclude (4.6). Since both the measure djL(a,b) 
and the metric distance d are (left) invariant, it suffices to 
prove, for all a > 0, 

I

e - aD(a,b)' 
djL(a,b) < 00 • 

sinhD(a,b) 
(4.8) 

A careful analysis of the singularities of the integrand in 
(4.8), using the definition (4.4) of D(a,b), shows that this 
integral is indeed finite. 

Remark: We shall also need the following similar esti­
mate. From (4.7) we obtain 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a.b;a',b') 

<;¢T-5/40 + T- I/2) (I djL(a,b) Ih(a,b) 12 

X exp{ l~T [d(a,b;a',b ')2 + d(a,b;a" ,b ")2] }) 112 

X {I djL(a,b) [sinhD(a,b)]-1 

[ 
1 ]}1I2 X exp - 16TD(a,b)2 . 

(4.9) 

Using the triangle inequality for the metric d one finds that 

d(a,b;a',b ')2 + d(a,b;a" ,b ")2 

;;;.! D(a,b)2 +! D(a',b ')2 _ D(a",b,,)2. 

Inserting this into (4.9) we find 
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iT dt J dfL(a,b)KT_t(a",b ";a,b)lh(a,b)IKt(a,b;a',b') 

<>:;¢ exp[ (1/8T)D(a" ,b ")2 
- (1/40T)D(a',b')2] [k(80n-' (h) r /2 . (4.10) 

We shall impose conditions on the function h other than 
only (4.3). To formulate them, we first need the following 
definitions. 

For (a',b')EM +, and t > 0, we define the following func­
tions onM+: 

¢a',b';t(a,b) = [exp( -tA)](a,b;a',b') , 

¢a'.b';oo (a,b) = cp-l(a,b;[J la',b ';[J) 

= Pp (a,b;a',b ') . 

It is clear that 

¢a',b';t(a,b) = ¢a,b;t(a',b ') , 

¢a',b';oo (a,b) =¢a,b;oo (a',b'). 

( 4.11) 

( 4.12) 

Some of the calculations in Sec. III can be viewed as esti­
mates on the L 2_ and L 00 -norms of these vectors and their 
difference. We have 

II¢a',b';oo II = Cp-
1/2 [by (2.10)], 

II¢a',b';t - ¢a',b';oo 112 

= J dfL(a,b) I [exp( - tA) - Pp] (a,b;a',b 'W 

= [exp( -2tA) -Pp] (a',b';a',b') 

= Tr{C-1/2[(e-2tH+ -Po) +e-2tH_]C-1/2} 

(4.13 ) 

[by Lemma 3.6 and (3.31)] 

<>:;¢(1_t- l )e- 2B(P)t [by (3.35), (3.37)], 

where 

R(P) = {(P - 1/2)2, if p<>:;~, 
2 (P - 1), if P> ~ . 

Hence 

lI¢a',b';t - ¢a',b';oo 11<>:;¢(1 - t -1/2)e- B(P)t, 

II¢a',b';tll<>:;cp-
1I2 + ¢(1 + t -1/2)e- B

(fJ)t. 

(4.14 ) 

(4.15 ) 

( 4.16) 

On the other hand, the estimate (3.38) can be rewritten as 

IW',b';t - ¢a',b';oo 1100 = sup I (¢a',b';t - ¢a',b ';00 )(a,b) I 
a.beM+ 

<>:;¢(1 + t -I)exp[ - R(P)t]. 

( 4.17) 

In the following three sections we shall consider the 
multiplication operator h on L 2(M +) defined by 

(hi )(a,b) = h (a,b) I(a,b) . 

We shall restrict ourselves to real functions h. Then the mul­
tiplication operator is self-adjoint, with domain 

In the remainder of this subsection we shall determine 
sufficient conditions on h ensuring that ¢a',b';oo and ¢a',b';t 
are elements of D(h), i.e., 
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J dfL(a,b)lh(a,b)1
2

1¢a',b';00 (a,b)1
2< 00 , 

J dfL(a,b)lh(a,b)1
2
1¢a',b';t(a,b)1

2< 00. 

(4.18 ) 

( 4.19) 

We shall also estimate IIh(¢a',b';t - ¢a',b';oo ) II. We start with 
( 4.18), the easiest one. 

Lemma 4.2: If 

J
dfL(a,b)lh(a,b)1 2 [ ~ 2]2

P
<00, (4.20) 

1 +a +b 

then (4.18) is satisfied, and 

[ 
1 + a'2 + b ,2 ]P 

IIh¢.',b,JI<>:;¢ 20' . (4.21) 

Proof: By (2.11), we find 

Ilh¢.',b,JI 2 = J dfL(a,b) Ih(a,b Wcp- 21 (a,b;[J la',b ';[J W 

=Cp-2 J dfL(a,b)lh(a,b)1 2 

X [1 + cosh ~(a,b;a',b ')] - 2P 

<>:;¢JdfL (a,b)lh(a,b)1 2 [ 1 +coshD(a,b) ]-2fJ 
1 + cosh D(a',b ') 

[use D(a,b) <>:;d(a,b;a',b ') + D(a',b ')] 

<>:;¢ ( 1 + a::- b ,2 Yp J dfL(a,b) Ih(a,b) 12 

[ 
20 ]2P 

X <00. 
1 + a2 + b 2 

o 

The other two estimates involve some additional calculation. 
We start by estimating weighted L P-norms of ¢a'.b';t. 

Lemma 4.3: For A> 1, fL > 0, one has 

1).,1' (t) = f dfL(a,b) I [exp( -tA)](a,b;I,O)I). 

X [ 1 + a:a + b 2 r 
(4.22) 

with 

E(A fL) = A (p _~) + max [(1 - ,1,)2 + (fL + 1/2)2 
, 4 4 A-I' 

M0+ 1 ~A)+ 4(A~ 1)]' 

where, for all aER, M(a) = max(a,a2
). 

Proof: We first estimate I [exp ( - tA) ] (a,b; 1,0) I, using 
the same technique as in the proof of Lemma 3.5. By Lemma 
3.6 

[exp( - tA) ](a,b;I,O) 

= [exp( - tA) ] (1,O;a,b) 

= LTr[ UE(a,b)C-1/2e-H.rC-1/2] . 
E 

Using again the unitary transform (3.12) we can rewrite this 
as (using the Feynman-Kac formula) 
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[exp( - TA) J( 1,0;0,b) where 

= r f'" ds ei€be' _1_ e' + (112 Jln a 

" - 00 21T 
00 = iT dt elw(ll > 01 = piT dt eW(t) , 

X exp[ - T( - :s: + V€ )](S+ Ina,s) 
02=p

2T, 

Hence 

= ¢ ~ J"" ds eiEbe
' eS + (1I2J1na J dfl . k r W, T;O,ln a 

E - 00 

[exp( - TA)}( 1,0;0,b) 

= ¢ ra e(/3 -1/41Tf dr> . 0 - 112 eiba,/<IQ yu rW,T;O,Jna 0 
x exp { - iT dt v. [s + w(t)] } 

= ~ i"" dx eiEbx..[a, f dpW.T;O,lna 

xe-bZ/4aoe-az+a1lao. (4.24) 

X exp{ - iT dt VE[w(t) +lnX]} 

= ¢ f: 00 dx e
ib

:< Fa f dpW,T;O,lna 

X exp{ - iT dt vE(X) [wet) + Inlx! J } , 

where €(x) = xllxl for x=r60. Since 

VE(X) [w(t) + InJxl J 

(4.23) 

From the Cauchy-Schwarz inequality 

af =,82Tz[iT ~ ew(t) r <JJ2T2 iT d; e2w
(t) , 

hence - 02 + oi /00 <0. Hence 

I (exp(-TA)] (o,b; 1,0) I 

<Ii 'iieCP - 1I4)TJdr> . [0 (W»)-1/2 )lU r W,T;O,ln a 0 

xexp[- b
2 

]. 
4ao(w) 

with 

ao(w) = iT dte2OJ
(t). 

= xV"'(t) _ 2,8£(x) Ixjew(t) + (,8 _ !)2 

= x 2e2<vU) _ 2/3xe"'(t) + (,8 _ !)2 , 
Since A > 1, we find (useeitherJensen'sor Young'sinequali­
ty) 

[f df1 . [a (W)]-ll2 e -b Z
/4aOCW l]A r W. T;O,ln 11 0 

we have 

[exp( - TA)J(l,O;o,b) 
<¢ T - (A - 1)12 exp[ _ A 4-;.,1 (In 0)2] 

= ¢.J(1 e(/3-1/4)Tf dr> 
rW,T;O,lna 

xfdf1 . (a (w)] -AI2 e -Ab
Z
/4aoCw). 

rW,T;O,lna 0 

1 Hence [see (4.22)], 

X (1 + all-' + b 2;t)exp [ - A-IOn 0)2J f df1 . [a (w)] -A/2 e - Ab'/4ao(wl 4 T r W,T;O,ln a 0 

<¢ e-<T(P- J!4JT - (X - 1)12 1'" do f d'P OAI2 - 2-1' W,T;O,lna 
o 

xexp [ - '\-;, 1 (In 0)2]{ (1 + a2;t) [aO(w) ] (1 -A)12 + [aO(w)]P + (\ - A)/2} , 

Let us estimate 

Jti,T(X) == f dpW,T;O,x (iT dt e2VJ
(t) r· 

If either 8<0 or 8 > 1 we can apply Jensen's inequality and obtain 

J (X)<fd'P . T t3 - l lT dte2tiw
(tJ ti,T W,T;O,x 

o 
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(4.2S) 

(4.26) 
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If 0<8<1, then, by Young's inequality, 

J.5,T(X)<[I dpW,T;O,x iT dte2W
(t) r[I dpW,T;O.x r -.5 <¢ T.5-112e.5T e.5x. 

Combining (4.26) with (4.27) we obtain, with M(8) = max(8,82) , 

J.5,T(X)<¢ T.5-112 e.5x ~(.5)T. 

Substituting this into (4.25) we find 

(4.27) 

I (T) <¢ f!'T({3- 114) T -A + 112 JOO dx exp [ _ A-I x 2 +~] [eT(I -,1)'/4 e -I-'X( 1 + e2f'X) + Tl-'e™(1-' + (I -,1)/2)] 
,1,1-' _ 00 4T 2 

<¢ TI-Af!'T({3-1/4) 1 [exp{T[ (l-A)2 + (f-l + 1!2)2]} 
~-1 4 A-I 

+ Tl-'exp{T[MG + 1 ;A) + 4(A ~ 1)]}]' 
It is easy to see that this leads to (4.22). 

With the help of Lemma 4.3 we can now estimate 

Ilh(tPa',b';t -tPa'.b';oo)II, 

Lemma 4.4: Let h be a function satisfying 

Cl-'r(h)=Idf-l(a,b)lh(a,b)12+r[ ~ 2]1-' <00, 
, l+a+b 

for positive parametes r,f-l satisfying the following conditions: 

f-l <r(f3 -~) + 2f3, 

sup [2( 1 _ a)B(f3) _ _ r_ E(a 2(1T + 2) , 2f-l )] >0, 
aE(m,l) r+ 2 r r 

where 

m = r max(l, 1 + 2f-llr) . 
2(1T+2) f3 

Here 

E(A,r)=A(f3_1.)+max[(1-A)2 + (r+1!2)2, M( + l-A)+ 1 ] 
4 4 A-I r -2- 4(A - 1) , 

with M(8) = max(8,82
), and B(f3) = (f3 - !)2 if f3<~, B({3) = 2(f3 - 1) if f3>~. 

Then there exist constants ¢ I' ¢2 > 0 such that 

(
1 +a'2+b'2)I-'/(r+2) 

Ilh("', '. -"', '. )II<¢ [1+t- l +r/[2(r+2)I]e-¢,t . 
'l'a ,b ,t 'l'a ,b ,00 I 2a' 

Proof' 

< [CI-',r(h)]21(r+2) s~r I [tPa',b';t -tPa',b';oo ](a,b)1 2(1-a) 

o 

(4.28) 

(4.29a) 

(4.29b) 

(4.30) 

{ I }
rl(r+ 2) 

X df-l (a,b) I [tPa',b';t - tPa',b ';00 ] (a,b) 12a(r+ 2)lr[ cosh D(a',b ')cosh d(a,b;a',b ') ] 21-'Ir 

(
1+ '2+b'2)21-'/(r+2) < ¢ [1 + t - 2(1 - a)] e - 2(1 - a)B({3)t _-,--a_-,--_ 

2a' 

X {I df-l(a,b) [ltPl,O;t (a,b) 12a(r+ 2)lr + ItPI,O;oo (a,b) 12a(r+ 2)lr] ( 1 + : + b 2 YI-'/T/(r+ 2) 

[use (4.17) and the left invariance of the measure df-l ]. This holds for all aE [0,1 ]. If we choose a such that a > m, with m as 
defined above, then 2af3(r + 2)/r - 2f-llr> 1, hence 
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f dILI¢l,o;oo (a,b)1 2a(r+2)/r( 1 +a~+b2rl'lr 

- f ( 20 )2ap(r+2)/r-21'Ir 
-¢ dIL 2 2 <00. 

1 +a +b 
On the other hand a> m also implies 2a(r + 2)/r> 1. Us­
ing Lemma 4.3 leads then to 

11h(¢a',b';t - ¢a',b';oo )11 

<¢[ 1 + t - (I-a)] [1 + t r/[2(r+2») -a] 

(
1 + a,2 + b,2 )21'/(r+ 2) X e - 2( 1- a)B(p)t 

20' 

X [ 1 + f 2a(r + 2)/r,21'Ir ] rl(r + 2) 

(
1 + a'2 + b'2 )21'/(r+2) <¢[l +t -1+r/[2(r+2»)] 

2a' 

xexp [ - (1 - a)B({3)t + r tE 
2(r + 2) 

x (2a(rr+ 2) , ~)] . 

This holds for all aE(m,l]. It is clear from this that (4.30) 
follows if the conditions (4.29) are satisfied. • 

Remark: The conditions (4.29) are sufficient condi­
tions on the pair (r,IL), given{3, ensuring that (4.30) holds. 
The conditions (4.29) are however rather complicated, and 
may not be easy to check. It is possible, of course, to only 
consider one value for a, instead of the whole interval (m, 1). 
This considerably simplifies the condition on r,p., but may be 
too restrictive. One possibility of choosing such a fixed value 
for a is, e.g., a = r/(r + 2). It is then sufficient that 

IL <r({3 -!) , 
4B({3) 

r< , 
E(2,2{3 - 1) 

to ensure that the conditions ( 4.29) are satisfied. This allows 
only a finite range for the parameter r, however, and is thus 
very restrictive. It turns out that it is easier to proceed in the 
inverse direction, i.e., to start from the pair (r,IL) and to 
determine for which values of {3 the conditions (4.29) are 
satisfied. One finds that the following conditions imply 
(4.29): 

{3>r(1 + 2IL/r)/2(r + 2)] , 

{3> ~, (4.31a) 

p> 1 [4-~a+-r-E(2a r+2, 2IL)] , 
2(2 - 3a) r + 2 r r 

for some a satisfying 

r d _r..:.-(1_+.:....-!2IL--,/_r",-) ----<a<jan a< 
2(r + 2) 2{3(r + 2) 

(4.31b) 

Here E is defined by 

E(A,y) = E(A,y) - A({3 - !) 

[ 
(1-A)2 (y+ 1/2)2 

= max + , 
4 A-I 

(
I-A) 1] 

M y+-2- + 4(A-l) , (4.31c) 

withM(x) = max(x,x2). 
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Note that the second condition on a in (4.31 b) is an 
implicit condition, since it contains {3 again, and {3 is bound­
ed below by a function depending on a. In the explicit exam­
ples below (see Remark 2 at the end of Sec. IV) we shall first 
disregard this extra condition on a, compute a lower bound 
on {3, and then verify that the condition is satisfied. 

Our last estimate involves IIh¢a',b ';t II. From Lemma 4.2 
and 4.4 one immediately has 

( 
1 + ,2 + b ,2 )21'1r Ih¢, '. 1< ¢ [1 + t - 1 + r/2(r+ 2)] _,--a---,-__ 

a,b ,t 20' 

(4.32) 

if h satisfies (4.28), where IL, r, {3 fulfill either the conditions 
(4.29) or the conditions (4.31). 

All in all we have three different technical conditions on 
h. The first one, (4.5), ensures that ;?JJ~ is well defined. The 
second one, (4.20), ensures that ¢a'.b';oo ED(h) for all 
(a',b ')EM+. The third one, (4.28), ensures that 
¢a',b';tED(h) for all (a',b ')EM+, and all t>O. Note that 
(4.28) -+ (4.20) -+ (4.5). 

In what follows we shall always assume that (4.28) is 
satisfied. 

B. The path as Integral kernel of a contraction 
semlgroup 

Since h satisfied condition (4.28), hence condition 
(4.5), we know by Lemma 4.1 that ;?JJ~ is well-defined. 
Copying the argument in Ref. 4 the following proposition 
can be proved. 

Proposition 4.5: Let h be a real function satisfying condi­
tion (4.28). Then there exists a strongly continuous semi­
group of contractions E( v,h;t) on L 2(M +;dIL) such that 

[E( v,h;t) ](a" ,b ";a',b') = Cp- 1 ;?JJ~ (a" ,b ";a',b ';t) . 

(4.33 ) 

These contraction operators are related to exp( - vAn by 
the integral equation 

(f2,E(v,h;T)fl) = (f2,e- VATfl) -i iT dt 

X(/z,E(v,h;T-t)he-VATfl)' (4.34) 

This integral equation holds if fl' /zEC 0 (M +) or if flED 
and f2EC 0 (M + ) U D. Here D is the finite linear span of the 
vectors ¢a,b;oo defined by (4.12). 

Proof: This proposition is completely analogous to prop­
osition 2.1 in Ref. 24, and the proof runs along exactly the 
same lines. We shall therefore only outline the main argu­
ments, and fill in the technical details only where the present 
situation is different from that in Ref. 24. 

Equation (4.33) is proved in three steps: for 
hEC 0 (M + ), for hEL 00 (M + ), and finally for all h satisfying 
(4.28). 

For hEC 0 (M +) one uses the Trotter product formula 
to show that 
;?JJ~ (a" ,b ",a',b ';T) 

= cp{exp[ - (vA + ih)T]}(a",b ";a',b') . (4.35) 

Since h is bounded, the operator vA + ih is well defined, and 
generates a semigroup. Since A >0, and h is a real function, 
this is a semigroup of contractions. 
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Using the dominated convergence theorem for gP~, and 
strong resolvent convergence for exp [ - (vA + ih) T], one 
can extend (4.35) to all bounded functions h. 

In a next step one uses again dominated convergence 
arguments to show that, for all functions h satisfying (4.5), 
there exists a strongly continuous semigroup of 
contractions E( v, h; t) satisfying (4.33). These operators 
are constructed as s-limn _ 00 exp [ - (vA + ihn)t ], where 
hn(a,b) =h(a,b) if Ih(a,b)l<n, hn(a,b) =nsgnh(a,b) 
otherwise. (See Ref. 4; the arguments given there carryover 
without problems.) 

To prove (4.31), we use the fact that the integral kernel 
of E( v, h; t) is given by a path integral, i.e., (4.33). We have, 
for all (a', b '), (a", b " ) EM + for all T> 0 (see Ref. 4), 

gPh (a" b "'a' b "T) v , " , T 

= gP~(a",b";a',b';T) -iC(3-1 i dt f d,u(a,b) 

X gP~ (a",b ";a,b;T - t)h(a,b) gP~ (a,b;a',b ';t) . 
(4.36) 

Take now II> 12EC(;,(M+). We multiply (4.35) by 

h(a",b") II(a',b') and integrate over d,u(a',b') 
xd,u(a" ,b "). Using the upper bound (valid for all h [this 
follows from (4.1) ] ) 

IgP~ (a",b ";a',b ';t) I <cf3 evlf3 KVI (a",b ";a',b '), (4.37) 

and the estimate (4.6), one sees that the resulting integral 
converges absolutely. This allows us to change the order of 
the integrations, and leads to (4.34), for all/l,J2EC (;' (M + ). 

We can extend this to the case where/lEiJ. To do this, 
we use (4.10). Take/lEiJJ2EC (;' (M +). Again we multiply 
(4.36) by 12(a" ,b ") II (a',b ') and integrate over d,u(a',b ') 
X d,u (a" ,b " ). Since the resulting integral is absolutely con­
vergent by (4.37) and (4.10), we may again reverse the or­
der of the integrations. We thus obtain 

([2,E( v,h;T)I,) 

= ([2,e- VA 'iI) -iCf3-2 iT dt f d,u(a",b")/2(a",b") 

X f d,u(a,b)gP~(a",b ";a,b;T- t)h(a,b) 

X f d,u(a',b ') gP~ (a,b;a',b ';t)/1 (a',b '). 

We know however that 

(4.38) 

hence e - vA'!1 = II for all t. This means in particular that 
e - vA'!IEiJ(h) for all t, so that we may rewrite (4.38) in the 
form (4.34). 

Once (4.34) is obtained for/lEiJ,J2EC (;' (M +), one uses 
a straightforward approximation argument, using again that 
e - vA'!1 =1" together with the fact that C (;' (M +) is dense, 
to conclude (4.34) for/lJ2EiJ. 

Remark: By exactly the same arguments one can also 
prove that for all I, J2EC (;' (M +) 

(/2,E(v,h;T)(1-P(3)/,) 

= (/2,e- vAT(1-P(3)/I) 

+ i iT dt ([2,E( v,h;T - t)he - vAI(1 - Pf3 )/,) . 

(4.39) 

C. Operator convergence of E(v,h;7) for v-+ 00 

The proof of the strong operator convergence of 
E( v,h;T) hinges on Eg. (4.34). Again the proof in Ref. 4 can 
essentially be taken over, without major problems. The only 
difference is that we have to be a little more careful, because 
the operator A had a purely discrete spectrum in the Weyl­
Heisenberg case, and we could therefore conveniently use an 
orthonormal basis consisting of eigenvectors of A. This is not 
possible here. We shall therefore, in our proof of Proposition 
4.6 below (the analog of Proposition 2.2 in Ref. 4) payatten­
tion only to those technical details where our argument 
differs from that in Ref. 4. 

Proposition 4. 6: Let h be a real function on M + satisfying 
(4.28). Define the operator Pf3hP(3 on the domain {(; 
P pfEiJ(h)}. Clearly D, the finite linear span of the ¢a,b;oo , 
satisfies DCD(Pf3 hPf3 ). If P(3hP(3 is essentially self-adjoint 
on D Ell ?r~, then, for all T> 0, 

s-limE(v,h;T) = P(3 exp[ - iP(3hPf3T]P(3 . ( 4.40) 
v- 00 

Proof To prove (4.40), the operator E(v,h;T) is split 
into three parts, 

E(v,h;T) =E(v,h;T)(l-P(3) +P(3E(v,h;T)P(3 

+ (l-Pf3)E(v,h;T)Pf3. 

The treatment of the last two terms is completely analogous 
to the proof of Proposition 2.2 in Ref. 4. We shall therefore 
restrict ourselves here to a discussion of the first term and an 

N estimate related to it. 
J; = L cj¢aA,oo &7t"f3 ' F (439) b' i" Ill" f j~1 rom . weo tam,lora )1' 2EC(;,(M+), 

__________________________________________ -J
1 

T 

1(f;,E(v,h;T)(I-Pf3)/I)I<IV211'lle-VAT(I-Pf3)II'11/111 + 11/211·i dtllhe-vAI(l-Pf3)/III· 

We have lie - vAT(l - P(3) II <e - vTB(f3), with B(P) as defined by (4.14), and 

Ilhe - vAI(l - Pf3 )/111 2 = Ilh(e - vAl - P(3 )/1112<f d,u(a',b ') f d,u (a" ,b ") VI «a',b ') I VI (a" ,b ") I 

X [f d,u(a,b) Ih(a,bWI (¢a',b';vl - ¢a',b';oo )(a,bW] 1/2 

X [f d,u(a,b) Ih(a,b) 121¢a",b";vl - ¢a",b";oo (a,bW] 1/2 

< ¢[ 1 + (vt) -, + r/[2(r+2)Jj2e- 2kvl [f d,u(a,b) 1/1(a,b) I [ 1 + ~a+ b 2 rr ' 
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by Lemma 4.4. Substituting this into (4.41) leads to 

IIE(v,h;T)(1-Pp )/111 

<e - vTB(.Bl IlflII + ~ I kl' [ 1 + a:a + b z rill 
X 1"0 dt [1 + t -I +rIZ(r+Z)]e- kl • ( 4.42) 

This holds for all/IEC 0' (M +). Since CO' is a dense subspace 
of L z(M +;d f.l) and since the operators E( v,h;T) are con­
tractions, this implies, for all T> 0, 

s-lim E( v,h;T) (1 - Pp) = 0 . 
v-oo 

From (4.42) we can clearly also conclude that 

!~~ IT dt I (/z,E(v,h;T - t) (l - Pp )/1) I = 0, 

for all/I JzEC 0' (M +), and hence (by the same density argu­
ments as above) for all/l,JzEL 2(M +;df.l). This estimate is 
needed in the discussion of PpE(v,h;T)Pp (see Ref. 4). 

As already mentioned above, the remainder of the proof 
is a transcription of the proof of Proposition 2.2 in Ref. 4. 

D 
Our ultimate goal is to link .9'~, at least in the limit for 

v ..... 00, to the unitary group exp( - iTH) generated by a 
HamiltonianH onL 2(lR+). This isin fact achieved by Prop­
osition 4.6. To see this, write the integral kernel of PphPp, I 

D. Pointwise convergence of 9~ for v .... 00 

(PphPp) (a",b ";a',b') 

=cp-
z J df.l(a,b) 

<a",b ";[3la,b;{J )h(a,b)(a,b;[3la',b ';(J) . 

One easily checks from (2.13) that this is exactly the integral 
kernel of UpHU~, with 

H = cp-
I J df.l(a,b) la,b;{J )h(a,b) (a,b;l31 . 

ThusPphPp = UpHUl The condition thatPphPp be essen­
tially self-adjoint on D ffi :Jr p is exactly equivalent to the con­
dition that H be essentially self-adjoint on Dc> the finite lin­
ear span of the (affine) coherent states la,b;{J). 

The conclusion (4.40) can now be rewritten in terms of 
H. One finds (see also Ref. 4) 

[Pp exp( - iPphPp T)Pp ] (a" ,b ";a',b ') 

=cp-l(a"b";{Jlexp( -iHT)la',b';{J). 

The strong convergence (4.40) implies, in particular, con­
vergence of the corresponding integral kernels, in a distribu­
tional sense (i.e., when evaluated on test functions). We 
have therefore, at least in a distributional sense, 

lim .9'~ (a" ,b ";a',b ';T) = (a" ,b ";{J Ie - iHTla'b ';[3) . 

(4.43 ) 

This result will be sharpened to pointwise convergence in the 
next subsection. 

To prove (4.43) for all points (a" ,b "), (a',b ')EM +, rather than ina distributional sense, we again use an integral equation 
relating .9' ~ and .9'~, obtained by combining (4.36) with the complex conjugate version of (4.36) for - h. 

9~ (a" ,b ";a',b ';T) = .9'~ (a" ,b ";a',b ';T) - i cp- I IT dt J df.l (a,b).9'~ (a" ,b ";a,b;T - t)h(a,b).9'~ (a,b;a',b ';t) 

- Cp- 2IT dtz f' dt l J df.l (al,b l ) J df.l(az,bz) 9~ (a" ,b ";a2,bz;T - tz)h(az,bz) 

X .9' ~ (az,bz;a Ibl;tZ - tl)h (a l,bl).9'~ (al,bl;a',b ';t I) . 

Rewriting this in terms of rp a,b;1 and rp a,b; 00 , and combining it with an analogous integral equation for the coherent state matrix 
elements of exp ( - iTH) leads to (see Ref. 4) 

Cp- I [ .9'~ (a",b ";a',b ';T) - (a" ,b ";13 Ie - iTH la',b ';13) ] 

= (tPa",b";vT - rpa",b";oo )(a',b ') 

- i IT dt (rpa",b";v(T-Iph(rpa',b';VI - rpa',b';oo) - i IT dt (rpa",b";v(T-t) - rpa",b";oo ,hrpa',b';oo) 

-IT dtz f' dtl (hrpa",b ";v(T- I,) ,E( v,h;tz - tl)h [rpa',b ';VI, - rpa',b ';00 ]) 

( (" - Jo dtz Jo dtl(h [tPa",b";v(T-I,) -rpa",b";oo ],E(v,h;tz-tl)hrpa',b';oo) 

( 4.44) 
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Denote the six terms in the right-hand side of (4.45) by 
al , ... ,a6 • We show that aj -+ v- "" 0 for j = 1, ... ,6. 

The estimates (4.15) and (4.30) can be rewritten as 

Ill,6a.b;t -l,6a,b;"" 11.if(t) , 
IIh (l,6a,b;t -l,6a,b;"" ) II <g(a,b;t) , 

where the functionsf(·) and g(a,b;') [(a,b) fixed] are 
monotonically decreasing in t, and integrable, 

i"" dtf(t) < 00 , 

i"" dt g(a,b;t) < 00 • 

On the other hand, (4.13) and Lemma 4.2 tell us that 

IIl,6a,b;"" II = Cp- 112 [for all (a,b)] , 

and [(a',b'), (a",b") fixed] 

Ilhl,6a',b ';"" II <¢, Ilhl,6a',b';"" II <¢ . 

We now discuss the terms a l , ... ,a6 one by one. 
Using (3.38) we have immediately 

v- "" 

The next four terms can be estimated in terms off, g, 

a2 <¢ iT dt [1 + f(v( T - t) )]g(a',b ';vt) 

1 i"" <¢- dt g(a',b ';t) 
v 0 

+ ¢f( v;) ~ i"" dt g(a',b ';t) 

+¢g(a',b';v;) ~ i"" dtf(t) 

«J...)¢ -+ 0, 
v v_ 00 

a3<¢(Tdtf(v(T-t)«J...)¢ -+ 0, Jo v v_ 00 

a4 <¢ iT dt2 1" dtl [1 + g(a",b ";v(T - t2»)]g(a',b ';vtl ) 

<¢ iT dtlg(a',b';vtl)'(T- tl ) 

x~¢[i"" dt~(a",b";t2)]'[i"" dtlg(a',b';tl )] 

<¢(~~)+¢TJ... ("" dtlg(a',b';tl ) -+ 0, 
v- v Jo V-oo 

( (" as<Jo dt2 Jo dt l g(a",b";v(T-t2») 

<TJ... ("" dtg(a",b";t) -+ O. 
v Jo v __ 00 

Finally, a6 -+ 0 follows from Proposition 4.5 and the domi-

nated convergence theorem. This completes the proof of our 
main result. 

Theorem 4.6: Let h be a real function on M +. Suppose 
that (1) h satisfies condition (4.28), (2) the operator 
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H = Cp- I J dJ.l(a,b) la,b;/3 )h(a,b) (a,b;/31 (4.45 ) 

is essentially self-adjoint on Dc, the finite linear span of the 
affine coherent states. Then, for all (a',b '), (a" ,b ")EM + and 
for all T>O 

!~~ cpe
vTfJ J exp [ - if3 J a-Idb - i J h(a,b)dt ] 

XdJ.l"w (a,b) = (a" ,b ";/3 Ie - iTH la',b ';/3) . 

E. Remarks 

1. The main result in the pq-notation 

We define Ep =f3 -I app2 ap + f3p-2 a~. 

Let Kt be the associated heat kernel, in 
L 2(M +; [(1 - l/2{3)/21T ]dp dq), 

Kt (p" ,q"; p' ,q') == [ exp( tEp) ] (p" ,q" ;p' ,q') 

e - t 14Pf3 3/2 

2/2ii(f3 - pt 3/2 

l
"" xe - px'/4t 

X dx, 
fj ~cosh x - cosh.5 

where 

.5 = d(p",q";p',q') 

= COSh-l{ 1 + P";" [(p,-I - p"-1)2 + f32(q' _ q" )2]}. 

Define dfi,W;',qu;p',q' to be the associated Wiener process 
with diffusion constant v, pinned at p' ,q' for t = 0, at p" ,q" 

for t = T. In particular dfi,"w satisfies 

f d- v T K- (" " , ') J.lw;p',q';p',q' = vT P ,q ;p ,q , 

1 - l/2{3 fd d d- v,T,-! d-v,~ ." 21T P q J.l W;p ,q ;p,q J.l W,p,q,p ,q 

- dijV,T - r- W;pU,q" ;p',q' . 

Let h be a function on M + satisfying 

f dPdqlh(P,q)12+r[ 2P 2 ]1-' < 00, (4.46) 
1 + P (q + 1) 

for some J.l,r satisfying condition (4.29). 
Let Hbe the operator on L 2 (R+) defined by 

H = 1 - l/2{3 f dp dqlP,q;/3> h(p,q) <p,q;/3l, 
21T 

where, for t/JEL 2 (R+), 

(P,q;/3It/J) = (2{3)P[r(2{3)]-1/2p-P 

xi"" dkkPe-k(pr'-iq)t/J(k) 

[see (2.14)]. 
Define the path integral 

f!jJh (p" q" , , T) v ,;p ,q; 

= e
vTI2 f exp[i f pdq - i f h(p,q)dt ]dfi,W;.,q';p"q, 
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[ this differs by a factor C /3 from (4.1 ); this factor is absorbed 
in the measure in the pq-notation]. 

Translated into the pq-notation, the main theorem now 
reads ( 1) if h satisfies (4.45), and (2) if H is essentially self­
adjoint on Dc, the finite linear span of the Ip,q;/3), then, for 
all (p" ,q"), (pl,q')EM +, for all T> 0, 

lim 9Z (p" ,q" ;pl,q';T) 

= (p" ,q";/3 I exp ( - iTH) IP' ,q';/3 ). 

2. Examples 

(a) The simplest example is, of course, provided by 
bounded functions h(a,b), 

Ih(a,b)I<M. 

In this case the operator H defined by ( 4.45) is also bounded 
by M; H is thus clearly essentially self-adjoint on Dc. More­
over the condition (4.28) is satisfied for arbitrary r> 0 and 
for all,u > 1. Let us now determine from (4.29) or (4.31) the 
restrictions imposed on /3 by the condition,u > 1. Two possi­
bilities have to be distinguished: ! </3< ~ or /3>~. In the first 
case we have R(/3) = (/3-!)z in (4.29b), leading to the 
condition 

2(1-a)/3Z-2/3+!>_r_ i (2a r+2 ,2,u), (4.47) 
r+2 r r 

with i as defined by (4.31c). It turns out there is no set of 
values (a,r,,u) with r/2(r + 2) <a < 1, and,u > 1, such that 
( 4.4 7) is satisfied for /3E q, H. 

For /3> ~ we have to determine /3 satisfying the condi­
tions (4.31). One has then to choose (a,r,,u) so as to produce 
the smallest possible lower bound on /3 consistent with the 
other conditions. For,u > 1, r = !, and a = j one finds that 
(4.31a) reduces to /3 > 2.06, while all the other conditions 
are fulfilled also. 

This means that Theorem 4.6 allows us to conclude that, 
for bounded Hamiltonians H associated to bounded func­
tions h(a,b), 

!~~ c/3ev
T/3 f exp [ - i/3 f a-I db - i f h(a,b)dt ] 

xd,u'{y(a,b) = (a",b ";/3leiTH la',b ';/3), (4.48) 

for all /3 > 2.06. 
We believe that, for bounded functions h, (4.48) should 

hold for all/3>!, since it holds for h = const whenever /3>!. 
The 2.06-bound found here is probably an artifact of our 
method of proof, which uses Young's and Jensen's inequal­
ities several times (in the proof of Lemma 4.3). 

(b) We next tum to examples of the form 

d 2 

H= --+ Vex) 
dxz 

on L Z(R+). 
In order for this operator to be essentially self-adjoint on 

Dc, V must have a singularity at the origin. More precisely, 
H will be essentially self-adjoint on Dc (regardless of /3), 
e.g., for Vex) of the form 

Vex) = Clx- a, + Czxa" 
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where either a l > 2, CI > 0 or a l = 2, CI>~' and either 
0<az<2, Cz arbitrary, or a z > 2, Cz>O. In all these cases V 
has a strong singularity at x = 0; for x ..... 00, V may tend to 
00 , a constant, or - 00, depending on the values chosen for 
the different parameters. 

Let us now construct the corresponding functions 
h(a,b), and determine the values of /3 for which Theorem 
4.6 applies. The function ho(a,b) corresponding to - d Z

/ 

dxz is given by 

ho(a,b) = b z - (l/2/3)az 

[one easily checks that substitution of ho into (4.45) leads to 
- d Z / dxZ

]. Similarly, the function ha (a,b) associated with 
x - a is given by 

h ( b) = 2a r(2/3 - 1) a 
a a, a . 

r(2/3+a-1) 
Hence the function h(a,b) corresponding to the Hamilto­
nian - (d Z / dxz) + V, with Vas above, is given by 

h(a,b) = b Z __ 1_ aZ + C
I 

2
a
'r(2/3 - 1) aa, 

2/3 r(2/3 + a l - 1) 

+C
z 

2-
a
'r(2/3-1) a-a,. 

r(2/3-az -1) 

If Cz#O we have to impose the additional restriction 
2/3 - a z - lEI: - N. 

We shall restrict ourselves to one particular case now. 
We take Cz = 0, a l = 2, and CI>~' The Hamiltonian H is 
essentially self-adjoint, and 

h(a b) = b Z +J.. (~_J..)az. 
, /3 /3-! 2 

The pairs (r,,u) for which this function satisfies the condi­
tion (4.28) are restricted by the condition,u > 2 (r + 2). We 
have thus to find (r,a,,u) satisfying this condition as well as 
the conditions (4.31b); this then enables us, from (4.31a) to 
compute a/3o such that Theorem 4.6 applies, for this Hamil­
tonian, for all /3 > /30' For a = j,r = 1, and,u > 6, one finds 
that (4.31a) becomes /3> 27.33. It is easy to check that all 
the other conditions are satisfied as well. Hence Theorem 4.6 
applies toH = - dZ/dxz + Cx- z, C>a, if/3> 27.33. Again 
we believe that this is not optimal. The true lower bound /30 
on/3 for which (4.48) would hold, whenever /3 > /30' is prob­
ably much smaller than the here computed value 27.33, 
though possibly larger than !. 

3. A formula giving the function h from the operator H 

Formula (4.45) defines the operator H for a given func­
tion h. Ifwe define the function H(a,b) to be the diagonal 
coherent state matrix elements of H, 

H(a,b) = (a,b;/3IH la,b;/3), 

then (4.45) leads to 

H(a,b) =cii l f d,u~,';b') h(a',b l)l(a,b;/3lal,b ';/3)iZ 

= c- J f d,u(a',b ') hea' b ') 
/3 a'z ' 
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This formula can be inverted. Using results in Ref. 17 one 
finds 

h(a,b) = (TH) (a,b), ( 4.49) 

where the operator T, acting on the function H, is given by 

T- 1- , 00 [ a ] - )Jo (2{3 + n + 1)( 2{3 + n + 2) 
(4.50) 

with a = a2 (a ~ + a ~ ), the Laplace-Beltrami operator on 
the Lobachevsky plane. 

It turns out that this infinite product can be rewritten in 
terms of r -functions. One way to see this is to use the corre­
spondence (4.49) for a family of special cases. For H = x - a 

we know already that 

h( b) 
- 2ar(2{3-1) a 

a, - a. 
r(2{3+a-1) 

On the other hand, the corresponding function H(a,b) is 

2ar(2{3 - a) 
H(a,b) = (a,b;l3lx- a la,b;l3) = r(2{3) 

This implies that 

00 [ - a(a - 1) ] 
)Jo 1 + (2{3 + n + 1) (2{3 + n + 2) 

r(2{3)r(2{3-1) 

r(2{3 - a)r(2{3 + a - 1) 

By analytic continuation one finds that, for all t> 0, 

00 [ t2+114 ] 
)Jo 1 + (2{3 + n + 1) (2{3 + bn + 2) 

r(2{3)r(2{3 - 1) 

r(2{3 - it - !)r(2{3 + it - !) 
B(2{3,2{3 - 1) 

B(2{3 - it - !,2{3 + it - !) 
(4.51) 

Since the spectrum of - a = - a2 (a ~ + a ~ ) on the Loba­
chevsky plane is [1,00), (4.51) determines (4.50) complete­
ly. For particular values of {3, (4.51) and hence (4.50) can 
be further simplified. For {3 = 1, e.g., we find 

B(2,1) 1T 

B(~ - it, ~ + it) 

This can then be used to give an integral representation for T. 
We have, e.g., 

[d cos tx 1T 
X ----

o cosh x/2 - cosh t1T ' 
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hence 

00 [ -a] )Jo 1+ (n+3)(n+4) 

= ( _ a + 2) - I roo dt cos [t ~ - a + !] , 
Jo cosh t /2 

with 

cos[t~-a+! ] 

= f (- 1) n t In( _ a + J.. )n. 
n=O (2n)! 4 
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The quantum evolution of an N-body system of particles that mutually interact through scalar 
fields and couple to an arbitrary external electromagnetic field is rigorously described. Both 
operator- and kernel-valued solutions to the evolution problem are found. Based upon a 
particular realization of the Dyson expansion, a convergent series representation of the 
propagator (the kernel of the Schrodinger time evolution operator) is obtained. The basic 
approach is to embed the quantum evolution problem in the larger class of evolution problems 
that result if mass is allowed to be complex. Quantum evolution with real mass is considered to 
be the boundary value of the complex mass evolution problem. The constructive representation 
of the propagator is determined for the class of analytic scalar and vector fields that are given 
as Fourier transforms of time-dependent scalar- and vector-valued measures. 

I. INTRODUCTION 

The dynamical evolution of a quantum system is deter­
mined by the solutions of Schrodinger's time-dependent 
equation of motion 

if! ~ ¢(x,t) = H(x,t)¢(x,t), at 
(1.1 ) 

where x denotes a generic point (in the d-dimensional Eu­
clidean space Rd

) that specifies the position of all the parti­
cles in the system. The solution ¢( . ,t) is a state vector that is 
an element of Hilbert space JY = L 2(Rd

) for each value t of 
the time parameter. Within a given finite time interval [0, T] 
the differential structure of the Hamiltonian is taken to be of 
the general form 

H(x,t) = (l/2m)(f!/i)Vx - a(x,t))2 + v(x,t). (1.2) 

The function a above represents a time-dependent vector 
field mapping Rd X [0, T ] - Rd, while v is a scalar potential 
from Rd X [O,T] to R. 

The Schrodinger problem just outlined contains nonre­
lativistic N-body quantum dynamics. If each individual par­
ticle, having mass m, moves in three dimensions then 
d = 3N. The presence of the vector potential in (1.2) means 
that the Hamiltonian describes a collection of particles that 
mutually interact through scalar fields and couple via the 
Lorentz force to a time-dependent, spatially inhomogen­
eous, external electromagnetic field. 

This paper obtains both operator-valued and kernel-val­
ued solutions of ( 1.1 ). In the ensuing analysis we place re­
strictions on a and v that ensure that the minimal operator 
H(' ,t), defined on CO' (Rd

), has a unique closed extension 
H (t) and further that the (dense) domain of H (t) is inde­
pendent of time, i.e.,D (H(t») = Do for all tE[O,T]. In these 
circumstances the Schrodinger evolution problem in JY, as­
sociated with (1.1), assumes the following form. Let Tll. be 
the triangular region {(t,s)ER2

: O<sq.;;;T}. Suppose <p is an 
arbitrary function chosen from DoCJY and s is the time at 
which the initial data condition is imposed, then the Schr6-
dinger evolution problem in Tll. consists of solving 

if!!!...- ¢(t) = H(t)¢(t), ¢(t)EDo, 
dt 

with 

¢(s) = <p. 

(1.3 ) 

(1.4 ) 

One way of characterizing the solution ¢(t) of Eqs. 
(1.3) and (1.4) is to determine a bounded operator family 
U(t,s): JY -JY such that 

¢(t) = U(t,s)<p, t,sETll.' (1.5) 

We will call U(t,s) the Schrodinger evolution operator. In 
the time-independent case whereH(t) = H for all t and His 
self-adjoint, U(t,s) is only a function of the time displace­
ment r = t - s and may be written 

U(r+s,s) =e-irHIIi. ( 1.6) 

The operators on the right-hand side of (1.6) form a one­
parameter (rER) unitary group. Perhaps the most basic ef­
fect of the t dependence of H(t) is to cause U(t,s) to depend 
separately on t and s. 

Let us define the evolution operator more completely. 
Denote by the symbol f!jj (JY,JY) the Banach space (with 
norm 11'11) of all bounded operators mapping JY into JY. 
The identity operator on JY is indicated by I. 

Definition 1: A two-parameter operator family U: Tll. 
- f!jj (JY,JY) is said to be the (Schrodingerj evolution opera­
tor generated by {H(t): tE[O,T]) if 

(1) U(t,s): Do-Do, t,sETll.' 
(2) U is uniformly bounded in Tll. and for some finite 

c>O, 

II U(t,s) II <e(t-S)C, t>s. ( 1.7) 

(3) Uis strongly continuous in Tll.' 
(4) The following identities hold in f!jj (JY,JY): 

U(t,s) = U(t,r)U(r,s), O<s<r<,t<T, (1.8) 

U(s,s) = I, sE[O,T]. (1.9) 

(5) On the domain Do, U is strongly continuously dif­
ferentiable relative to t and s. Furthermore, U satisfies the 
equations of motion (t,sETll.)' 
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ifz!... U(t,s) 1= H(t) U(t,s) j, IEIJo, at 
- ifz!... U(t,s) 1= U(t,s)H(s) j, IEIJo· as 

( 1.10) 

( 1.11) 

It is apparent that given the existence of a Schr6dinger 
evolution operator properties (1), (4), and (5) ensure that 
t/J(t) defined by (1.5) is an L 2 (strong) solution of (1.3) 

taking values in Do. 
For many physical problems (particular choices of a 

and v) it turns out that U(t,s) is a type of integral operator. 
In this case we call its associated time evolution kernel the 
propagator of the system. Let (".) be the inner product in 
JY (linear in the right element) . We have, following Ref. 
(1), 

Definition 2: A two-parameter family (in Tf,.' t :;6s) of 
functions K (t, . ;s, ): Rd X Rd --+ C that are measurable and 
locally integrable on Rd X Rd is called the propagator for evo­
lution {U(t,s): t,sETf,.} if for all L 00 functions of compact 
support j,g 

(j,U(t,s)g) = r I (x)K(t,x;s,y)g(y)dx dy. 
JRdXRd 

( 1.12) 

Technically Definition 2 asserts that U(t,s) is a weak 
integral operator with kernel K. Examination of the exactly 
solvable free problem with a(x,t) = 0 and v(x,t) = 0 shows 
that one cannot expect the stronger statement that K be a 
Carleman kernel. I For example the kernel is not L 2 in y for 
almost all fixed x. 

The principal goal of our study of the evolution problem 
( 1.1) is to establish the existence of the propagator and to 
investigate its properties by finding a representation of K in 
terms of an explicit absolutely convergent series. We focus 
much of our attention on the propagator because this is argu­
ably the most important object in quantum evolution theory. 

Our basic approach is to embed the evolution problem 
( 1.1) in a larger problem. The mass parameter is allowed to 
take all values in the upper half complex plane, and the origi­
nal positive mass problem is considered as a boundary value 
of the complex mass evolution problem. It will be shown that 
evolution operator U is defined and continuous in the pa­
rameter m for 1m m>O, m:;60 and similarly that the propa­
gator K also has nice continuity properties in m. The advan­
tage gained by this enlargement of the original problem is 
that computations involving the propagator K and its ap­
proximations are made simpler. The various multiple inte­
grals appearing in the explicit construction of the propagator 
are all of a Gaussian type when 1m m > O. Thus Fourier 
transforms behave well, and the several changes oflimiting 
order that the analysis requires become manageable. Our use 
of mass as an analytic variable to assist in the determination 
of the propagator has some parallels with Nelson's program2 

of giving meaning to the Feynman path integral via the com­
plex mass limit 1m m --+ O. 

The constructive series representation of the propagator 
K is derived for the class of analytic vector and scalar fields 
that can be written as the Fourier image of certain time­
dependent vector and scalar-valued measures. For example, 
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if y(t) denotes for each tE[O,T] a complex vector-valued 
measure on the Borel subsets of Rd

, then 

a(x,t) = f eia · x dy(t). (1.13) 

Here a is the variable of integration (not displayed in the 
measure) with domain Rd. The symbol a . x is the scalar 
product. Furthermore it is assumed that y(t) has support on 
a compact set of Rd. Thus (foreacht) a (x,t) is areal analytic 
function of x. Moreover sufficient continuity properties in t 
are imposed on the measures y(t) in order to ensure that 
a (x,t) is continuously differentiable in t. In a similar fashion 
the scalar field is assumed to be the Fourier transform of a 
complex scalar-valued compactly supported measure v(t). 

v(x,t) = f eia·xdv(t). (1.14) 

The use of this class of potentials consisting of Fourier 
images of complex bounded measures was initiated by Ito in 
the study of the Feynman path integrals3 and plays a central 
role in results Albeverio and H0egh-Krohn4 obtain for the 
path integral. In the situation where no electromagnetic field 
is present and v(x,t) is static, a constructive representation 
of the propagator K is found in Osborn and Fujiwara.5 Po­
tentials of the form ( 1.14) are suitable for modeling the total 
N-body scalar interaction energy because there is no as­
sumption of decay as Ix 1--+ 00. Similar remarks apply to the 
vector field a (x,t) obtained from ( 1.13). The Fourier image 
( 1.13) does not necessarily imply any decrease in the vector 
field (or the associated electric and magnetic fields) as 
Ixl--+ 00. For example, one may choose y(t) so that the Stark 
problem of a quantum system in a constant electric field is 
obtained. 

A description of the measures y and v, together with the 
related behavior of the fields a and v is found in Sec. II. 
Properties of the family of Hamiltonians H(t) such as clo­
sure, domain stability, and the existence of the strong deriva­
tive on Do are discussed in Sec. III. Our method of obtaining 
the existence and properties of the evolution operator U(t,s) 
proceeds by adapting the theory of linear differential equa­
tions in Banach space6 to the study of the Schr6dinger evolu­
tion problem (1.3) and (1.4). Section IV is devoted to this 
topic. 

Let H(t) be interpreted as a perturbation of the free 
Laplacian operator Ho = - (fz2/2m)6. x ' In this spirit the 
full Hamiltonian is written 

H(t) = Ho + V(t). (1.15) 

Using formal arguments it is evident that the abstract inte­
gral equation equivalent to the equation of motion ( 1.10) for 
U(t,s) with boundary condition (1.9) is 

U(t,s) = Uo(t,s) -~ r'drUo(t,r)V(r)U(r,s), 
fz Js 

( 1.16) 

where Uo indicates the free evolution given by Eq. ( 1.6) with 
H=Ho· 

In the physics literature a common approach to investi­
gating U( t,s) is to iterate ( 1.16) to obtain the familiar Dyson 
expansion7 
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U(t,s) = Uo(t,s) + f (_ ~)n 
n = 1 Ii 

X{ dtn ·· 'dt1 UO(t,tn ) V(tn) 

x UO(tn,tn _ 1) X ... X V(tl) UO(tl'S) , (1.17) 

where the integral sUbscript < denotes the time-ordered do­
main r~tn > ... >t1>s. It is known (Ref. 8, Chap. IX), how­
ever, that this method is not generally successful in yielding 
rigorous results for U(t,s). The presence of the singular de­
rivative coupling terms in the Hamiltonian ( 1.2) means that 
the operator V(t) is intrinsically unbounded. Thus, in gen­
eral, one has the difficulty of showing that the product of the 
unbounded operators appearing on the right-hand side of 
( 1.17) have the necessary domain and range consistency, 
that they define (operator-valued) integrable functions, and 
that the resulting integrals form a convergent series. Never­
theless, for the case considered in this paper, we shall be able 
to prove that series (1.17) determines the solution of the 
evolution problem ( 1.3) and (1.4). This is described in Sec. 
V. 

The final section provides a construction of the evolu­
tion propagator K from formulas suggested by the perturba­
tion series (1.17) and establishes that the real mass bound­
ary value of the constructive series for K is actually the weak 
kernel of the quantum evolution operator U(t,s). 

II. MEASURES AND FIELDS 

This section presents the precise definition of the scalar 
and vector fields that enter the Hamiltonian H(t). These 
fields are Fourier images of certain measures. The basic 
mathematical properties of the relevant measure spaces are 
summarized. 

Let the couple (JRd,B) specify the measurable space con­
sisting of the set JRd and the smallest a-algebra B of (Borel) 
subsets of JRd that contain all the open sets in JRd. Indicate by 
C' the complex r-dimensional Euclidean space. A complex 
C'-valued measured ron (JRd,B) is a countably additive set 
function from B to C' (r = 1 for scalar measures). The asso­
ciated total variation of r is the non-negative set function I rl 
on (JRd,B) defined by 

Irl(e) = sup L Ir(ej)1 (ejEB). 
'IT e,€1T 

(2.1 ) 

On the right-hand side of (2.1), 1'1 is the Euclidean norm for 
the space C', and the supremum is taken over all countable 
partitions 1T' of e allowed by B. The set function r is said to be 
of bounded variation if Irl (JRd) < 00. 

Next we construct a Banach space of vector-valued 
measures r. To this end, in the set of all C'-valued measures 
on (JRd,B) with bounded variation adjoin, in the standard 
way,9 the operations of summation and multiplication by a 
complex scalar. It is evident, that so equipped, this set of 
measures is a vector space which we shall designate by the 
symbol !Dl(JRd,C'). Further, one may use the total variation 
ofthe set JRd as the natural norm in !Dl(JRd,C'), namely 

(2.2) 
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With this norm attached one can prove9 that !Dl(JRd,C') is a 
Banach space. 

Each vector-valued measure rE!Dl(JRd,C') generates a 
vector field a: JRd .... C' via the Fourier transform ofthe mea­
sure, 

(2.3) 

Clearly, for each xEJRd, the function eja
' x is Borel measura­

ble and L 1 (JRd,dr). In fact, a can be shown to be both uni­
formly continuous and uniformly bounded throughout JRd. 
In particular note 

(2.4) 

The statement of the evolution problem in Sec. I presupposes 
that the vector and scalar fields are real valued. This require­
ment imposes a restriction on the form of the measure r. Let 
,Y' be the Fourier image of !Dl(JRd,C'), i.e., all possible 
a: JRd .... C' defined by (2.3) as r varies throughout 
!Dl(JRd,C'). Ifwe define a norm forY'by lIall == IIrll, thenY' 
is also a Banach space. Furthermore, the Fourier transform 
mapping !Dl(JRd,C') .... ,Y' establishes a one-to-one corre­
spondence between,Y' and!Dl (JRd,C'). This is a consequence 
of the uniqueness 10 of the transform (2.3) which asserts that 
a (x) = 0 for all x if and only if r = O. A measure r is said to 
satisfy the reflection property if 

r(e) = r( - e) (eEB), 

where - e is defined as {aEJRd: - aEe}. If r obeys the re­
flection property then the associated a is real. Conversely, if 
a is real for all x then (by the uniqueness of the Fourier 
transform) r must satisfy the reflection property. We denote 
by !Dl*(JRd,C') the set of all r in !Dl(JRd,C') that satisfy the 
reflection property. 

The polar decomposition of measure r in terms of I rl is 
used extensively in the following. The polar decomposition 
of r asserts that there is a Borel measurable function 
1]: JRd .... C' such that 11](a) 1= 1 for all a and 

f. dr = f. 1](a)d Irl, eEB. (2.5) 

Note, since r< Irl the Radon-Nikodym theorem (Ref. 11, 
p. 64) establishes that there exists an L 1 (JRd,d I rl ) function 
1] which satisfies (2.5). The proof that 11] (a) I = 1 follows 
from a modification of the derivation given by Rudin (Ref. 
12, Theorems 1.40 and 6.12) for the scalar case (r= 1). 

In the following we shall use products of complex scalar 
measures. Consider the case of two scalar measures: J.L lover 
(JR~,Bl) and J.L2 over (JR;,B2 ). It is known9.12 that they 
uniquely determine a product measure, J.L 1 XJ.L2' on the 
smallest a-algebra B 1 X B2 (of Borel subsets) generated by 
the family of rectangles A 1 xA2, AIEBI, A 2EB2, if it is re­
quired that for every rectangle A I XA 2 

(J.L I XJ.L2)(A 1 xA2) = J.LI (A I )J.L2(A2) (2.6) 

holds. It is evident that a Banach space !Dl(JR~ X JR;,C) may 
be constructed in this case exactly as before with a norm 
given now by the total variation of the set JR~ X JR;, i.e., 

IIJ.L IXJ.L211 = IJ.LIXJ.L21(JR~XJR;). (2.7) 
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It is worthwhile to notice that the following identity holds in 
m(R1 XR~,C): 

(2.8) 

where IltEm(R1,C) and 1l;,Ili'Em(R~,C). In addition we 
note (Ref. 9, p. 192) 

IIIltXIl211 = Illlt11111l211. (2.9) 

The appearance of terms like a(x,t) . a(x,t) in the 
Hamiltonian (1.2) means that we need to understand the 
definition of the scalar convolution of measures in 
m(Rd,C'). Let y,y' be a pair of measures in m(Rd,C') and 
a,a' the associated pair of vector fields in ,7r. The symbol * 
denotes the map m(Rd,C') Xm(Rd,C') --+m(Rd,C) defined 
by 

y*y'(e) = J Xe (a + a')1](a) . 1]'(a')d Iyl X Iyl 

(2.10) 

Here 1],1]' are the unit length vectors occurring in the polar 
factorization of y and y'; I yl X I y' I is the product scalar mea­
sure on Rd X Rd; and X e denotes the characteristic function 
on Rd for the set eEB. The presence of 1] . 1]' in the integrand 
of (2.10) means the function y*y' (e) takes values in C. Fur­
thermore, it is not difficult to establish that y*y' is a measure 
in m(Rd,C) and that 

lIy*y'II<llylllly'll· (2.11 ) 

The scalar product in ,7r is related to the scalar convolution 
in m(Rd,C') by the identity 

a(x) . a'(x) = J eia·xdy*y'. (2.12) 

Consider subsets in m(Rd,Cr
) consisting of measures y 

that have compact support. Let S k C Rd be the closed ball of 
radius k> ° and center ata = O. Here m(Sk'C') will denote 
the subset of measures in m(Rd,C') that have their support 
contained by Sk' With respect to the norm 11'11, m(Sk'C') is 
a Banach subspace of m(Rd,C'). Similarly, m*(Sk,cr) is 
defined to be the set of measures in m(Sk'C') that satisfy the 
reflection property. This set turns out to be a Banach sub­
space ofm(Sk'C') with respect to the norm (2.2). 

We have not yet indicated the manner in which the vec­
tor field a acquires a time dependence. If the measure in 
m(Rd,C') is not static but varies as t is altered then a will 
become time dependent. Suppose [O,T] is the relevant time 
interval for the study of the evolution problem. Denote by 
y(t) the values of a map 

y(.): [O,T]--+m(Rd,C'). 

Thus y(.) is a Banach space-valued function of t. We say 
y(.) is continuous in [O,T] if 

IlyCt') -y(t)II--+O as t'--+t (2.13) 

for all tE [0, T]. In a similar fashion y(t) is said to be continu­
ously differentiable in [O,T] if there is a measure 
1'(t)Em(Rd,C') for all tE[O,T] such that 1'(t) is continuous 
in [O,T] and 

II y(t / = ~(t) - 1'(t) 11--+0 as t' --+t. (2.14 ) 
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Observe that for each t, 1'(t) is uniquely defined. 
With this terminology we may state the hypotheses on 

the vector and scalar fields used throughout the remainder of 
this paper. 

Vector field hypothesis: The vector field a: Rd X [O,T] 
--+Rd is said to be in the class 'Yv (k) [aE'Yv (k)] if a is the 
Fourier image, Eq. (1.13), of the time-dependent family of 
measures yCt) satisfying 

(1) yCt)Em* (Sk12 ,Cd), tE[O,T] for k< 00. 

(2) y(t) is continuously differentiable on [O,T]. 

Scalar field hypothesis: The scalar field 
v: Rd X [O,T] --R is said to be in the class 'Ys (k) 
[VE'Ys (k)] if V is the Fourier image, Eq. (1.14), of the time­
dependent family of measures v(t) satisfying 

(1) V(t)Em*(Sk'C), tE[O,T] for k < 00. 

(2) v(t) is continuously differentiable on [O,T]. 

For the time continuous measures appearing above one 
can extract two useful constants that will often appear in our 
estimates, namely, 

YT = suplly(t) II, V T = supllv(t) II, (2.15 ) 

where each supremum is taken over tE [0, T] . 
Our primary motivation for invoking these hypotheses 

is that they allow us to carry through efficiently the explicit 
construction of the propagator K. For some parts of our 
investigation these hypotheses are unnecessarily restrictive. 
For example, the proof of the existence of the evolution oper­
ator U(t,s) using the theory of differential equations in Ban­
ach space will succeed for a much broader class of vector and 
potential fields. However, we keep the hypotheses 'Yv (k) 

and 'Ys (k) throughout all sections of our analysis since the 
main goal is to construct the kernel (propagator) of UCt,s). 

Let us illustrate some of the properties of the fields a and 
v implied by assumptions 'Yv (k) and 'Ys (k). Because the 
measures y(t) and v(t) have compact support it follows that 
a ( . ,t) and v ( . ,t) are C 00 functions of x for each t. Conven­
ient Fourier transform formulas exist for the various terms 
entering the Hamiltonian. For example, 

_1_ a(x,t)2 + v(x,t) = J eia · x dll(t), 
2m 

where 

(2.16 ) 

Il(t) = (1/2m)y(t)*y(t) + V(t)Em*(Sk'C), (2.17) 

Note that the definition of scalar convolution has the possi­
bility of increasing the support of the associated convolution 
measure from Skl2 to Sk' Time derivatives of the fields are 
also simple, 

(2.18 ) 

for tE [0, T]. In order to verify this formula and to establish 
the nature of the limiting process associated with the t deri­
vative of a, let a(x,t) be defined as the integral on the right­
hand side of (2.18). Then it follows that 

Osborn, Papiez, and Corns 106 



                                                                                                                                    

a(x,t') - a(x,t) . ( ) 
~-'--'---'-"':"":'" - a x,t 

t' - t 

= f eja
' xd [r(t/, = ~(t) - y(t) l (2.19) 

By hypothesis 'Y v (k), the measure in the square brackets is 
an element ofW?*(SkI2,Cd

). Statement (2.19) employs the 
additivity of integration with respect to different measures in 
w?(JRd,C'). Inequality (2.4) applies to (2.19) and yields 

"a( .,t/, =;( ',t) - a( .,t) II 00 

< II r(t /, = ~(t) - y(t) II ' (2.20) 

where 11'1100 is the usual supremum norm ofJRr-valued func­
tions on JRd. Since y(t) is the derivative of r(t), the right­
hand side of (2.20) vanishesast' -+t, for alltE[O,T]. Similar­
ly the t continuity of y( t) implies the t continuity of a ( . ,t) in 
the 11'1100 norm. Thus it is seen that a(' ,t) is continuously t 
differentiable on [O,T] in the 11'1100 norm. A similar conclu­
sion is valid for v( .,t) ifvE'Ys(k). 

The t continuity of scalar measures also implies a joint 
tl, ... ,tn continuity for the product measure 
fll(tl) Xfl2(t2) X'" Xfln (tn)' In the case of two measures 
(2.8) and (2.9) yield 

Ilfll (t i) Xfl2(t i) - fll (tl) Xfl2(t2) II 

<11fl1(ti )llllfl2(ti) -fl2(t2) II 

+ Ilfl2(t2)lllIfll(ti) -fll(tI)II· (2.21 ) 

Since the continuity of flj (tj) with respect to tj (i = 1,2) 
gives uniform boundedness of IIfll(ti)11 and Ilfl2(t2)II on 
[0, T], the above relation establishes the joint continuity of 
fll(tl) Xfl2(t2) with respect to (t»t2)E[0,T] X [O,T]. This 
result obviously extends to the product of n tj-continuous 
scalar measureSflj (tj), i= I-n. 

III. HAMILTONIAN PROPERTIES 

The complex mass evolution problem is generated by 
Hamiltonians that form a two-parameter family (in m and t) 
of operators. The theory of linear differential equations in 
Banach space, used in the next section, requires that these 
Hamiltonian operators be closed, have time-independent do­
main Do, and be strongly continuously differentiable on Do. 
For fields aE'Yv (k) and VE'Ys (k) we establish these fea­
tures of the associated Hamiltonian family. 

The mass parameter m is assumed to take values in the 
upper half complex plane. The open (closed) upper half­
plane is denoted by C> (C». The symbol C + will represent 
the closed upper half-plane with the origin deleted, 
C+ = C> '\ {O}. The value of Planck's constan.!..plays no role 
in the section, so locally we set fz = 1. Let Ho(m) be the 
minimal operator with domain CO' (JRd) associated with the 
Laplacian in JRd 

Ho(m) = - (l/2m).:l. (3.1 ) 

For m > ° it is well known (Ref. 8, Chap. V) that Ho(m) 
acting in the space L 2(JRd) is essentially self-adjoint with a 
self-adjoint closure, Ho(m). Furthermore, the spectrum of 
Ho(m) is [0,(0). For complex mass mEC>, writing 

107 J. Math. Phys., Vol. 28, No.1, January 1987 

Ho(m) = m-IHo(l) showsthatHo(m) is closable with clo­
sure Ho(m) = m -IHo(1). Let i be the Fourier transform 
of an arbitrary element fEL 2 (JRd). The domain of Ho (m ), 
for all mEC+, is 

Do = {fEL 2(JRd): a 2 i(a)EL 2(JRd)}. (3.2) 

In a similar fashion, for tE[O,T] and mEC+ define the 
minimal Hamiltonian operator with vector field aE'Yv (k) 
by 

(3.3 ) 

where V is the gradient and the domain of HI is CO' (JRd). 
After expanding the square, HI may be written as the sum 

(3.4 ) 

where the perturbing operator [again having domain 
CO'(JRd)] is 

A i i 
W(t,m) = -a( ',t) . V + - (V' a)( .,t) 

m 2m 

1 2 
+ -a(·,t) . 

2m 
(3.5) 

The fact that the field a is real, together with an integration 
by parts shows that for m > 0, W(t,m) is symmetric and thus 
closable. Denote the closure of W(t,l) by W(t, 1). Noting 
that W(t,m) = m- I W(t,1) shows W(t,m) = m-IW(t,l) 
is the closure of W(t,m) for all mEC+. 

Let Y( t) denote the bounded operator obtained by mul­
tiplication with v(x,t) for VE'Ys (k). The minimal Hamilto­
nian, on CO' (JRd), with both scalar and vector fields present 
takes two possible forms, 

H 2(t,m) = HI (t,m) + Y(t), 

H 2(t,m) = Ho(m) + V(t,m), 

where 

V(t,m) = W(t,m) + Y(t). 

(3.6) 

(3.7) 

(3.8) 

Since W is closable and Ybounded, W + Y is closable, and 
its closure will be indicated by the symbol V(t,m). 

A The b~ic closure, perturbation, and domain properties 
of HI and H2 are the following. 

Lemma 1.' Suppose aE'Yv (~) and VE'Y Jk). For all 
(t,m)E[O,T] XC+ the operators HI (t,m) andH2(t,m) have 
closures HI (t,m) and H 2(t,m) obeying 

(3.9) 

(b) HI(t,m)f=Ho(m)f+ W(t,m)J, fEDo, (3.10) 

H 2(t,m)f=Ho(m)f+ V(t,m)J, fEDo, (3.11) 

where D (W(t,m») dDo and D (V(t,m») dDo; and 
(c) ifm > ° then HI (t,m) andH2(t,m) are self-joint and 

bounded from below. Specifically, 

(3.12) 

Proof We show first that W( t,m) is Kato tiny relative to 
Ho(m). Since multiplication by either V . a(x,t) or a(x,t)2 

gives rise to a bounded operator, it suffices to consider just 
theterma(x,t) . Vin W(t,m). TakefEC 0' (JRd), andconsid-
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er 

Ila(',t) . Vfl1 2 

= J la(x,t) . v f(xW dx 

<~ JI V f(x)1 2dX= -~ J f(x)l1f(x)dx. 

The inequality follows from (2.4) and (2.15), and the subse­
quent equality by an integration by parts. There are no sur­
face contributions since fEC 0' (Rd). For arbitrarily small 
£5 > 0, let Ell = {xERd: £5- 11 f (x) I ;;;'£5ll1f (x) I}, then 

Ila(·,t)· Vfl1 2 

<~ r 1£5- l f(x)1 2dx+YT rd I£5Af(xWdx 
JE8 JR ,E8 

<YT£5- 21IfI1 2 + 12mI2~£52I1Ho(m)fI12. 
Since the coefficient of the second term can be made as small 

A 

as we like, by the choice of £5, it follows that W(t,m) has 
Ho(m)-bound ° (orequivalentIy that Wis Kato tiny relative 

toHo). 
Let m > 0, then W( t,m) is symmetric. We employ the 

perturbation theorem (Ref. 8, Theorem 4.4, p. 288) which 
asserts that if operator Tis essentially self-adjoint and opera­
tor A is symmetric and furthermore T-bounded with T­
bound smaller than 1, then T + A is essentially self-adjoint 
and its closure (T + A) - is equal to T + A. Here TisHo(m) 
and the symmetric perturbation A is W(t,m). ThusHI(t,m) 
is self-adjoint and (3.9) and (3.10) are established, if m > 0. 

In order to extend these conclusions to the complex 
mass case, note the simple behavior of HI with respect to its 
mass dependence. From HI(t,m) = m-IHI(t,l) and the 
definition of closure it follows that (for m =1= 0) 

HI(t,m) = m-IHI(t,l). (3.13) 

Identity (3.13) and the fact that HI (t, 1) satisfies (3.9) and 
(3.10) extends the validity of (3.9) and (3.10) toallmEC+. 

Finally let us verify the bound statement in (c) for 
HI(t,m). We must show, for m>O, that (J,HI(t,m)f) is 
non-negative (fEiJo). Iffollows from the definition of clo­
sure that it will suffice to establish the inequality above for f 
on a core of HI(t,m). On the core COO, HI =HI. Starting 
from the definition of the minimal operator HI and integrat­
ing by parts gives 

(J,HI (t,m)f) 

= (1I2m)ll[iV+a(·,t)]fI1 2;;;.0, fECO'(Rd
). 

So HI (t,m) is non-negative. 
Thus statements (a), (b), and (c) are proved for the 

operators HI (t,m) and HI (t,m). The extension of these re-
A 

suIts to H2 (t,m) and H2 (t,m) is trivial since perturbation 
Y(t) is a bounded operator, 

IIY(t)II<vT, 

and Y(t) is symmetric since v(-'t) is real valued. 0 
The next goal is to establish that H2 (t,m) is strongly 

continuously differentiable in t. Our first observation is that 
H2 (t,m) has a convenient representation in terms of the mo­
mentum operator P acting in the space L 2(Rd,C). In order 
to define P, introduce two Hilbert spaces JY's and JY'v. The 
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first space is JY's = L 2(Rd,C); and the second is that of the 
vector-valued (in Cd) square integrable functions, 
JY'v = L 2(Rd,Cd). The standard norms of these two spaces 
are indicated by II' lis and 11'lIv' respectively. Let F be the 
unitary Fourier integral transform mapping JY's ..... JY's' De­
fine P: JY's ..... JY'v by specifying each of its vector compo­
nents, 

Pj"= F-I(ajf), j = l, ... ,d, 

where f = Ff and a = (a I, ... ,ad ) is the vector argument of 
). Clearly, Pj has the interpretation of the generalized deriv­
ative - ia I axj • The domain of operator P is 

D(P) = {fEJY's: afEJY'J = {fEJY's: lalfEJY'J. 
In terms of P the free Hamiltonian is 

Ho(m) = (1I2m)P' P, mEC+. 

In order to complete the construction of H 2(t,m) in 
terms of P define the operator family Vc t,m): JY's ..... JY's for 
parameters tE[O,T] and mEC+ by 

o 1 i 
V(t,m) = - -a( .,t) . P + - (V' a)( .,t) 

m 2m 

1 
+ 2m a ( . ,t) 2 + V ( • ,t) 

with domain D (Vct,m») = D(P). From the estimate 

Ila( .,t) . P flls<rTIIP fllv 

it follows without difficulty that V(t,m) has Ho(m)-bound 
less than 1. This implies (Ref. 8, Theorem 1.1, p. 190) that 
H2 (t,m) given by 

H 2(t,m) = Ho(m) + V(t,m) (3.14) 

is closed, with domain D (H2 (t,m») = Do. But on COO, 
H2 (t,m) is equal to H2 (t,m). Thus both H2 (t,m) and 
H2 (t,m) are closed extensions of H2 (t,m). Since H2 (t,m) is 
the smallest closed extension, H 2(t,m) r;;,H2(t,m). In fact, 
since the domains of these two operators are the same we 
have 

(3.15 ) 

In the lemma to follow we show that the operator 
H2 (t,m) defined by 

H 2(t,m) = - (lIm)a(',t) . P+ (i12m)(V' a)(',t) 

+ (lIm)a( .,t) . a( .,t) + v( ',f) (3.16) 

with domain taken to be Do, is the t derivative of H2 (t,m). 
The functions a(x,t) and v(x,t) are the t-partial derivatives 
of a (x,t) and v(x,t) and are most conveniently represented 
by the Fourier transforms of the measures y( t) and v( t), cf. 
(2.18) . 

Lemma 2: In the interval [O,T], for each mEC+, 
H2 (t,m) is strongly continuously differentiable on the do­
main Do, and 

(3.17) 

Proof: Take fEiJo, let £5 = t' - t =1= ° and set 

Df= £5- 1 [H2(t',m) - H 2(t,m)]f - H 2(t,m)f 

= £5- 1 [V(t',m) - V(t,m)]f-H2(t,m)J, 
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where the second equality results from using (3.14) and 
(3.15). Now, define 

s(x,t) = (i/2m)(V . a)(x,t) + (1/2m)a(x,t)2 + v(x,t), 

and 

S(X,t) = (i/2m)(V . a)(x,t) 

+ (l/m)a(x,t) . a(x,t) + v(x,t). 

With this notation, we have the estimate 

IIDIII.";(1/lml)1I8- I [a(·,t') -a(',t)] -a(',t)II", IIPlllv 

+ 118- I [s(',t') -s(',t)] -s(',t)II", 11/11 •. 

The fact that y(t) is the derivative in the sense of (2.14) of 
the measure y(t), ensures via inequality (2.20) that the first 
term on the right-hand side vanishes as 8 ..... 0. Similar reason­
ing shows that the II. '11", portion of the second term also goes 
to ° as 8 ..... 0. ThusH2(t,m) is shown to be the strong deriva­
tive on Do of H2 (t,m). The strong continuity of H2 (t,m) is a 
result of formula (3.16) plus the fact that y(t) andv(t) are 
continuous. 0 

The results establishing closure, domain stability, and 
the strong differentiability of H 2(t,m) have been easy to ob­
tain because a(x,t) and v(x,t) have such nice differentiabil­
ity and boundedness properties. However, even when a (x,t) 
and v(x,t) are allowed to be in classes offunctions that toler­
ate local singularities, H 2(t,m) (for m > 0) is known to re­
main essentially self-adjoint. For recent results in this direc­
tion see Leinfelder and Simader. 13 

We conclude our discussion of Hamiltonian properties 
by stating resolvent growth estimates for HI (t,m) and 
H 2(t,m). 

For an operator A: D(A) cJY ..... JY and zEp(A) (the 
resolvent set of A) we denote the associated resolvent by 

R(A,z) = (A _Z)-I. 

Lemma 3: Let mEiC+ and tE[O,T]. 

(a) For OJ > 0, iOJ is in the resolvent set of HI (t,m) and 

IIR (HI (t,m),iOJ)11 = OJ-I. (3.18) 

(b) For OJ> Vr , iOJ is in the resolvent set of H2 (t,m) and 

IIR (H2(t,m),iOJlIl..;(OJ - Vr)-I. (3.19) 

Proof: Suppose mEiC+ has the polar representation 
m = eiif)lm I, <pE[O,1T]. For positive mass argument, HI is self­
adjoint with spectrum l: = [0,(0), thus the norm of the as­
sociated resolvent satisfies, for Re z..;O, 

IIR(HI(t,lml),z)11 = [dist(z,l:)]-I= Izl-l. 

However by identity (3.13) we also have 

ei4>R (HI (t,lml),e i4>iOJ) = R (HI (t,m),iOJ). 

Together (3.20) and (3.21) imply (3.18). 
Consider (b). If OJ> Vr , then 

IIY(t)R (HI (t,m),iOJ)11 

..;IIY(t)IIIIR (HI(t,m),iOJ)II..;vr/OJ< 1. 

(3.20) 

(3.21) 

(3.22) 

Thus the operator 1 + Y(t)R (H) (t,m),iOJ) has a bounded 
inverse; iOJ is in the resolvent set of H2 (t,m); and 

(3.23) 
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Taking the operator norm of (3.23) and upon using (a) and 
(3.22) yields 

IIR(H2,iOJ)II..;J.. 1 0 
OJ 1 - vr/OJ OJ - Vr 

It is clear that the hypothesis VE'Ys is the unnecessarily 
restrictive in Lemma 3. In essence the proof only requires 
that v(x,t) is (for each tE[O,T]) Kato tiny relative to 
Ho(m). 

IV. EVOLUTION OPERATORS 

This section establishes the existence and describes the 
properties of the Schrodinger evolution operator. One ver­
sion6 of the general theory of linear differential equations in 
Banach space with unbounded operator coefficients is sum­
marized. This theory is then adapted to the study of the 
Schrodinger problem (1.3) and (1.4). 

The evolution problem of interest here is the following. 
SupposeE is a Banach space and A (t): D (A (t») CE ..... E is an 
unbounded operator for all tE [0, T]. Operators A (t) are al­
ways assumed to be closed and to have a stable common 
domain D (A (t») = D (A) that is dense in E. The differential 
equation of evolution for time interval [O,T] is 

dl - =A(t)f, O..;t..;T. 
dt 

(4.1 ) 

We say that l(t) is a solution olequation (4.1) on the 
interval [s,T] (O..;s..;T) if l(t) has values in D(A), pos­
sesses a strong derivative j (t), and satisfies (4.1) on the 
segment [s,T]. The Cauchy problem in the triangle Til. is the 
problem of finding for each fixed SE [0, T] a solution I (t,s) 
of (4.1) on segment [s,T] that satisfies the initial data condi­
tion 

I(s,s) =/oED(A). (4.2) 

Definition 3: The Cauchy problem (4.1) and (4.2) is 
said to be uniformly correct if the following statements hold. 

(1) For each SE [0, T] and any 10ED(A) there exists a 
unique solution I (t,s) of (4.1) on the segment [s,T] satisfy­
ing initial data condition (4.2). 

(2) The function l(t,s) and its t derivative j(t,s) are 
continuous for t,s in the triangle Til.' 

(3) The solution depends continuously on the initial 
data in the sense that if the 10,nED(A) converge to zero then 
the corresponding solutions In (t,s) converge to zero uni­
formly relative to t and s in Til.' 

In the circumstance where the Cauchy problem is uni­
formly correct, the evolution operator ~ (t,s) is defined for 
each, t,sETA as the linear map 10 ..... 1 (t,s) , or 

I (t,s) = ~ (t,s) 10' (4.3) 

From (1) and (3) it follows that ~ (t,s) is bounded and 
since the domain D(A) is dense we may extend (by contin­
uity) ~ (t,s) to the entire space E. Henceforth ~ will de­
note this extension. Also from (1) it is apparent that ~ (t,s): 
D(A) ..... D(A). Statement (2) means that ~ (t,s) is strongly 
continuously differentiable with respect to tE[s,T] on the 
domain D(A). Similarly, collecting these and other useful 
inferences of Definition 3 gives us the following. 
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Proposition 1: Suppose that the Cauchy problem in the 
triangle Tt. is uniformly correct, then the evolution opera­
tors CZt (l,s) satisfy the following. 

Tt. : 

(1) CZt(l,s):D(A)---+D(A), t,sETt.. 

(2) The operator CZt (l,s) is uniformly bounded in Tt.. 

(3) The operator CZt (t,s) is strongly continuous in T t. . 

(4) The following operator-valued identities hold in 

CZt(l,s) = CZt(l,1")CZt(1",s), O<s<1"<;t<;T, (4.4) 

CZt(s,s) =1, sE[O,T]. (4.5) 

(5) On the region D(A) the operator CZt (l,s) is strongly 
differentiable in tE[s,T]. Furthermore aCZt (l,s)lat is jointly 
continuous for t,sETt. and obeys (in Tt. ) 

aCZt (l,s) 1= A (l) CZt (l,s) J, lED (A ). 
at 

(4.6) 

Prool: For details see Ref. 6 (pp. 193-195). 0 
We notice that Proposition 1 has a natural converse. 

Namely if CZt (l,s) fulfills conditions (1 )-( 5) then the 
Cauchy problem is uniformly correct. Thus it is of interest to 
know under what conditions an evolution operator having 
properties ( 1) - (5) will uniquely exist. Sufficient conditions 
for the existence of CZt (l,s) together with several additional 
properties of CZt are given in the theorem below. 

Theorem 1: Suppose that the operators A (l), tE [0, T] 
are 

( 1) densely defined and closed with at-invariant do­
mainD(A); 

(2) strongly continuously differentiable on domain 
D(A); and 

(3) obey the resolvent estimate 

IIR (A(l),A )11<(1 +/0- 1
, A>O. (4.7) 

Then 
(a) the Cauchy problem in Tt. is uniformly correct; 
(b) the evolution operator CZt (l,s) associated with the 

uniformly correct Cauchy problem is strongly continuously 
differentiable in the variable SE [0, T] on the domain D (A), 
and satisfies 

and 

aCZta~,s) 1= - CZt (l,s)A (s) J, t,sETt., lED (A ); 

(4.8) 

(c) the evolution operator CZt (l,s) has the uniform 
bound (in Tt. ) 

II CZt (l,s) II < 1. (4.9) 
These results are found in Chap. 3 of Krein's book6 (cf. 

Theorem 3.11). The proof of Theorem 1 is based on the 
determination of CZt (l,s) via the limit of an approximating 
sequence of operators that have an explicit construction. We 
do not display these approximating operators (and the asso­
ciated proofs) since their detailed form is not required in the 
subsequent analysis. 

We turn next to the problem of determining the Schr6-
dinger evolution operators. In this case the Banach space E 
for evolution (4.1) is the Hilbert space L 2 (lRd ). The obvious 
choice of setting A (t,m) = H(t,m) leads to the difficulty 
that the resolvent inequality (4.7) is not fulfilled. However, 
if we let (for all mEC + ) 
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A (t,m) = - (ilfz)H(t,m) - (1 + vTlfz), (4.10) 

it now turns out that (4.7) is satisfied. To see this observe 
that 

R (A (t,m),A ) = ifzR (H(t,m),i[ VT + fz(1 + A)]). 

From Lemma 3(b) 

IIR (A (t,m),A. )11 
fz 1 < =--, A>O. 

[vT +fz(1+A)]-VT l+A 
(4.11 ) 

As defined by (4.10) the operators A (t,m) (for each mEC+) 
are closed, densely defined, and have t-invariant domain Do 

(Lemma 1 ). Furthermore A (t,m) are strongly continuously 
differentiable in tE [0, T] on the domain Do (Lemma 2). Em­
ploying Theorem 1, it follows that the evolution problem 
(4.1) defined by A (t,m) in (4.10) is uniformly correct (for 
all mEC+ ). Summarizing, we have the following conclusion. 

Theorem 2: For each mEC+, the Cauchy problem (in 
T t.) generated by A (t,m) is uniformly correct. Let 
CZt (t,s;m) denote the associated evolution operators for the 
family of generators {A (t,m): tE [0, T] } then 

U(t,s;m) = e(l + vTIIi)(1 - s) CZt (t,s;m) ( 4.12) 

is the Schr6dinger evolution operator [satisfying ( 1 )-( 5) of 
Definition 1]. 

Proof In view of the remarks prior to the theorem it only 
remains to show (4.12). Substituting the right-hand side of 
(4.12) into (4.6) immediately leads to statement (1.10) of 
Definition 1. Equation (1.11) is a direct consequence of 
identity (4.8). Properties (1)-( 4) of Definition 1 follow 
from results (1 )-( 4) in Proposition 1 and Theorem l( c). 
Constant c of (1.7) is 1 + vTlfz. 0 

The Schr6dinger evolution operator defined by (4.12) is 
dependent on the complex mass m. For all mEC+, including 
the real axis boundary, U(t,s;m) is m-strongly continuous. 
Specifically we have the following. 

Proposition 2: Let U(t,s;m) be the Schr6dinger evolu­
tion operator of Theorem 2. For each t,sETA , U(t,s;m) is 
strongly continuous in C+. 

Proof Let IEDo, and m,mIEC+ and mi=m l • Formula 
(4.12) shows that U and CZt have the same continuity prop­
erties in m. The function CZt (t, 1";m I) CZt ( 1" ,s;m) I is strongly 
differentiable in 1" with the result 
a 

- [CZt (t,1";m I) CZt (1",s;m) ] I 
a1" 

_ 17), ( • ) aCZt (1",s;m) I 
- -u t,1",m l 

a1" 

aCZt(l,1";m l ) 17),( )1 + -u 1",S,m 
a1" 

= CZt (t,1";m I) [A (1",m) - A (1",m l )] CZt (1",s;m) f 
(4.13 ) 

The second equality follows upon using Eqs. (4.6) and 
(4.8). For fixed t, s, m, and m l the right-hand side of (4.13) 
is strongly continuous for 1"E[s,t], thus we may integrate 
( 4.13) with respect to 1" and obtain 

CZt (t,s;m) 1- CZt (t,s;m l ) I 

= f d1" CZt (t,1";m I)[A ( 1",m) - A ( 1",m I) ] CZt (1",s;m) f 

(4.14 ) 
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The integral here is the strong Riemann integral. The evalua­
tion of the left-hand side of (4.14) has employed the initial 
condition identity (4.5). 

Put 8 = (1- mimi)' From the definition (4.10) of 
A (t,m) a little algebra shows 

A(r,m) -A(r,m l ) =8{A(r,m) +iY(t)I1i+ 1 +vTI1i}. 
(4.15 ) 

Upon substituting (4.15) into (4.14) and taking the norm of 
both sides, one obtains after utilizing estimate (4.9) 

11'* (t,s;m) 1- '* (t,s,m l ) III 

<:181 rddIlA(r,m),*(r,s;m)/1I 

+ (2VTI1i+ 1)11/11]· 
The integral on the right-hand side is finite and independent 
of m I' Since 8 -+ ° as m 1-+ mEC + the inequality above shows 
that '* (t,s;m) is m-strongly continuous on the domain 
DoCL 2(Rd). The uniform boundedness property (4.9) of 
'* (t,s;m) with respect to mEC+ and the fact Do is dense in 
L 2(Rd) suffices to show that '* (t,s;m) is strongly contin­
uous in mEC+ on the domain L 2(Rd). D 

Let us mention here that other, more general, versions 
of the evolution theory (in the strong sense on a fixed Ban­
ach space) are available (see Tanabe l4

) which allow one to 
obtain similar existence theorems for '* (t,s) but under sig­
nificantly less restrictive assumptions on A (t). However, for 
our considerations Krein's6 approach is sufficient and has 
the advantage that the hypotheses are easily verified. The 
only possible artificial condition seems to be the demand of 
continuous t differentiability of H(t,m). However, this re­
quirement does not seriously restrict the physics one can 
describe in this problem. In particular, recall that the deter­
mination of the electric field from the scalar and vector po­
tentials requires the existence of (J IJt)a(x,t). 

The Schrodinger operators U(t,s;m) have several addi­
tional basic properties, which we do not describe here be­
cause they are not needed in the sequel. First, the mass con­
tinuity is stronger than that stated in Proposition 2. In fact, 
U(t,s;m) is an analytic function ofm in C> . Secondly, in the 
case of quantum mechanical evolution, i.e., when m > 0, 
U(t,s;m) is unitary. A discussion of unitarity in a context 
similar to the one here is found in Dollard and Friedman. 15 

The statements of Theorem 2 and Proposition 2 may be 
extended to include scalar perturbations v(x,t) that generate 
an operator Y(t), that is (for each tE[O,T]) Kato tiny rela­
tive toHo(m), and remains strongly continuously differen­
tiable with respect to tE [0, T], on the domain Do. 

V. CONVERGENT DYSON SERIES 

It is established in this section that the Dyson series is 
strongly convergent for a certain class of initial data func­
tions and that the series sum defines an L 2 solution of the 
Cauchy problem (1.3) and (1.4). 

First we summarize a number of notational conventions 
that will make more economical the description of the multi­
ple integrals that appear in the Dyson series ( 1.17). For each 
integer n, let tn = (tl, ... ,tn ). The allowed domain of tn for 
each t,sETA we denote by t:..n (t,s) = {tn: s<:t l <:·· ·<:tn <:t}. 
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The nth order iterated time integration of series (1.17) will 
be abbreviated by 

{ dtn = rdtn rn dtn_ l .. '1" dtl · 

Several combinations of the measures r(t) and v(t) oc­
cur repeatedly in representations of the kernels associated 
with the Dyson series. Suppose (3 is a fixed vector in Rd and 
aE'Y'v (k). Define the set function [on the measure space 
(Rd,B)] by 

110(t,(3)(e) = 1(3' 7] (t,a)d Irl(t) (eEB). (5.1) 

The measure 110 depends parametrically on t and (3; aEe is 
the variable of integration and 7] (t,a) is the vector-valued 
function defined by the polar decomposition (2.5) of r(t). 
Notice thatl1o(t, (3) is a continuous fIR (Sk 12 ,C) valued func­
tion of the two variables (3 and t. 

Two other measures that appear frequently we denote 
by 117 and,Ll7. Let an = (al, ... ,an ) be an n tuple of vectors in 
Sk' For each positive index l<:n and parameters t, ai_I de­
fine the set function 

117(t,a l , .. ·,al _ 1 )(e) 

1( 1 1-1) 
= -a+ I a j '7](t,a)dlrl(t) 

e 2 J~ I 
(eEB). 

Again, for each allowed al_ I ,117(t,a l , ... ,al _ I) is a t-contin­
uous Banach space-valued function in fIR (S k 12' C). A related 
measure,Ll7 is given by 

fi,7(t,a l + 1 , ... ,an ) (e) 

= ((~ a + i a j ). 7] (t,a)d Irl (t) (eEB). 
Je 2 j~I+1 

If 1= 1 the sum is absent in the expression for 117; and if 1= n 
the sum is missing in the integral for fi,7. As a consequence 

11~ (t) = 11: (t) = fi,: (t) = fi,~ (t). (5.2) 

In terms of the measures 117 andfi,7 we define additional 
composite measures (for I = 1, ... ,n) by 

A- 7(t) = 11(t) - (1ilm) [l1o(t,ao) + 117 (t,al, .. ·,al _ 1)]' 
(5.3 ) 

A 7(t) = 11(t) - Uilm)[l1o(t,a) - fJ,7(t,al+ I , ... ,an n, 
(5.4 ) 

where 11 (t) is given by (2.17). Measure A- 7 (t) depends im­
plicitly on the parameters ao,a I, ... ,al _ I' 1i, and m as well as 
on the three explicit parameters n, I, and t. The measure 
A 7 (t) has implicit dependence on a,al + 1 , ... ,an, 1i, and m. 
Note that we have changed, for reasons of subsequent utility, 
the vector parameter in measure 110 from a o to a as we go 
from (5.3) to (5.4). 

Henceforth, in order to keep track of the different vector 
arguments appearing in the iterated integrals involving mea­
suresA- : , ... ,..1 ~ it is advantageous to introduce the variable of 
integration in the measure symbol. For measuresA- 7(t) and 
A 7(t) the integration variable is most often aiERd. So if g is 
any integrable function on Rd, we now write 
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I g dJ.7(t) as Ig(a[)dJ.7(t;a[). 

The family of measures J. 7 and A 7 have simple norm bounds. 
Since it is assumed that ajESk,j = I-n, it is evident that 

11J.7(t)11<111l(t)1i + (-li/lml)(laol +nk)llr(t)11 (5.5) 

and 

IIA7(t)II<IIIl(t)11 + (-li/lml)(lal +nk)llr(t)II· (5.6) 

Obviously, these bounds are uniform with respect to the pa­
rameters CL n and the index I. 

Finally, Y(Rd
) shall indicate that Schwartz space of 

C 00 functions of rapid decrease in Rd. The normalization 
convention for the Fourier transform is taken to be 

g(a) = 1 Ie~jx.ag(x)dx, gEY(Rd). 
(21T)d/2 

Lemma 4: Let ¢>EY (Rd). Suppose t,sETf),., mEiC+, and n 
is any positive integer. 

(a) If 7,,72>0, the operator exp[i7zHo(m)I-li] V( 7"m) 
maps Y ---+ Y. Thus for each tn Ean (t,s), a set of functions 
{tPn} in Y is defined by the recurrence relation 

tPn (t,s;t n ) = exp[ - i(t - tn )Ho(m)I-li] 

X V(tn,m)tPn~ 1 (tn,s;tn~ I)' (5.7) 

where 

tPo(t,s) = exp[ - i(t - s)Ho(m)I-li]¢>. (5.8) 

(b) The value of tPn (t,s;tn ) atxERd is given by the iterat­
ed integral 

tPn (t,s;tn) (x) 

= 1 I dao ¢(ao) 
(21T)d/2 

X {I dJ. 7 (tl;a,)" J dJ. ~ (tn ;an ) 

Xexpix' Iaj --
1

- I (t-t[Vtj)a['aj , 
[ 

n '-li n ] } 

j~O 2m [,j~O 
(5.9) 

where t[ V tj = Max (t[,tj ) and to='s. If n = 0 the multiple 
integral symbol is replaced with 1. 

(c) The Fourier transform of tPn (t,s;tn) is the function 
¢n (t,s;tn )EY, defined pointwise by 

¢n (t,s;tn) (a) 

= I dA ~ (tn;an )" J dA7 (t,;a,)¢( a - jt, a j ) 

xexp { - ;~ [(t-tn )a2 + (tn -tn~l) 

X(a-an )2+ ... + (tl-S)(a-jt, ajy]). 

(5.10) 
Proof: Since the action of the operators V(t,m) [and 

W(t,m)] are the same on both CO' and Y, the differential 
form of Von Y is given by (3.5) and (3.8). The fact that 
a(' ,t) and v(·,t) are COO functions of x, imply that V(t,m) 
maps Y into Y. Combining this with the fact that operator 
exp[ - i72H o(m)I-li] is unitarily equivalent to multiplica­
tion by exp [ - i-li7 za2/2m] establishes (a). 
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Consider (b) and (c). First observe that the expression 
(5.9) for tPn is just the inverse Fourier transform of ¢n in 
(5.10) followed by a change of variable 
a---+ao = a - al - ... - an and use of the identity 

(t-tn)(an + ... +ao)2+ .. , + (tl-s)(ao)z 

n 

= I (t - t[ Vtj)a[ . a j . 
[,j~O 

(5.11 ) 

Thus it only remains to verify (5.10) for all n>O. If 
n = 0 the right-hand side of (5.10) isjust 

exp[ - i-li(t - s)a2/2m]¢(a) 

and (5.9) results as the inverse Fourier transform. For n> 1, 
let 7 2,71>0 and calculate the effect of exp[ - i'TzHo(m)1 
-Ii] V(7 1,m) on an arbitrary element f of Y. The action of 
V( 7"m) on f is given by the sum of terms that appear in 
(3.5) and (3.8). The use of the integral representation 
( 1.13) for a (x,t) leads to 

[: a(x,71 ) • V f] (x) 

-1 -iiI A = - daof(ao) 
(21T)d/2 m 

X I dlrl(71;a')eiX (ao+a'lao ·1J(7"a'). 

Likewise one has 

[;~ (V . a(x,7,»)f] (x) 

-1 -iiI A = - daof(ao) 
(21T)d/2 2m 

xI dlrl(7 1;a')eiX '(ao +a'la' ·1J(7"a'). 

Summing this pair of formulas and adding the similar identi­
ty that describes the operator multiplication by 
(2m)~la(x,71)2 + V(X,71) [see Eq. (2.16)] gives 

[V(7 1,m)f](x) 

= 1 Ida f(a ){IdJ. 1 (7 'a')eix ' (ao+a'l} (21T)d/2 0 0 1 I, , 

where J. : depends also on the parameter ao, as in (5.3). A 
change of variables with au = a - a' and reading off the 
Fourier transform from the last identity yields 

[V(71,m)f] "(a) = I dA:(7 1;a')f(a-a'), 

where A: depends now on the parameter a, as in (5.4). 
Finallymultiplybytheoperatorexp[ - i72H o(m)I-li] toob­
tain 

{exp[ - i72H o(m )I-li] V( 7 1,m) f}" (a) 

= f dA: (71;a')exp [ - ;~ 72a
z]f(a - a'). (5.12) 

In representation (5.12) we are free to replace measure A : 
withA ~, since (5.2) shows that these two measures are iden­
tical. Note that measures A : and A ~ depend parametrically 
ona. 

In order to obtain expression (5.10), just apply (5.12) 
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iteratively, together with an appropriate induction argu­
ment. First, set 7'z=t-tl, 7'1=t l , a'=al, and 
f(a) = ¢o(tl,s)(a) and observe that (5.12) is the result 
(5.10) for n = 1. Now assume (5.10) is valid for some 
n - 1;;;.0, put 7'z = t - tn' 7'1 = tn' a' = an' A: = A ~ and 
further suppose 

f (a) = ¢n _ 1 (tn,s;tn _ 1 )(a) 

in (5.12). Then after some careful algebra, it follows that 
(5.10) holds for n. 0 

If the evolution problem is specialized, by setting 
a(x,t) = Oorequivalently y(t) = o then statements (b) and 
(c) of Lemma 4 simplify substantially. Measure definitions 
(5.3) and (5.4) reduce to 

A j(t) = A j(t) = v(t), 

and formulas (5.9) and (5.10) are closely related to prior 
known results for the static scalar field problem [Ref. 4, Eq. 
(3.12); Ref. 5, Lemma 2]. 

The continuity properties of tP nand ¢ n follow from their 
defining integral expressions. It proves useful to label the 
region of allowed t, s, and tn vanatlOn. Put 
Iln (T) = {(t,s;tn ): t,sET~ ,tn Elln (t,s)}. Since tPnEY, it is in 
the domain ofHo(m) and thereby Ho(m)tPn isa well defined 
element of L z. A pointwise construction of Ho(m)tPn is 
available from the Fourier transform. The action of Ho(m) 
on ¢n is multiplication by Ujz/2m)az, or 

[Ho(m)tPn (t,s;tn)] 1\ (a) = 4>n (t,s;tn) (a) 

== (fN2m)aZ¢n (t,s;tn ) (a). 
(5.13 ) 

Having defined 4> n pointwise for each aERd, it is evident 
that <f,n (t,s,tn )EY and also that Ho(m)tPn (t,s;tn) 
= <l>n (t,s;tn )EY. 

Lemma 5: Let ¢lEY (Rd), m~C+ and n~1. 
(a) The Y -valued functions tP n ( • ) and <I> n ( • ) mapping 

Iln ( T) --L P are continuous throughout (the compact do­
main) Iln (T) in the norm II' lip for all 1 <.p<. 00. 

(b) The Y -valued functions tPn (.) and <I> n (.) mapping 
Iln (T) --L q are continuous throughout Iln (T) in the norm 
11'llq for all 2<.q<. 00. 

Proof: Observe first that statement (b) is an immediate 
consequence of (a). The Hausdorff-Young theorem for 
Fourier transforms asserts (Ref. 16, p. 11) 

IItPllq <. (217' )d(Z-' - q-') 1I¢llp, 

wherep-I + q-I = 1 and 1 <.p <. 2. In our context this means 
that if ¢n (.): Iln (T) --L p is continuous in 1I'llp then so is its 
inverse Fourier image tPn (.): Iln (T) --L q ~n norm 1I'llq 
where 2<.q<. 00. The same remark applies to <l>n ('). 

The proof of (a) is based on theformula (5.10) for ¢n' 
In order to carry out the required estimates it is useful to 
revise (5.10) somewhat. Let us scale the measure A j by di­
viding by (1 + lal + nk). So we define 

lj(tI)==(1 + lal +nk)-IAj(tI)' 1= l~n. (5.14) 

From (5.14), (5.6), (2.15), and (2.17) a bound for the total 
variation of 1 j is obtained. If we set 

PT== (1/2Iml)11 + vT, 
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then 

(5.15 ) 

This bound is clearly uniform in a, al + 1 , ... ,an, and tl' Fur­
thermore, note that the convergence of 1 j(t /) --1 j(tl) as 
t; --tl also has an a, a l+ I, ... ,an uniform character, since 

III j(t /) -1 j(tl) II 

<'llp(t[) -pUI)11 + (11/lml)llyU[) -yUI)II· 
(5.16) 

Consider the proof of (a) for <f, n' Choose two different 
points from Iln ( T), say t " s', t~ and t, s, tn' then put 

D4> n = 4> n (t , ,s' ;t~ ) - 4> n (t,s;tn ). 

It proves convenient to let I (t,s;tn ) be the exponent factor 
in (5.10), i.e., 

IU,s;tn)=exp __ ,_ L (t-tIVtj)al'aj , 
[ 

~ n ] 

2m l,j=O 

( 5.17) 

where ao = a - a j - ••• - an' Formulas (5.13) and 
( 5.10) allow us to write D4> n as the sum of two parts 

D<f,n = DI4>n + Dz4>n' 

D j 4>n(a) = [J dl~(t~;an)'" J dl~(t;;al) 
-J dl ~ (tn;an)'" J dl ~ (tl;a j )] (~/2m) 

xl (t ',s';t~ )az(1 + lal + nk)n¢(ao), 

Dz4>n (a) = J dl ~ (tn;an)'" J dl ~ (tl;a l ) 

X [I (t ',s;t~ ) -I (t,s;tn )] 

X (112/2m)a2( 1 + lal + nk)n¢(ao). 

Investigate D24>n first. The allowed argument of the ex­
ponential I always falls in the right-half complex plane. If 
Z IhEC with Re Z 1 >0, Re Z2>0, recall the standard bound 

Ie -z, - e -z'l <.Izi - zzi. 
Applying this inequality to the difference of two /'s gives 
the estimate 

I I (t ',s';t~ ) -I (t,s;tn) I 
<.l m l- I11(lal +nk)2 

X [It' - t I + It ~ - tn I + ... + Is' - sl] 

for all aERd and ajESk • 

The function ¢EY, thus there is a constant C", < 00 such 
that 

(1 + lal +nk)n+ 4 1¢(a-
j
tl aj)1 <C",(1 + lal)-d-I 

(5.18 ) 

for all aERd, ajESk • Combining the t~o previous inequalities 
with (5.15) and the definition of D2<1> n leads to the estimate 

A 1 (11)n ID2<1>n(a)I<T113Iml-2c", PT+ m YT (1+lal)-d-1 

X [It' - t I + Is' - sl + jtl It; - tj I] . 
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The function (1 + lal) ~ d ~ 1 is in L P for all 1 <p< 00, 

thereby we obtain that D 24>n --->0 in the II' lip norm as 
t',s',t~ --->t,s,tn. 

To complete the study of D4>n' turn to D I 4>n. In this 
term the difference in the values of 4> n at t " s', t~ and t, s, tn 
arise solely from the different measur~s in the integrals en­
teringD1CPn. The formula (5.10) for¢n is defined as an n­
fold iterated integral. However, this iterated integral may be 
replaced by a multiple integral on the measure space 
(JR~ x··· XJRt, B x··· XB) with respect to the scalar-val­
ued product measure X ~ Ct n ) X ... xX 7 Ct 1)' In defining 
this product measure one should recall that the conventional 
construction of the product measures from the component 
measures, X 7 Cti ), does not allow the variable, say a i' of one 
measure to be a parameter in another measure as it is here for 
X 7 (t[) for 1< i. This difficulty is easily circumvented by ex­
panding out the measures X 7 according to their definition in 
( 5.4) and (5.14). After this is done X ~ Ct n ) X ... X X 7 Ct 1 ) 
may be expressed as a sum of product measures that takes 
the form ofa string whose elements are either Iyl (.) or /-l (.), 
e.g., Iyl Ctn ) X Iyl Ctn ~ 1 ) X/-l Ctn ~ 2) X ... X Iyl C(2 ) X/-lCt I )· 

This product string is such that the parameters are only the 
tn and so the variables of each of the constituent measures 
are independent. From (2.21) it is evident that the product 
measure is continuous for tn EAn (t,s) in the total variation 
norm. 

An addition and subtraction of cross terms of the form 
Xn(t )X···xXn(t.)XXn (t' )X"'xXn(t') to-n n } } J~l J~I 1 1 

gether with Eq. (2.9) and estimates (5.15) and (5.16) 
shows that 

IIX ~ (t~) X··· xX 7Ct;) -X ~Ctn)X'" xX 7CtI )11 

( 
~ )n~l n [ 

< /-IT +~YT j~l II/-lCt}) -/-lCtj ) II 

+ 1~IIIYCt}) - yCtj)II]. (5.19) 

Using inequality (5.18) and the bound If (t ',s,t~ ) 1<1 gives 
us the pointwise estimate 

A ~2 C'" ( ~)n ~ 1 

ID1CPn(a)I<2Iml (1+lal)d+l /-IT+~YT 

X jtl [II/-l Ct}) - /-l Ctj ) II 

+ 1~llly(t}) - y(tj) II]. 

Since (1 + lal) ~ d ~ 1 is in L pedal for alII <p< 00 it is seen 
that IID I 4>n lip --->0 as t ',s',t~ -:t,s,tn· A 

Furthermore note that ¢n differs from CPn only by the 
multiplicative factor (~2/2m)a2. Thus the argument above 
is easily modified to show the continuity of ¢n in II' lip . D 

The next task is to give a precise meaning to the time 
ordered multiple integrals that appear in the Dyson expan­
sion (1.17). This may be done either in an abstract manner 
on the space L q or in a pointwise sense. The lemma below 
establishes the equivalence of these two approaches. 

Part (b) of Lemma 5 asserts the strong continuity in tn 
of the function ¢n (l,s;'): An (l,s) --->L q, 2<q< 00. This prop-
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erty makes it possible to define a family (for t,s,mETtJ, X C+) 
of linear operators D n (t,s;m): Y ---> L q by the abstract L q 

integral, 

Dn(l,s;m)t,b=( ~ir F dtn ¢n(t,s;tn )· (5.20) 

The integral above is the Riemann integral on the n-dimen­
sional domain An (l,s) which converges in the 11'llq topology. 
The variability of q means that Dn (t,s;m): Y --->L 2nL "'. 

Lemma 6: Let t,bEY(JRd), mEC+, and n;;d. Suppose 
t,sETtJ,. 

(a) For each XEJRd
, ¢n(l,s;')(x): An (t,s)--->C is Rie­

mann integrable on the domain An (t,s) and for almost all x 

[Dn (t,s;m)t,b] (x) =( ~irF dtn ¢n(t,s;tn)(x). 

(5.21 ) 
(b) For each aEJRd

, ¢n(t,s;')(a): An (t,s)--->C is Rie­
mann integrable on the domain An (t,s) and for almost all a 

[Dn (t,s;m)t,b r" (a) = ( ~ i r F d tn ¢n (l,s;tn )(a). 

(5.22 ) 
Proof Relation (5.21) asserts that the abstract Rie­

mann integral in (5.20) and the numerically valued Rie­
mann integral on the right-hand side of (5.21) construct the 
same L q element. For fixed n, t, s, and m the function 
¢n (t,s;' )(x) is [by Lemma 5(b), with q = 00] known to be 
continuous for tnEAn (t,s) uniformly with respect to XEJRd

• 

Thus ¢n (t,s;') (x) is Riemann integrable on the n-dimen­
sional domain An (t,s) , and thereby one has that the numeri­
cally-valued Riemann integral on the right-hand side of 
(5.21) is well defined for each x. The almost everywhere 
equality (5.21) is obtained as a direct consequence of the 
defining convergence criteria for vector-valued and the nu­
merically valued Riemann integrals. For a more general 
characterization of this type of equivalence see Ref. 17 (p. 
69). 

Finally observe that (b) is the result of the Fourier 
transform (in the Plancherel sense) of (a). Specifically, 

[Dn(t,s;m)t,b]i\(a) = lim 1 ( dxeia
·

x 

L~", (21T)d/2 )Ixl <L 

X{( ~ir F dtn ¢n(l,s;tn)(X)}. 

Fubini's theorem applies and justifies interchanging the 
dx d tn order of integration. Dominated convergence togeth­
er with Lemma 5(a) and Lemma 4(c) then gives result 
(5.22). D 

In preparation for showing that the sum over n of 
Dn (t,s;m)t,b constructs a solution of the complex mass 
Schrodinger evolution equation we require a statement of 
the recurrence relation that the operators Dn obey. In the 
following we need the standard theorem justifying the inter­
change of operator order and strong-Riemann integration. 
Let A be a closed operator on L 2(JRd). Suppose f (T) is an 
L 2-valued function on the compact region A C JRn. If both 
f ( T) and [Ail ( T) are strongly continuous in A, then 

A If(T)dT= 1 [Af](T)dT. (5.23) 
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Both integrals here are the strong-Riemann integral. The 
identity is a straightforward consequence of the closedness 
of A and the definition of the strong-Riemann integral. 

Lemma 7: Let ¢EY(lRd), mEIC+, sE[O,T], and n;;'O, 
then for all fE[S,T]. 

(a) Dn (t,s;m)¢EDo' 
(b) Dn (t,s;m)¢ is strongly continuously differentiable 

with respect to fE[S,T] with derivative denoted by 
Dn (t,s;m)¢. 

(c) The recurrence relation (where Dn _ I = 0, if 
n = 0) 

ifzbn (t,s;m)¢ = Ho(m)Dn (t,s;m)¢ 

+ V(t,m)Dn_ 1 (t,s;m)¢ (5.24 ) 

holds. 
Proof Property (a) is satisfied if a 2 

[ D n (f,s;m) ] 1\ (a) 
as in L 2. But from (5.13) and (5.22) one has the pointwise 
representation 

fz2 
- a 2

[ Dn (t,s;m)¢] 1\ (a) 
2m 

= ( ~ i r f< d tn <I> n (t,s;tn )( a). (5.25) 

Recall that <l>n (t,s;·):!::.n (t,s) ~L 2 is 11'112 continuous for all 
tn E!::.n (f,s). Similarly the pointwise function <I> n (t,s; . ) (a) : 

!::.n (f,S) ~ IC is continuous in absolute value norm 1'1 for all 
tnE!::.n (t,s) and each aElRd. [Lemma 5, part (a) withp = 2 
and p = 00, respectively.] Thus the L 2 and the numerical 
Riemann integrals of<l>n are equivalent for almost all a, i.e., 

{ dtn <l>n (t,s;tn )(a) = [{ dtn <l>n (t,s;tn)] (a). 

So the right-hand side integral in (5.25) defines an element 
of L 2. Furthermore because of the 11'112 continuity of<l>n in 
!::.n (T), it is seen that (5.25) defines a 11'112 continuous func­
tion of tE[s,T]. 

Consider (b) and (c) together. We introduce an L 2_ 

valued auxiliary function of 8> 0 and tnE!::.n (t,s) (for some 
fixed sand t), 

R (t,s;8;tn ) =- t/ln (t + 8,s;tn ) - t/ln (t,s;tn ) 

+ (ilfz)8Ho(m)t/ln (t,s;tn)' 

Obviously, from the known properties of t/ln and Hot/ln this is 
an L 2-continuous function oftnE!::'n (t,s). So we may write 

!::.+ (8)¢=- (118) [Dn (t + 8,s;m) - Dn (t,s;m) ]¢, 

where (for all 8 > 0) 

!::'+(8)¢=~{8( _i)n+1 ( dtnHo(m)t/ln(t,s;tn ) 
8 fz J /lnU.S) 

+ ( - i)n ( dtn t/ln (t + 8,s;tn ) 
fz J /lnU + D,S) 

- ( -ir ( dtn t/ln(t + 8,s;tn ) 
fz J/lnU,S) 

+ ( - i)n ( dtn R(t,s;8;tn )}. (5.26) 
fz J/lnU,S) 

Since Ho(m) is closed, identity (5.23) means that the first 
term on the right-hand side of (5.26) is equal to 
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(5.27) 

The contribution of the R integral is also easy to evalu­
ate. The operators Ho(m), exp[ - i8Ho(m)lfz] , and 1 are 
all closed. Equations (5.7) and (5.23) then yield 

8- 1 
( - i)n ( dtn R(t,s;8;tn ) 

fz J /l(t,s) 

= 8- 1 [e-iDHo(m)/fi _ 1 + i8Ho(m)lfz]Dn (t,s;m)¢. 

(5.28) 

By part (a), Dn (t,s;m)¢EDo. Since e-iDHo(m)/fi is strongly 
differentiable with respect to 8 on Do with right derivative 
- iHo(m)lfz at 8 = 0, the 11'112 norm of the right-hand side 

of (5.28) vanishes as 8~0+. 
It remains to consider the middle two terms on the right­

hand side of (5.26). The difference in value of these two 
terms arises from the different domains of integration. Note 
that 

1 J
t+D i 

dtn = dtn dtn_I' 
/In(t + D,s) ,/In(t,s) t /In _ 1 Un'S) 

Defining, 

g(tn) =- ( dtn_ 1 t/ln (t,s;tn ) 
J 11" _ I (t",s) 

(5.29) 

we have upon multiplication by (ifz)n 

Jt+D 1 
8- 1 dfn dtn_ 1 t/ln (t + 8,s;tn ) 

t tJ." _ I«(,,'S) 

x { In_l(tn,S) d tn - I [t/ln (t + 8,s;tn ) - t/ln (t,s;tn )] }. 

(5.30) 

Lemma 5 demonstrated that t/I: !::.n (T) ~L 2 is continuous 
throughout the compact domain !::.n (T). Thus t/I is uniform­
ly continuous in this domain and in particular for any E> 0 
there is a 80 independent of f, s, tn such that for all 8 < 80 

Iit/I(t + 8,s;tn) - t/I(t,s;tn ) liz < E. 

This suffices to show that the 11'112 norm of the right-most 
integral in (5.30) vanishes as 8 ~ 0 + . 

The integral over g(tn) may be evaluated as follows. 
Application of the mean-value theorem for the strong-Rie­
mann integral (Ref. 18, Proposition 2.4.7) states that 

whereg is some element of the closed convex hull of the set of 
values of g(tn) on the interval [f,f + 8]. In our context g is 
defined by integral (5.29) and is a strongly continuous func­
tion of fnE[S,f]. Thus as 8~0+ one has 
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Using 5.7 and upon noting that V(t,m) is closed it is found 
that 

( - i)n g(t) = ( - i)n i dtn_ 1 tPn (t,s;tn_ 1 ,t) 
fz fz ~n _ I (t,s) 

-i 
= ----,;- V(t,m )Dn _ 1 (t,s;m)¢ 

is the 0 ..... 0+ L 2-limiting value of the right-hand side of 
(5.30). 

Combining these conclusions establishes that 
Dn (t,s;m)¢ is right differentiable in t and obeys 

a+ 
ifz - Dn (t,s;m)¢ 

at 

= Ho(m )Dn (t,s,m)¢ + V(t,m )Dn _ 1 (t,s;m )¢. 

In order to obtain the statement (c) of the lemma, recall 
that [in the analysis of (a)] Ho(m)Dn (t,s;m)¢ was shown 
to be a continuous L 2-valued function of t. Furthermore, the 
function get) or equivalently V(t,m)Dn _ 1 (t,s;m)¢ is also 
known to be a continuous L 2-valued function of t. The fact 
that Dn (t,s;m)¢ is right continuously differentiable in t for 
every point of [s,T] suffices (Ref. 6, p. 4) to show that 
Dn (t,s;m)¢ is continuously differentiable in t with respect to 
norm 11'112' D 

We conclude this section by establishing that the sum 
over n of the functions Dn (t,s;m)¢ given by (5.20) consti­
tutes a solution of the Schrodinger evolution problem (1.3) 
and ( 1.4). Showing convergence of these sums compels us to 
restrict the class of initial data functions to ¢EC (; (Rd)-the 
compactly supported C 00 functions in momentum space. In 
the next section we will show how this class of functions may 
be enlarged. 

Proposition 3: Assume aErv (k) and VErs (k). Let 
~ d 
¢EC(;(R ). For t,sET~, mEC+ define 

t*=s+lmllekYT (5.31) 

and 
N 

'l'N(t,s;m) = I Dn (t,s;m)¢. (5.32) 
n=O 

(a) IftE[S,t *) the sum over n = 1- 00 ofllDn (t,s;m)¢II, 
IIHo(m)Dn (t,s;m)¢II, II V(t,m)Dn (t,s;m)¢II, and 
IIDn (t,s;m )¢II are all finite. 

(b) IftE[s,t *) theL 2(Rd)-valued function oft,s, andm 
given by 'I' (t,s;m) = limN _ 00 'I' N (t,s;m) has range Do; is t­
strongly continuously differentiable; obeys the Schrodinger 
equation 

ifz~ 'I'(t,s;m) = H(t,m)'I'(t,s;m); 
at 

and satisfies the initial condition 

'I'(s,s;m) = ¢. 

(5.33 ) 

(5.34) 

Proo/' Consider the sum of IIHo(m)Dn (t,s;m)¢II. From 
(5.10), (5.17), and (5.22) we have the Fourier representa­
tion 

In (a) = [Ho(m )Dn (t,s;m)¢] A (a), 

where 
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In (a) = ~:2 ( ~ ir (21T)d/2 

X { d tn f d.~ ~ (tn ;an ) ... 

X f dA7(tI;a l )!(t,s;tn )¢(ao). 

Since ¢ has compact support in Rd there is a positive b < 00 

such that this support is contained within the ball S bk' Recall 
a o = a - ~;= 1 aj ; thusiflal>(n + b)k the support criteria 
for¢implies I¢(ao) 1= o for all ajESk ,j = 1-n. Asaconse­
quence In has its support inside the ball S(n + b)k' 

A pointwise bound for In (a) results from using I! I < 1 
and the inequality 

f d IA ; (tj;aj ) I </LT + ~ (n + b )kYT' 
Iml 

One readily finds 

IIn(a)l< [M(n +b)f 1I¢1100 ~ 
21ml (21T)d/2 n! 

x[C~S)0T+I~1 (n+b)kyT)r 

In view of the compact support of In on S(n + b)k' this esti­
mate implies that In has finite L 2 norm. For some constant 
finite C, independent of n, 

IIIn II<C [(n + b)~ ]2+d/2 
n. 

X[C~S)0T+ I~I (n+b)kYT))". (5.35) 

An application of the ratio test to the sum over n = 1- 00 of 
the terms on the right-hand side of (5.35) shows that the 
series converges if t - s < I m I (eky T ) - I. This implies, under 
the same restriction on t, that 

00 
I 11H0(m)Dn (t,s;m)¢11 < 00. 

n=O 

A similar argument shows the sum over n of IIDn (t,s;m )¢II is 
finite. 

The operator V(t,m) is Ho( m) -bounded, so the conver­
gences established above imply that the sum over n of 
11V(t,m )Dn (t,s;m )¢II is also finite. Finally, because of iden­
tity (5.24), the sum of IIDn (t,s;m)¢11 is seen also to con­
verge. Lastly, note that all these series of norms are uniform­
ly convergent for t in compact subsets of [s,t *). 

Consider (b). First recall the standard interchange of 
limit theorem for derivatives. Let {h N (t)} be a sequence of 
L 2-valued strongly continuously differentiable functions on 
[a,b], which converge in norm 11'11 to h (t) as N ..... 00. Sup­
pose further that {ahN (t)lat} is a sequence which on [a,b] 
uniformly converges in norm 11'11 to g(t). Then h (t) is con­
tinuously differentiable in norm 11'11 and 

~h(t) =g(t), tE[a,b]. (5.36) 
at 

Here hN corresponds to ~;;=o Dn (t,s;m)¢, and ahN(t)lat 
is ~;; = 0 Dn (t,s;m )¢. Thus we have 
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a 00 • * 
- 'I'(t,s;m) = l: Dn (t,s;m)¢, tE[S,t - 8]. at n=O 

To continue note that Ho(m) is closed, and that both 
~~ = 0 Dn (t,s;m)¢ and ~~ = 0 Ho(m )Dn (t,s;m)¢ are Cauchy 
sequences in L z. Thus the definition of closure gives 

00 

Ho(m)'I'(t,s;m) = l: Ho(m)Dn (t,s;m)¢. 
n=O 

The operator V(t,m) is also closed and is Ha(m) bounded. 
Arguing as above shows 

00 

V(t,m)'I'(t,s;m) = l: V(t,m)Dn_ 1 (t,s;m)¢. 
n=O 

Combining the last three identities with recurrence relation 
(5.24) proves (5.33). 

The initial condition (5.34) follows from the uniform 
strong convergence in t of the series for 'I' (t,s;m) together 
with the fact that as t-s, Dn (t,s;m)¢ goes strongly to zero 
while Da(t,s;m)¢ goes strongly to ¢. D 

VI. COMPLEX MASS PROPAGATOR AND ITS 
BOUNDARY VALUE 

The goal in this section is to prove that, for masses with a 
positive imaginary part, ~:= a Dn (t,s;m) is a bounded inte­
graloperator. Growth estimates for the kernels of D n (t,s;m) 
are found which allow one to sum over the index n in order to 
obtain a candidate kernel for the evolution operator 
U(t,s;m) of Theorem 2. The uniqueness property of the uni­
formly correct Cauchy problem is then used to establish that 
this candidate kernel is the integral kernel of U(t,s;m). Fin­
ally the continuity in mass is utilized to extend this kernel 
representation to the real mass axis. 

We begin by defining the measures that enter the ensu­
ing kernel representations. In analogy with Eq. (5.3) set 

p/(t) =f-l(t) - (fllm)f-l7(t,a!> ... ,a/_ I ), (6.1) 

where the measure ofp/EWC(Sk'C) and depends parametri­
cally on t, a I, ... ,al _ I' fl, and m. Notice that the parameter aa 
found in A 7 is now absent. This is natural for the representa­
tions given below since the aa dependence is removed by a 
Fourier transform. The total variation norm of PI (t) has the 
bound 

Ilpl(t)II<f-lT + (fl/lml)nkrr (l<n), 

which is uniform with respect to all the parameters not ap­
pearing on the right-hand side of the estimate. 

Let n be the order of the Dyson iterate. For each positive 
index r<n, put jr = (jl,jz, ... ,jr) and define the ordered in­
dex set 

In,r = {jr: 141 <jz < ... <jr<n}. 

There are C) elements jr in In,r' To each jr we associate a 
measure in the product space (Rf X ... X R~ ,B X ... X B), 

An (jr,tn ) 

=PI(tI) X··· X IrIUj ,) X··· X Irl (tj) X··· XPn (tn)· 

The right-hand side of this equality is to be understood in the 
following sense. Ifr = 0, the measure involves only the prod­
uct of P; (t;) for i = 1 ~ n. In the case where r> 0 and 
jr = (jl,· .. ,jr) then thej; term of the product for the r = 0 
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case has the element Pj, (tj,) replaced with I rl (tj, ), i = 1 ~ r. 
It is evident that An has the uniform bound [for jrEJn.r and 
tnEiln (O,T)] 

( 
fz )n - r IIAn(jr;tn)ll< f-lT+j';Inkr T r;. (6.2) 

In order to prepare for Lemma 9, we require a certain 
product derivative formula. The greatest integer less than or 
equal to r 12 is denoted by [r /2 ] . 

Lemma 8: Suppose hJ~ is a set of r vectors in Rd. If 
xERd and ZEC the formula 

(111 . V)"'(17r . V)ezlxl ' 

[r/Z] 

=ezlxl'l: (2z),-/l:' (x . 17;/)"'(X '17;'~2) 
1=0 r,1 

X (17;,_21+, . 17;,_21+2)'" (17;,_, . 17;) (6.3) 

holds. Here ~;,I represents the sum over all divisions of the 
elements h;}~ into particular subsets. For a given I, a parti­
cular division is obtained when r - 21 vectors from {17J~ are 
chosen (indexed by i 1 ~ i r _ 21 these vectors enter the r - 21 
scalar products with x), followed by the selection of 1 pairs 
from the remaining 21 elements [indexed by ir _ 21 + 1 ~ i r' 
each pair forms one of the scalar products of 17; on the right­
hand side of (6.3)]. For a given r and I, ~;,I is the sum over 
all distinct choices of this type. There are r! [21 (r - 2/)!i!]-1 

terms in the sum ~;,I' 
The one-dimensional case (d = 1) offormula (6.3) is in 

Ref. 19 (p. 20, 0.432.2). An inductive proof of the general 
case (d> 1) which is combinatorial in nature may be found. 

Lemma 9: AssumeaErv (k) and VErs (k). Let t,sETa , 

(t #s), and n)O. 
(a) If mEC> then the operator Dn (t,s;m): 

Y -L 2nL 00 is an integral operator with a jointly contin­
uous Carleman kernel d n (t, . ;s . ;m): Rd X Rd - C such that 
for almost all x 

[Dn U,s;m)¢] (x) = J dn (t,x;s,y;m)¢(y)dy, ¢EY. 

(6.4 ) 

(b) For mEC> the pointwise value of d n is given by 

where Xn ECd and 

fz n 
Xn = X - - l: (t - tp )ap • (6.6) 

m p=1 

The integral in (6.5) remains well defined if mER'\ {O}. In 
this way the definition of dn is extended to C+. 
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(c) For mEC+, dn has the estimate (for all 
X,YEJRd X JRd) 

Idn (t,x;s,y;m) I 

< ( Iml )d12 [2ek(t-S) YT]n 
21Tfz(t - s) Iml 

Xexp- (X-y)2+Cllx-yl+C2, 1 [- 1m m ] 
2fl t - s 

(6.7) 

where 

Iml 
C I = --'---'---, C 2 = 

k(t - s) 

Iml + Iml,uT . 
2k 2(t - s) kYT 

Prool: Taken together Lemmas 6(a) and 4(b) provide 
(for mEC+) the pointwise representation 

[Dn (t,s;m)t,6] (x) 

= (-=!...)n f d tn { 1 f dao ;P(ao) 
fl < (21T)dI2 

X f dA ~ (tl;a l )" J dA ~ (tn;an ) 

X I (t,s;tn )exP[iX . jto aj ]} , 

where I is the exponential function given by (5.17). The 
region of tn integration has finite volume; I I 1<: 1, ;PEY and 
in view of the inequality (5.5) it follows the mUltiple integral 
above is absolutely convergent. An application of Fubini's 
theorem justifies the interchange of the dao and the d tn or­
der of integration. Thus for almost all x 

[Dn (t,s;m)t,6] (x) = f dn(t,x;s,ao;m);P(ao)dao, (6.8) 

where (for n;;;> 1) 

dn (t,x;s,ao;m) = ( - i)n 1 f d tn 
fl (21T)dI2 < 

X f dA ~ (tl;a l )" J dA ~ (tn;an ) 

xl (t,s;tn )exP[iX . jto aj ] . (6.9) 

If n = 0, the multiple integral is absent and instead one has 

do (t,x;s,ao;m ) 

1 [ - ifl ] = dl2 exp -- (t - s)a~ + ix . a o . 
(21T) 2m 

Expression (6.9) implies a pointwise bound for Idn I. 
Since la; I <:k, i = 1 ~n, the inequality 

n 

I (t - t, V tj )a, . aj;;;>O 
',j= I 

( 6.10) 

valid for all tnEiln (t,s) and all Un (Ref. 5, Lemma 5), gives 
the estimate 

I l(t,s;tn ) I <:hn (ao) 

=exP{lmC:) [a~ (t - s) - 2nk laol (t - s» }. 

Inserting this inequality into (6.9), it is found that 
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A 1 (t-s»)n hn(ao) Idn (t,x;s,ao;m) 1<: ---
(21T)dI2 fl n! 

X [,uT + I~I (nk + laol )YT r- ( 6.11) 

At this point we restrict m and insist that 1m m > O. In 
this case it is seen that the bound (6.11) is in the form of an 
nth order polynomial in laol times a Gaussian function. 
Since t - s> 0 imd Im( 11m) < 0, this Gaussian is decaying. 
Thus the bound function on the right-hand side of (6.11 ) 
belongs to L I (dao) nL 00 (dao)' Furthermore, note that 
;PEL 2(dao), thereby the integral of (6.8) may be interpreted 
as the inner product of two L 2(dao) functions. Parseval's 
relation for L 2 inner products lets one write ( 6.8) in the form 
of (6.4) where the function dn is defined as the Fourier 
transform of dn • Specifically 

dn(t,x;s,y;m) = 1 fe-iy.aodn(t,X;S,ao;m)dao. 
(21T)dI2 

( 6.12) 

Because dn (t,x;s, . ;m)EL I (dao), this Fourier integral ex­
ists absolutely. In particular the Hausdorff-Young theorem 
for Fourier transforms (Ref. 16, p. 11), shows that 
dn(t,x;s,' ;m)EL 2(dy)nL 00 (dy). This establishes that the 
function d n is a Carleman kernel. So part (a) of the lemma 
(with exception of the x,y joint continuity of dn ) is demon­
strated. 

Statement (b) is the consequence of an explicit evalua­
tion of the integral (6.12). In representation (6.9) we use the 
expansion 

(6.13 ) 

which follows from (5.3) and (6.1). Inserting (6.9) into 
( 6.12) and employing (6.13) yields 

1 (- i)n n (- fl)r f f dn=--d- I- I dao dtn 
(21T) fl r=O m j EJ < r r,n 

X f dAn( jr,tn )I(t,s;tn {[II a o ' 1J(tj"aj)] 

XexP[i(X - y) . a o + ix . ptl ap ]. 

Absolute convergence of the multiple integral holds if 
1m m > O. After changing orders of integration the dn inte­
gral is 

where 

and 

II (t,s;tn ) = exp[_-_ifl_ ± (t - t; V tp )ai . a p] 
2m i,p=1 
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Y(jr,tn ) (an) 

=~fdao[fI a o '1](tj"aj)] 
(217") ;= I 

[
-ifz 2 ] Xexp 2;;;- (t - s)ao - iao . (y - Xn) . (6.15 ) 

Xn is the complex vector (6.6). Ifr = 0, then the product of 
a o . 1] factors in (6.15) is replaced by 1. 

All the integrals in (6.15) are LI(dao), (Imm>O), 
and may be evaluated in closed form. For r = 0, the integral 
(6.15) is of the Fresnel type. It is evaluated by completing 
the square in the exponential. In this fashion one obtains 

Y ( jo,tn ) (an) 

= ( m )d12 exp( im (Xn _ y)2) . 
217"ifz(t - s) 2fz(t - s) 

If Xn is replaced by x the right-hand side is do(x,t;y,s;m). 
The square root here is the one that maps the cut plane 
C\ ( - 00 ,0] onto the right half complex plane. For r> 0, 
the integrand has a polynomial in the components of ao, and 
again can be found in closed form, 

Gz- • (m )d12 r . 
Y (Jr,tn )(an ) = 2 'fz( ) II [1](tj"aj ) . 1 Vy ] 

17"1 t - s ;= I 

xexp( im (Xn _ y)2) . (6.16) 
2fz(t - s) 

Combining (6.16) and (6.14) gives expression (6.5) for d n 

in the case where 1m m > 0. 
For each fixed x,y,t > s formula (6.5) defines a holomor­

phic function of m in the half-plane C> . For m in any com­
pact subset of C> , expression (6.5) is a uniformly conver­
gent integral of a holomorphic function of m. If the range of 
m is enlarged to the region C+, then (for fixed x,y,t>s) 
the integral (6.5) defines a continuous function of m. So 
dn (trX;s,y;m) is an analytic function in C> and continuous 
on C+. Thejointx,ycontinuity of dn arises similarly. For x,y 

in any compact subset ofRd XRd the integral (6.5) is uni­
formly convergent (in xJ') and has an integrand that is XJ' 

I 

where for each jrEJr,n the indices ql-qr enumerate the pos­
sible divisions of the set {j»j2" .. ,jJ required by the summa­
tion convention ~;,I of Lemma 8. Although (6.20) is a com­
plicated and lengthy expression it can be bounded in a 
convenient form. Take the absolute value of both sides of 
(6.20). Recall that 11] I = 1 and lh I ,.; 1 for all allowed argu­
ments and note that 

Iy - Xn I,,;Zn == Ix - yl + (nfzk Ilml) (t - s). (6.21) 

Thus the integrand of (6.20) is bounded in absolute value by 
(Zn ),-21 exp[ - 1m m(x - y)2/2fz(t - s)]. With this esti­
mate one finds 
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jointly continuous in this compact region. This conclusion 
holds for all mEC+. 

Consider (c). A detailed understanding of the behavior 
of the exponential functions in (6.5) is necessary for an opti­
mal estimate. First, note that 

II (t,s;tn )exp [ im (Xn _ y)2] 
2fz(t - s) 

[
im(x- y )2 

= /z(t,s;tn )exp -----=--'--
2fz(t - s) 

-i (x-y) . i (t-tp)ap] , 
t-s p=1 

( 6.17) 

(6.18 ) 

The function 8 is the Green's function for the one-dimen­
sionaloperator - d 21dr on the interval [s,t] that vanishes 
at both end points, namely 

8(1",1"') = (t-1"> )(1"< -s)I(t-s), 

where 1" < = min(1",1"') and 1" > = max(1",1"'). In addition a 
useful fact is that the summation in 12 is non-negative [Ref. 
5, (2.37)], i.e., for all tnE..:ln (t,s) (to = s) 

n 

L 8(tp,t; )ap . a; 
;,p= I 

= i [~- _ 1 ] (i (t-t;)a;)\;,o. 
p = I t tp t tp _ I 1= P 

( 6.19) 
This implies that 112 ( . ) I,.; 1 for mEC+, t> s. 

Proceed further by employing Lemma 8 in order to 
evaluate the gradient operators in (6.5). In the notation de­
veloped above 

where 

[r12 J ( Iml )r-I r! B L (Zn ),-21. 
r = 1=0 fz(t - S) 21(r - 21)!l! 

(6.23 ) 
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The result (6.22) uses bound (6.2) for the measure 
An(t,tn ) as well as the tn-volume formula 

f dtn=(t-s)n/n!. 
JA.(t.S) 

Continue by obtaining a simple upper bound for B,. In 
(6.23) replace [(r - 2/)!] -I with the larger n/[ (r - I)!]-I 
and then extend the sum over 1 to 1 = O-r. In this way one 
finds 

B < (ImlZn + _n_)'. 
, fz(t - s) 2Z

n 

(6.24) 

Placing (6.24) into (6.22) brings the sum over r = O-n into 
the form of the binomial expansion. After utilizing 
(n!) -I < (e/n )n, we have 

( 
-Imm 2) Xexp (x-y) . 

2fz(t - s) 
(6.25) 

The term in the curly brackets proportional to Z n- 1 is 
bounded by 

---=-- Ix-yl +--(t-s) <----nfz nfz [ nkfz ] - 1 1 

21mlZn 21ml Iml 2k(t - s) 

and so 

{ } ~[ 2nkfz YT]n[1 +.l~ 
Iml n 2kfz 

x(IlT + Ix-yl +_I __ I_)]n 
YT t -s 2k t-s 

<[ 2nkfz YT]n 
Iml 

xexp[~(IX-YI + IlT +_1 _1_)]. 
2kfz t-s YT 2k t-s 

This last inequality, when combined with (6.25) establishes 
bound (6.7) for Id n I· The estimate (6.7) holds for n;;;. 1 and 
is valid for all mEC+. D 

Lemma 9 establishes that dn is the Carleman kernel for 
the Dyson operator D n provided that the mass has a positive 
imaginary part. However, it is worthwhile to keep in mind 
that dn is also well defined for real masses, m #0. We investi­
gate now the sum over n of the kernels dn • The radius of 
convergence condition we denote by 0 < (J < 1 where 

(J = 2ek(t - s) Iml-1Yr- (6.26) 

Except for the factor of2 this is the same convergence radius 
as found in Proposition 3. Another useful notation is to set 
(t,sETA , t #s, mEC+) 

g(x - y;t,s,m) 

_( Iml )d/2 
= 21Tfz(t - s) 

{ 1[-lmm ]} Xexp -
2

.¥. (x-y)2+cdx-yl+c2 . 
fl t-s 

(6.27) 
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Clearly, if 1m m >0 theng( ·;t,s,m)EL InL 2. 

Lemma 10: Let t,sETA , t #s. 
(a) If 0 < (J < 1, then for each (x,y,m)ElRdXlRdX C+ the 

sum over n = 0- 00 of dn (t,x;s,y;m) is absolutely conver­
gent. The pointwise value of this series is defined to be 

00 

K(t,x;s,y;m) = L d n (t,x;s,y;m). (6.28) 
n=O 

(b) Suppose R2 and M are arbitrary compact subsets of 
lRdXlRd and C+, respectively, and let m_ be the smallest 
value of Iml in M. If 

0< (2ekYT/m_)(t-s) <1 (6.29) 

then series (6.28) is uniformly convergent in R2XM. Thus 
for mEC+, K(t,';s,';m) is jointly continuous in lRdXlRd. 
Furthermore for X,YElRdX lRd and t,sETA , K(t,x;s,y,') is con­
tinuous in M. 

(c) If 0 < (J < 1, then K(t,x;s,y;m) satisfies the estimate 

IK(t,x;s,y;m) 1« 1 - (J) -lg(X - y;t,s,m) (6.30) 

for all (x,y,m)ElRdXlRdxc+. 
Proof Consider (a) and (b) together. Lemma 9(c) 

gives the inequality 

Idn (t,x;s,y;m) I <(J ng(x - y;t,s,m), (6.31) 

whereby 

00 1 L Idn (t,x;s,y;m) I<--g(x - y;t,s,m) < 00. 
n=O 1-(J 

This proves (a) and (c). 
Take D to be the largest value of Ix - yl in R2 and m+ 

the largest value of I m I in M. Estimate (6.7) and the explicit 
expression for C 1 and c2 let us write 

Idnl« m+ )d12[2ek(t-S)YT]n 
21Tfz(t - s) m_ 

{
I [ m+D m+ m+IlT]} 

X exp -2fz- k (t - s) + -2-k--::2c-(t-'_-S-) + --;;:y;- . 
The function on the right-hand side of the inequality is inde­
pendent of (x,y,m)ER2XM. Furthermore, the sum over n is 
finite if ( 6.29) is fulfilled. Thus the uniform convergence of 
the series (6.28) on R2 XM is established. The continuity 
properties in x, y, and m are a consequence of the term wise 
continuity of dn in these variables plus the uniform conver­
gence. D 

The next stage of our analysis is to interpret for positive 
1m m the function K(t,x;s,y;m) as an integral kernel and 
investigate the nature of the operator it defines. Inequality 
(6.30) means that the integral 

h(x) = f K(t,x;s,y;m)f(y)dy (6.32 ) 

is well defined for a large class offunctionsf Let us make a 
few preliminary observations concerning (6.32). Assume 
fEL 2, then 

Ih(x) 1<-I-fg(X - y;t,s,m) If(y) Idy. (6.33) 
1-(J 

The right-hand side of (6.33) is in the form of a convolution. 
Applying Young's inequality (Ref. 16, p. 29) shows that 
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g( ·;t,s;m)EL I impliesh(')EL 2. Thus (6.32) defines a family 
of bounded operators on L 2, specifically K(t,s;m): L 2 -+L 2 
for each t,s,mETa XC> where 

h =K(t,s;m)! (6.34) 

Similar reasoning applies to the understanding of repre­
sentation (6.4) of the operator D n' Estimate (6.7) provides 
the kernel dn with an L I-convolution bound. This means 
that ifIm m > 0 then Dn has a bounded extension, which we 
also denote by D n • 

Proposition 4; Let t,sETa and mEC> . Assume 0 < () < 1. 

(a) IIK(t,s;m)ll" 1 ~ () IIg( ·;t,s,m) III' (6.35) 

(b) The operator-valued series defined by the sum over 
n = 0- 00 of Dn (t,s;m) is convergent in the operator norm 
topology to K(t,s;m), i.e., 

00 

K(t,s;m) = L Dn (t,s;m). (6.36) 
n=O 

(c) Let U(t,s;m) be the Schrodinger evolution given in 
Theorem 2, then 

K(t,s;m) = U(t,s;m). (6.37) 

Proof; (a) is a consequence ofthe Young inequality for 
convolutions, namely 

IIh 112,,(1- ()-llIg(·;t,s;m)lIdIf1l2· 

In order to demonstrate (b) recall that both K(t,s;m) and 
1::=0 Dn (t,s;m) (for finite N) are integral operators. By 
(6.4) and (6.28) one finds 

[K(t,s;m)f- nto Dn(t,s;m)f](x) 

=hN(x) 

= f [K(t,x;S,y;m) - nto dn (t,x;s,y;m) ]f(Y)dY. 

Inequality (6.31) then yields the bound 

()N+ If 
IhN(x)l" -- g(x - y;t,s,m) If(y) Idy 

1-() 
and an application of Young's convolution inequality leads 
to 

II

K(t,s;m) - f Dn (t,s;m) II,,()N+ I IIg( ·;t,s,m) III' 
n=O 1-() 

The right-hand side here vanishes as N -+ 00 and so (b) is 
established. 

Consider (c). Here we bring together the conclusions of 
Proposition 3 and Theorems 1 and 2. Let the initial data 
function ,pEe 0', where eO' denotes the Fourier image of 
cO' (Rd). Proposition 3 states that, if 0 < () < 1, 

00 

'I1(t,s;m) = L Dn (t,s;m),p (6.38) 
n=O 

is a t-strongly continuously differentiable solution of the 
Schrodinger equation (5.33) that satisfies the initial condi­
tion (5.34). Theorem 1 asserts that if the fields a and v obey 
hypotheses ro (k) and rs (k), then the Cauchy problem in 
Ta is uniformly correct. In particular, the strongly continu-
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ously differentiable L 2 solutions of the Cauchy problem are 
unique and may always be represented in terms of the 
bounded Schrodinger evolution operator U(t,s;m) given by 
(4.12). This means that '11 (t,s;m) has a representation 

'I1(t,s;m) = U(t,s;m),p. (6.39) 

Note that if the conclusion of part (b) is used in (6.38) then 
also 

'I1(t,s;m) = K(t,s;m),p. ( 6.40) 

Since eO' is dense in L 2 and both U and K are bounded 
operators Eqs. (6.39) and (6.40) show that these two opera­
tors are identical for all parameters t, s, and m falling in the 
domain of their joint definition. Thus (c) is proved. 0 

Several remarks about the results of Proposition 4 are in 
order. First of all, from (c), (4.12), and (4.9) we have a 
bound 

IIK(t,s;m) II "exp [ (1 + vT/Ii)(t - s)], 

which is a stronger result than (6.35). (It is uniform in 
mEC+!) However, to get this bound we must rely on the 
specific methods of abstract evolution theory.6 This is not 
the case with (6.35) and, at least for mEC> , it guarantees, 
together with (6.36) and Proposition 3, that the Dyson se­
ries construction alone provides a unique propagator type 
solution for the evolution problem considered in this paper. 
So it seems worthwhile to state (a) independently. 

The evolution operator U(t,s;m) is well defined for all 
(t,s,m)ETt; XC+. However, equality (6.37) is demonstrat­
ed for a more restricted set of time displacements, i.e., those 
that satisfy () < 1. 

Estimate (6.7) of Lemma 9 provides the critical control 
ofthe analysis that lets us prove that K (t,s;m) and D n (t,s;m) 
are bounded operators if 1m m > O. Note IIg( . ;t,s,m) III -+ 00 

as 1m m-+O so that inequality (6.35) says little about the 
real axis boundary value of the operator K(t,s;m). 

If in Lemma 9 part (a) one tries to extend the statement 
of (6.4) so that it applies when 1m m = 0 then Fourier trans­
form (6.12) is no longer the transform of an L I function and 
furthermore the Fresnel integrals (6.15) will no longer con­
verge absolutely and at best then require some sort of distri­
butional interpretation. The complex mass method avoids 
all these difficulties. 

Via Eqs. (6.37), (6.34), and (6.32), Proposition 4 
shows that the function K (t, . ;s, ';m) is the (Carleman) inte­
gral kernel of the evolution operator U(t,s;m), namely for 
almost all x 

[U(t,s;m),p ](x) = f K(t,x;s,y;m),p(y)dy (mEC» 

(6.41 ) 

for all ,pEL 2, provided of course that 1m m > O. The final task 
is to extend the meaning of (6.41) to the positive mass axis. 
We denote by L b (Rd

) the L P functions on Rd with compact 
support. 

Theorem 3: Assume aEro (k) and VErs (k). Let 
,pEL ~ (Rd

), m > 0 , and 0 < () < 1. If U(t,s;m) is the Schro­
dinger evolution operator of Theorem 1 and if K (t, . ;s, . ;m): 
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Rd X Rd -+ C is the continuous function constructed in 
Lemma 10, then for almost all xERd 

[U(t,s;m)tfo ](x) = f K(t,x;s,y;m)tfo(y)dy (mER+). 

(6.42) 

Proof' If tfoEL ~ (Rd) then also tfoEL 6 (Rd). Since 
K(t,;s,';m) is a jointly continuous function on compact 
subsets ofRdXRd, the integral in (6.41) defines in Rd a con­
tinuous function of x for each mEC+. Thus, upon setting 
m = m I + i{j (m I > 0, {j > 0), we can consider the {j -+ 0 limit 
of the integral in (6.41) for any point xERd. To this end 
notice that for every fixed xERd Lemma 10 (b) implies that 
there exists a finite constant Cx,t,s such that 

IK(t,x;s,y;m l + i{j)tfo(y) I <Cx,t,s Itfo(y) I, (6.43) 

provided that t, sETa' t =/=s, and 

0< (2ek/m l )YT(t - s) < 1. (6.44) 

Estimate (6.43) and the fact that K(t,x;s,y;m l + i{j) has a 
limiting value K(t,x;s,y;m l ) allows the application of the 
dominated convergence theorem to obtain 

limJK(t,x;S,y;m l + i{j)tfo(y)dy = fK(t,x;s,y;ml)tfo(Y)dY 
.5_0 

(6.45 ) 

where, by Lemma lO(b) the right-hand side of (6.45) is also 
a continuous function of x. 

Put {j = n - I, n = 1 ~ 00. Proposition 2 states that 

s-lim U(t,s;m l + i/n)tfo = U(t,s;ml)tfo· 
n- 00 

A standard result (Ref. 12, Theorem 3.12, p. 70) asserts that 
there exists a subsequence {n j} such that for almost all xERd 

lim [U(t,s;ml + i/nj)tfo] (x) = [U(t,s;ml)tfo](x). (6.46) 
)- 00 

Identity (6.41) and the existence of the two limits (6.45) 
and (6.46) establish (6.42). 0 

Some comments on the results of Theorem 3 are appro­
priate. Theorem 3 shows that the function K(t,x;s,y;m), 
m > 0, is the propagator (the weak integral kernel in the 
sense of Definition 2) of the Schr6dinger evolution operator 
if the time displacement t - s satisfies condition (6.44). It is 
worthwhile to note that the function K (t,x;s,y;m) of (6.28) 
is in fact a propagator in a stronger sense. The boundedness 
of U(t,s;m) allows the relation (6.42) to be extended as fol­
lows. For any fEL 2(Rd), m > 0 

[U(t,s;m)f] (x) = lim i K(t,x;s,y;m)f(y)dy. 
L-oo lyl<L 

This statement is structurally identical to the meaning tradi­
tionally assigned to the free propagator,2,8,16 and as such in­
dicates that the result obtained in Theorem 3 is close to opti­
mal. 

In the case of evolution for complex mass (1m m > 0) 
one may establish without difficulty that the local solutions 
of Theorem 3 may be pieced together to obtain a solution 
that is valid for all t,sETa . In this case the radius of conver­
gence condition () < 1 for the Dyson series is eliminated. In 
the following corollary to Theorem 3 we show how to define 
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an extended kernel K(t,x;s,y;m) that remains valid even if 
();> 1. 

Corollary 1: Assume aErv (k), VErs (k), and mEC> . 
For all t,sETa , t =/=s. 

(1) The complex mass evolution operator U(t,s;m) is 
an integral operator with a Carleman kernel 
K(t,;s,;m)EC(Rd XRd). 

(2) The kernel K is Gaussian bounded, i.e., there exists 
o <A, B < 00 (dependent upon m, t, and s) such that 

IK(t,x;s,y;m) 1 <Ae - B(x -yl'. (6.47) 

(3) The composition rule 

K(t,x;s,y;m) = fK(t,x;1',z;m)K(1',z;S,y;m)dZ (6.48) 

holds for all s, 1', and t such that O<s < l' < t< T. 
Proof' Suppose t - l' and l' - S are such that () < 1 for 

both of these time displacements. Then representation 
(6.41) holds for U(t,1';m) and U( l' ,s;m) with the appropri­
ate kernel functions defined by the constructive series 
( 6.28 ). From the composition property (1.8) 

U(t,s;m) = U(t,1',m)U(1',s;m) 

and (6.41) it follows that, for tfoEL 2, 

[U(t,s;m)tfo ](x) 

= f K(t,x;1' ,z;m) [U( 1',s;m)tfo )(z)dz 

= f K(t,x;1',z;m) [f K( l' ,z;s,y;m )tfo(y)dy ]dZ. 

Estimate (6.30) suffices to show that the dy dz integration is 
absolutely convergent. Applying the Fubini theorem gives 
Eq. (6.41) wherein the kernel function K(t,x;s,y;m) is now 
defined by the absolutely convergent integral (6.48). 

The convolution bound estimate (6.47) follows from an 
application of the free heat kernel composition identity, i.e., 
f31' f32 > 0 

[41T(f3I+f32)]-dI2exp{- (X_ y )2} 
4(f31 + f32) 

= [( 41Tf31)( 41Tf32) ] - d 12 exp - --'----'--f { (x - Z)2} 
4f31 

xexp { _ (z ;:)2 }dZ, 

and the fact that in inequality (6.30) g may be replaced by 

(1- ()-lg(X - y;t,s,m) <A /e-B'(X-yl' 

for suitable 0 <A /, B / < 00. 

Estimate (6.47) shows that the extended kernel K con­
structed by (6.48) is also a Carleman kernel. In addition 
bound (6.47) suffices to show that the integral (6.48) is 
uniformly convergent with respect to x and y in compact 
subsets of Rd X Rd. The continuity of the integrand in x,y 
together with the uniform convergence establishes that the 
left-hand side of (6.48) is jointly continuous in x and y. One 
may also verify without difficulty that the value of the inte­
gral (6.48) is independent of the particular choice of the 
intermediate time 1'. Thereby properties ( I )- (3) are verified 
if t - l' and l' - s both have () < 1, or equivalently (after an 
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appropriate choice of 1") for t - s with () < 2. If this argument 
(with suitable adjustments) is repeated n times one obtains 
via composition rule (6.48) the kernel K for t - s with 
()<r. D 
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Additional formulas for nontrivial zeros in the 3j and 6j symbols have been found for some 

higher-order cases, i.e., where k = 2,3, and 4 (numerical examples only). 

I. INTRODUCTION 

In a previous publication, I a set of formulas was present­
ed that finds nontrivial zeros ofthe 3j and 6j symbols for the 
linear case where k = 1. (The nontrivial zeros are zeros of 
the "polynomial part" of Wigner or Racah coefficients.) 
Subsequently, Brudno and Louck2 demonstrated this gen­
eral formula for the "linear" case to be complete. In this 
publication a relationship was also demonstrated between 
these zeros and two well-known Diophantine equations, 

X 2 + y2 = U 2 + V 2 (1.1) 

and 

X 3+ y3+z3= U 3+ V 3+ W 3, 

X+ y+Z= U+ V+ W. 

( 1.2) 

(1.3 ) 

Equation (1.1) was solved by Pasternak; recent work by 
Bremner and Brudn03 provides the total solution for the 
equation set [( 1.2), (1.3)]. 

Progress also has been made in finding similar formula 
sets for the higher-order cases. Beyer, Louck, and Stein4 

published an exhaustive review article on the quadratic zeros 
that includes discussions of Pell equations, the solutions of 
which "give parametric families of nontrivial zeros of Racah 
coefficients." A key element in the formulation of the qua­
dratic problem is presented in Sec. II of this manuscript for 
two purposes: ( 1) to orient the reader for a parallel develop­
ment in the cubic case, and (2) to illuminate a feature of the 
quadratic formulation that may be of value in physics but 
that is not readily apparent in the development of this prob­
lem as presented by Beyer, Louck, and Stein.4 In these more 
complex cases "total" solutions remain elusive; however, 
enough headway has been made to warrant publication of 
current results in the hope that these bits and pieces may 
enlighten the paths of others seeking to understand the com­
plex interrelationships operant within the Wigner and Ra­
cah symbols. 

II. QUADRATIC ZEROS 

For the quadratic case, i.e., where k = 2, it can be as­
sumed without loss of generality that the Racah coefficient 
has the form 

b 

c 
a + b - 2}_ 

f =0, 

where the following equality is implied: 

(2.1 ) 

A (A - 1 )(F)(F + 1)E(E + 1) 

- 2(A - I)(F + I)(E + 1 )BCD 

+B(B-1)C(C-1)D(D-l)=O, 

and where 

A =a+b+c+d+ 1, 

B=a+c-J, 

C=b+d-J, 

D = - a - b + c + d + 2, 

E=b-d+f-l, 

F=a-c+f-1. 

(2.2) 

(2.3) 

(2.4 ) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Equations (2.2)-(2.8), with slight changes in notation, are 
given in (2.2) of Beyer, Louck, and Stein.4 

For further analysis, the above equations are limited to 
the particular branch where b = 2 and d = J, with a, b, and c 
yet to be determined. The more particular case where c also 
equals d, 

2 

d 
;}=o, (2.9) 

has been solved by Brudno and Louck.5 For the particular 
case where a = jl = j3,j2 = 2, d = II = 13, C = 12, namely, 

2 
(2.10) 

c 

there exists a "hyperbolic ladder" that may have meaning in 
the physical realm. The first 13 examples of this ladder are 
given in Table I. Every 3nth term is a hinge of this ladder 

TABLE I. The first 13 examples of the hyperbolic ladder. 

Index a d c 

0 0 -0.5 -0.5 
1 1 0.5 0.5 
2 2 1.5 1.5 
3 3 0.5 2.5 
4 18 15.5 15.5 
5 33 28.5 28.5 
6 48 13.5 41.5 
7 257 222.5 222.5 
8 466 403.5 403.5 
9 675 194.5 584.5 

10 3586 3105.5 3105.5 
11 6497 5626.5 5626.5 
12 9408 2715.5 8147.5 
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TABLE II. Parametrical solutions for Eq. (3.10). 

a 

6?+ 6s+3 
6?+ 6s+5 
6?+ 7s+3 
6?+ 8s+3 
6.r + 9s + 5 
6? + 12.1' + 5 
8.r + 9s+ 3 

12.r + 9s + 3 

b 

36s4 + 72.1" + 57.r + 24s + 5 
12.1'4 + 24s' + 23s2 + 12.1' + 3 

36s' + 42.r + 21s + 5 
18s' + 33.r + 18s + 5 
12.1"+ 18.r+ Ils+3 
6s' + 15.r + 1Os+ 3 

24.r + 15s+ 5 
12.r + 15s+ 5 

where all of the a terms lie on the hyperbola, 4y2 - 3x2 

= constant, and where the remaining a's represent rungs 
located equidistant from the hinges. The explicit formulas 
for the hinges are 

a3n =cosh2n(a)!2-! or [sinhn(a)]2, (2.11) 

d3n = sinh 2n(a)sinh(a)/12 -!, (2.12) 

C3n = 3(d +!) -!, (2.13) 

where cosh(a) =2. The explicit formulas for the two inter­
stitial rungs, (3n + 1) and (3n + 2), are, respectively, 

a(3n + I) = [cosh 2(n + l)a + cosh 2na]l6 - !, (2.14) 

a(3n+2) = [2 cosh 2(n + l)a + 2 cosh 2na]l6 -!, (2.1S) 

d=c= [a tanh a] +!, (2.16) 

where [a tanh a] is the integer part of a tanh a. Each num­
ber P in Table I obeys the following recurrence relation: 

(2.17) 

where, whenever Pis a negative number, P = - P - 1. [Be­
cause all the quantum numbers appear in the 3nj coefficients 
through the form j (j + 1) and powers thereof, in every 
case, whenever a solution jj satisfies a particular equation, 
there exists also the parallel solutionj2 = - j) - 1, so that 
the expressionj( j + 1) has the same value. This permits the 
exchange of every - j with its concomitant I jl - 1.] 

III. CUBIC ZEROS 

Considering cubic zeros, i.e., zeros of order 3, 

b 

c 
a + b - 3}_ 

f =0, (3.1 ) 

where, without loss of generality, the polynomial to be ze­
roed is 

lA(A - I)(A - 2)E(E + I)(E + 2)F(F + I)(F + 2) 

- 3(A - l)(A - 2)(E + 1) 

X(E +2)(F+ I)(F+2)BCD 

+ 3(A - 2)(E + 2)(F + 2) 

XB(B-l)C(C-l)D(D-l) 

-IB(B-l)(B-2) 

XC(C - I)(C - 2)D(D - I)(D - 2) (3.2) 

and where 
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2c+ I 

72s' + 180s4 + 198s' + 123.r + 43s + 7 
24.r + 6Os4 + 82.1'3 + 65.r + 31s + 7 

72s' + 132.1" + 104.r + 41s + 7 
36s' + 96s' + 91s2 + 39s + 7 
24s4 + 60s3 + 64.r + 33s + 7 
12.1'4 + 48s3 + 65.r + 35s + 7 

A = a + b + c + d + I, 
B=a+c-f, 

C=b+d-f, 

64s3 + 80.r + 37s + 7 
48s' + 72.r + 37s + 7 

D = - a - b + c + d + 3, 

E=b -d+f-2, 

F=a-c+f-2. 

(i) 

(ii) 
(iii) 
(iv) 
(v) 
(vi) 
(vii) 
(viii) 

(3.3 ) 

(3.4) 

(3.S) 

(3.6) 

(3.7) 

(3.8) 

Zeros of (3.2) have been found. For the particular 
branch where c = d = f, the polynomial expression (3.2) 
reduces to 

4(a + b - l)(a + b - 2){3(2c + 1)2 

- [2ab(a + b) - a2 - Sab - b 2 + 2(a + b) n, 
(3.9) 

and from here 

3(2c + 1)2 = 2ab(a + b) - a2 
- Sab - b 2 + 2(a + b). 

(3.10) 

A particular set of para metrical solutions for (3.10) is listed 
in Table II. A two-parameter solution for (3.10) that also 
includes (i)-(viii) in Table II is given by 

a=6.r+6s+ 1 +n, (3.11) 

b = 6s2 + 6s + 1 + (36s4 + 72s3 + S1s2 + 18s + 3)/n, 

( 3.12) 

TABLE III. Specific numerical examples of (3.11 )-( 3.13), where s = 3. 

Index a b 2c+ 1 

1 75 5450 38665 
2 76 2762 19856 
3 77 1866 13591 
4 78 1418 10462 
5 80 970 7340 
6 81 842 6451 
7 82 746 5786 
8 86 522 4246 
9 88 458 3812 

10 90 410 3490 
11 95 330 2965 
12 98 298 2762 
13 102 266 2566 
14 106 242 2426 
15 116 202 2216 
16 122 186 2146 
17 130 170 2090 
18 138 158 2062 
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TABLE IV. Parametrical solutions for (3.10). 

a 

6.r+ 6s+3 
6.r+ 6s+5 
6s> + 7s + 2 
6.r+ 8s+3 
6s2 + 9s + 2 
6s> + 12s + 5 
8.r + 7s + 2 

12.r+ 9s+2 

b 

35s4 + 72s3 + 57s2 + 185 + 2 
1254 + 245' + 23s2 + lOs + 2 

365' + 78s2 + 575 + 14 
18s3 + 33s2 + 18s + 2 
125' + 3052 + 235 + 6 
65' + 15s2 + 105+ 2 

24s2 + 33s + 14 
12.r+ 155+6 

2e + 1 = (2s + 1) (a + b) - 3s - 1, (3.13 ) 

where n assumes, not only the algebraical factors of 3 (s + 1) 
X (2s + 1) (6s2 + 3s + 1), but the numerical factors as well, 
and where s is a rational parameter such that a and bare 
integers. Specific numerical examples (for s = 3) are given 
in Table III. 

Another parametrical solution set for (3.10) that is also 
associated with (3.11)-(3.13) is given in Table IV. 

The corresponding two-parameter solution that in­
cludes (i)-(viii) in Table IV is given by 

a = 6s2 + 6s + 2 + n, 

b=6s2 +6s+2+3(6s2+9s+4)(2s+ l)s/n, 

2e + 1 = (2s + l)(a + b) - (3s + 2), 

(3.14) 

(3.15 ) 

(3.16) 

where, again, n assumes, not only the algebraical factors of 
3s( 6s2 + 9s + 4)( 2s + 1), but the numericalfactors as well, 
and where, again, s is a rational parameter such that a and b 
are integers. 

For any numerical example of (3.10), an s can be found 
that generates that particular numerical example, together 
with the other members of the set generated by that particu­
lar s. For example, calculating the numerical value of the 
quotient 

(2e+a+b)/[2e- (a+b) +3] 

from the solution 

15 

21 

(3.17 ) 

(3.18 ) 

2c+ I 

725' + 180s4 + 198s3 + l11s2 + 31s + 5 
245' + 6Os4 + 825' + 61s2 + 27s + 5 

72s4 + 2045' + 21252 + 93s + 14 
36s4 + 96,' + 91s2 + 33s + 3 

24s4 + 845' + 100.r + 45s + 6 
12s4 + 485' + 65s2 + 33s + 5 

64s3 + 112s2 + 69s + 14 
485' + 72s2 + 37s + 6 

which is a specific case of (3.10), 

e : a +: -3} =0, 
a value of ~ is obtained: 

n/m =l.j, 

(i) 
(ii) 
(iii) 
(iv) 
(v) 
(vi) 
(vii) 
(viii) 

(3.19 ) 

(3.20) 

s=m/(n-m)=-is. (3.21) 

Another analysis of (3.10) can be achieved by rewriting 
(3.10) in the following form: 

3 (2e + 1) 2 - (2b - 1)( a + b /2 - 1) 2 

= (b-2)[(2b 2 -b+2)/4]. (3.22) 

With b held constant, Eq. (3.22) becomes a Pell equation; 
therefore, with every b there exists an infinity of a's and e's. 
An orbit of b is obtained by mUltiplying a particular solution, 
ao, bo, by the algebraical units given by 

3y2-(2b-l)x2 =1. (3.23) 

Analysis of the orbits for the different b's currently is in 
progress; however, a specific example, where b = 17, is given 
in Table V. 

IV. QUARTIC ZEROS 

Considering quartic zeros, i.e., zeros of order 4, 

b a + b - 4}_ 
/ =0, (4.1 ) 

e 

where, without loss of generality, the polynomial to be ze­
roed is 

lA(A - I)(A - 2)(A - 3)F(F + I)(F + 2)(F + 3)E(E + I)(E + 2)(E + 3) 

- 4 (A - 1) (A - 2) (A - 3) (F + 1) (F + 2) (F + 3) (E + 1) (E + 2) (E + 3 )BCD 

+ 6(A + 2)(A + 3)(F+ 2)(F+ 3)(E + 2)(E + 3)B(B - I)C(C - I)D(D - 1) 

- 4(A + 3)(F + 3)(E + 3)B(B - I)(B - 2)C(C - I)(C - 2)D(D - 1) (D - 2) 

+ IB(B - I)(B - 2)(B - 3)C(C - I)(C - 2)(C - 3)D(D - I)(D - 2)(D - 3) 

and where D = - a - b + e + d + 4, 

E=b-d+/-3, 

F=a -e+/- 3. 

(4.2) 

(4.6) 

(4.7) 

(4.8) 

A = a + b + e + d + 1, 

B=a+e-f, 

C=b+d-f, 

(4.3) 

(4.4 ) 

(4.5) Presented below are ten examples of zeros of (4.2): 
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TABLE V. A specific example of (3.22), where b = 17. {18.0 5.5 19.5} = 
28.5 36.0 30.0 -0, ( 4.17) 

Index a b 2c + 1 

{14.0 18.5 28.5} = 
1 2 17 17 58.0 32.5 43.5 -0. (4.18 ) 
2 71 17 259 
3 74 17 269 Examples (4.9) and (4.10) are related by the equation 
4 863 17 2887 
5 2903 17 9653 A=3(D-1), ( 4.19) 
6 31154 17 103351 examples (4.11 )-( 4.14) by the equation 
7 32351 17 107321 

A =2D+ 1, (4.20) 

and examples (4.15) and (4.16) by the equation 

A=3D. (4.21 ) 

{20.5 13.5 30.0} Examples ( 4.17) and ( 4.18) appear unrelated, each of them, 
=0 (4.9) 

35.0 29.0 27.5 - , respectively, obeying the equations 

{28.5 11.5 36.0} A = 2D-1, (4.22) 
40.5 35.5 34.0 =0, (4.10) 

(4.23 ) A =2D. 

{17.5 9.5 23 } InEq. (4.19)-(4.23),AandDaredefinedbyEqs. (4.3) and 
34 39 32.5 =0, (4.11 ) 

(4.6), respectively. 

{12.5 8.0 16.5} =0 
27.0 26.5 29.0 ' 

(4.12) ACKNOWLEDGMENTS 

{16.5 7.0 19.5} =0 
The author thanks John Conway for providing an essen-

(4.13) tial insight, Dennis Bartley for assistance, and Thomas 32.0 30.5 29.0 ' 
Glonek for critical review. 

{15.0 6.0 17.0}=0 
25.0 30.0 24.0 ' 

(4.14 ) 

{29.5 16.0 41.5} = IS. Brudno, J. Math. Phys. 26, 434 (1985). 

44.0 41.5 33.0 -0, (4.15 ) 2S. Brudno and J. D. Louck, J. Math. Phys. 26, 2092 (1985). 
3A. Bremner and S. Brudno, J. Math. Phys. 27, 2613 (1986). 

f3.0 10.5 39.5} 
4W. A. Beyer, J. D. Louck, and P. R. Stein, "Zeros of Racah coefficients and 

=0 (4.16 ) the Pell equation. I," submitted to J. Math. Phys. 
43.5 38.0 40.0 - , 5S. Brudno and J. D. Louck, J. Math. Phys. 26, 1125 (1985). 
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Spectroscopic factors partitioning an identical-particle state into a couple of substates with 
definite seniorities are summed into a simple form. This sum rule is an extension of the 
reduction relation for the fixed-seniority average of a many-body operator. The seniority 
projection operator is utilized throughout the present formulation. 

I. INTRODUCTION 

It is known I that the average interaction energy in the n­
body states with a definite seniority is describable as a linear 
combination of the corresponding average energies in the 
two-body states. Extension of this theorem has been done in 
the study of symmetry and statistical properties inherent to 
nuclear spectroscopy.2-1O 

In the seniority scheme of identical particles, 11-13 which 
the present paper concerns, the reduction relation for the 
average two-body interaction energy has been extended to 
that for the average of a general nl-body operator O(n l ) as 

I (nvaIO(n l ) Inva) 

a d(v) 

(1) 

where Inva) stands for the orthonormalized n-body state 
labeled by the seniority quantum number v, defined for the 
finite set of degenerate orbits,14 together with the set of the 
other quantum numbers a. Here, the symbol d(v) denotes 
the dimensionality of orthogonal states with the definite v. 
The coefficient Z has properties characteristic to the propa­
gator, and is called the propagation coefficient.9 The explicit 
form of Z was given in Ref. 6. 

We express ° (n I) as a linear combination of operators 
A + (nlvlal)A (nlv; a; ), where A + (nlvla l ) stands3.15-18 for 
the polynomial of single-particle creation operators (C + 's) 
ofrankn fulfilling the condition A + (nlvla l ) 10) = In Ivla l ). 
Ingredients of ( 1) are written in terms of A + and A as 

I (nvalA +(nlvlal)A(nlv;a; )Inva) 

a d(v) 

_ "'( ')"'( ') Z(nv,nlv l ) - u al,a l U VI,V I . 
d(v l ) 

(2) 

A characteristic feature of (2) is nonexistence of an a 1-

(a; - ) dependent term on the right-hand side (rhs) except 
t>(al,a;). The matrix element of A + is related to the coeffi­
cient of fractional parentage (cfp) as l7 

(nvalA + (nlvla l ) In2v2a 2 ) 

= (:)112 (n2v2a 2 + nlvlallnva), (3) 

where n l + n2 = n. Square of the matrix element of A + is 
called the spectroscopic factor. 19 

In the present paper, we extend (2) to the form 

I (nvalA +(nlvlal)P(n2'V2)A(nlv;a; )Inva) 

a d(v) 

t>(al,a; )t>(VI>V; ) 

d(v l ) 

XF( == a factor independent of a l ), (4) 

where P(n 2,v2 ) stands for the projection operator onto the 
n2-body space with the definite seniority v2, i.e., 

(5) 
a, 

We show that the factor F, a function in n, nl' v, VI' and v2, is 
represented by a single quotient of products of binomial coef­
ficients (or factorials). This result is hardly suggested by the 
involved form of Z. The present formulation relies on 
reexpressions of P(n 2,v2 ) in different forms. 

The expression (4) in the case of a I = a; and VI = v; 
represents the sum rule for the spectroscopic factors. We can 
rewrite it as 

"'I( I + I )1 2d
(V I ) = ~ nva A (nlvla l ) n2v2a 2 --

aa, d(v) 
(6) 

= I l(nvalA +(nIVlal)ln2V2a2)12 (7) 

(8) 

where in the second step the particle-hole symmetry is used, 
see Sec. IV. To clarify the physical implication of F, let us 
assign I nva) to the fixed-nv component of the initial state of 
the target (or projectile) nucleus in the heavy-ion reaction, 
where the term "initial" means the stage when the transfer 
process begins to occur. The factor F given by (7) represents 
the sum of spectroscopic factors partitioning Inva) into a 
couple of states Inlvla l ) and In 2vP2) with a l and a 2 being 
varied. The value ofF does not rely on a, the specification of 
the fixed-nv component of the initial state. It is evident that F 
is symmetric with respect to the interchange of In IVlal) and 
In 2v2a 2 )· 

We expect that the relation (7), or generally ( 4), with F 
being written as a closed and compact form, will serve global 
analyses of multiparticle transfer or nuclear fragmentation 
in heavy-ion reactions. 20 

The significance of (4) viewed from mathematical 
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physics lies in its interrelation with (2). The sum over v2 on 
both sides of ( 4) produces (2), identifying 

(9) 
v, 

We show in turn that the factor F can be expanded as a sum 
of products of a v2-dependent factor and Z. These relations 
between Z and F as well as the simple form of F suggests that 
the relation (4) is more fundamental than (2). 

In Sec. II, relations for the seniority projection operator 
P(n2,v2 ) are deduced. In Sec. III, we verify (4) by represent­
ing its left-hand side (lhs) in terms of that of (2). At the 
same time, we get the expansion of Fas a weighted sum of Z. 
Section IV deals with some properties of F. In Sec. V, a re­
currence relation for F is shown. As its solution, we obtain 
the explicit F written in a compact form. In Sec. VI, asymp­
totic forms ofF, of Z, and of the interrelation between F and 
Z are given for the dilute system where the Pauli principle is 
negligible. In Sec. VII, the factor F is described by means of 
the quasispin formalism. Short remarks are given in Sec. 
VIII. In Appendices A and B, we supply discussions for 
those in Secs. III and V, respectively. 

II. RELATIONS FOR THE SENIORITY PROJECTION 
OPERATOR 

Here, we deduce relations [(13), (15) and (26)] con­
cerning the seniority projection operator. 

A characteristic feature of the seniority scheme ofiden­
tical particles lies in the simple (de)composition rule for 
seniority-O components of operators and of wave functions. 
The essence, from which almost all of the present results 
stem, is represented as 

A +(n1va)A +(n20) = (nvalA +(n1va)ln20)A +(nva), 
(10) 

where the index a 2 of A + (n20a2) is abbreviated. The matrix 
element on the rhs is evaluated by virtue of the Wigner­
Eckart theorem in quasispin space 13 as 

(nvalA + (n1va) In20) 

= ( ~ ~I n2 ~ n ~I I n ~ v n ~ n ) 

X ( ~ ~I -2 n ~I I n ~ v n l ~ n r I (11) 

= (n - V)/2)1I2(n - (n l + V)/2)1I2( n ) - 112 

n~ n~ n~' 
(12) 

where n stands for half the number of single-particle states. 
In the following we dispense with the index a that appears on 
the lhs, since it is not involved on the rhs. By virtue of (10), 

the projection operator P(n,v) is related to P(n1v), where 
v<nl<n, by 

(13) 

The number projection operator P(n) onto the n-body 
space can be expressed in terms of P(n,v) as 

P(n) = I P(n,v'), (14) 
v' 

129 J. Math. Phys., Vol. 28, No.1, January 1987 

where v' runs over n, n - 2, ... , 0 or 1. 
Let us show a type of in version of ( 14) . 
Proposition: 

P(n,v) =P(n) If(n,v,l)A +(lO)A(lO), (15) 
I 

with 

ji( I) 
_ n + 1 - v 

n,v, - ---~----
(n + 1 - (n + v) 12) 

X( 112 )(2n+l-(n+v)/2) 
(n - v)/2 n - 112 

xen + 1-~n + V)/2)( _1)(/-n+vl/2. (16) 

Here, I in (15) runs over n - v, n - v + 2, ... , and 2[n/2], 
where [ ] stands for the largest integer contained in it. 

Proof Let us show that the rhs of ( 15) is transformed 
into the lhs. Substituting ( 14) into the rhs of ( 15), we trans­
form the resultant operator product as 

P(n,v)A +(lO)A(lO) 

=A + (lO)P(n -1,v)A(lO) 

= l(nvlA +(n -l)v)I/O)i2P(n,v), 

(17) 

(18) 

where we use ( 13) in the last step. Let us sum over I, using 

I ( - l)Q(m)(x + q) = ( - l)m( x), (19) 
Q q r+q m+r 

where q = (l- n + v)/2. Then, we see that all the terms 
with v' =1= v vanish. The sum of terms with v' = v yields 
P(n,v), the lhs of (15). 

Let us show a recurrence relation for P(n,v). We start 
from 
vP(v,v) = I C /C{3P(v,v) (20) 

{3 

= I C (3+ P(v - l,v - 1 )C{3{1 - P(v,v - 2)}, 
(3 

(21) 

where it is postulated that P(n,v) = 0 if v < 0 and 
P( 0,0) = 1. Using (13), we express P( v,v - 2) on the rhs of 
(21) in terms of P( v - 2,v - 2). Subsequently, the relation 
( 13) of Ref. 18 is utilized to commute C{3 and the resultant 
A + (20). It then follows that 

vP(v,v) = IC / P(v - l,v - l)C{3 + IC (3+ 0,8 ICw 120) 
{3 {3{3' 

P(v - l,v - l)C (3+;A(20) 
X (22) 

I (vv - 21A + (v - 2v - 2) 120 W 
We transform P(v - l,v - I)C / seen on the rhs as 

P(v - l,v - I)C {3+; 

= {I - P(v - l,v - 3)}C (3+;P(v - 2,v - 2) (23) 

= C (3+;P(v - 2,v - 2) 

+A +(20) I C{30P(v - 2,v - 2) 
{30 

X (20 IC{3+oI1,8') (24) 

I (v - 1 v - 31A + (20) I v - 3v - 3 W 
After a slight rearrangement of the resultant rhs of (22), we 
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get a reduction relation for P( n,v). 

vP(v,v) = I C f3+ P(v - l,v - 1 )Cf3 
f3 

The operatorsP(n) and P(n,v) can be represented com­
pletely in terms of A + and A by using 

_ {2n+4-v }P(v,V-2). (25) 
n+3-v 

Using (13), we extend the last expression to the form 

{ 
v(2n + 2 - n - v) }p(n,v) 

n + I-v 

= 2I C f3+ pen - l,v - 1 )Cf3 
f3 

_ { (n - v + 2) (2n + 4 - v) }P(n,v _ 2), (26) 
(n+3-v) 

= I ( - 1)n I A + (nva)A (nva), 
n 

where n stands for the number operator. 

III. THE SUM OF SPECTROSCOPIC FACTORS AS A SUM OF PROPAGATION COEFFICIENTS 
We transform the Ihs of (4) using (10) and (15) as 

I (nvalA + (nlvla l )P(nz,vz)A (nlv; a; ) Inva) = If(nz,vz,l) ({'VilA + (nlvl)1 0) (lOlA (nlv; ) I/'v; a; ) 
a I 

a 

(27) 

(28) 

where I' = n l + I, and I runs over nz - Vz, nz - Vz + 2, ... , and 2[ (nz - Iv - VII )/2]. Combining (28) with (2), we verify (4) 
with Fbeing represented in terms of Z as 

n + I-v F(nv n v n v ) = " ( - 1) (I ~ n, + V,)/zZ(nv n + Iv ) z 
, I 1> Z z -f ' I I n + 1 + (l- nz - vz)/2 

X ( /12 )((n l + /- VI )/2)(n - (n l + VI )/2)(n + (l- nz - Vz)/2) ~ I, 
(nz -vz)/2 112 112 112 

where both (12) and (16) are explicitly used. Notice that the argument Vz on the rhs is not involved in Z. 
The explicit form of Z was deduced in Ref. 6 as 

Z(nv,nlv l ) = Zen - n l + VIV'VIV I ) I (nvlA + (n - n l + vlv) Inl - vlO) IZ II (n IVIIA + (VIV I ) Inl - vlO) 12 
((n - v)/2)!(n - (nl + v l )/2)!(n + 1 - VI) 

(n - nl)!((n l - v l )/2)!(n - (n + v)/2)! 

( - 1)m(n - n l + VI - 2m)!(n + m - (n + v - n l + v j )/2)! 

X~ m!(vj _ 2m)!(n + 1- Vj + m)!((n - nj + VI - v)/2 - m)! 

A reexpression of (31) is given in Appendix A. 

(29) 

(30) 

(31) 

Substituting (31) into (29) surely yields the explicit form ofF. However, the resultant expression is too involved to treat. 
A compact form of F is deduced in Sec. V by means of another device. 

IV. SOME PROPERTIES OF THE SUM OF SPECTROSCOPIC FACTORS 
Here, some properties of F are summarized as a preparation for later discussions. 
The particle-hole symmetry in the fermion system gives 

(nvalA +(nlvla l ) Inzvpz) = «(2n - nz)vzazlA +(nlvla l ) I (2n - n)va). 

Using this and (4), we see that 

(32) 

(33) 

Let us sum over a on both sides and, subsequently, apply (4) to the resulting lhs. Then, we obtain (7). The expression (32) 
gives the symmetry relation for F as 

(34) 

The relation (4) is reduced to (2) in the cases ofvj = 0, n l = n - 1, v = n - n l - VI' orO, since in these casesP(nz,vz) in 
(4) can be put to unity. In the case of VI = 0, it follows that 

F(nv,nIO,nzv) = Z(nv,nIO) = square of the rhs of (12) with n l being interchanged by nz. (35) 
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In the case of n I = n - 1, we get 

F( 1 11) -Z( 1 _{V(2n+2-n-V)/(2n+2-2V), 
nV,n - VI' - nV,n - vI)-

(n-v)(2n+2-v)/(2n+2-2v), if vI=v+l, 

if VI = v-I 
(36) 

a well-known expression as the special orthogonality relation for n -> (n - 1) + 1 cfp's.12 The dimensionality d(v) is describ­
able9 in terms of Z and F as 

d(v) = Z(2nO,nv) = F(2nO,nv,(2n - n)v). 

It is explicitly given by 

d n + 1 - V (2n + 2) (v) = . 
n + 1 V 

The factor F(nv,n lvl,n2v2) is a polynomial in the quasispin S2, i.e., 

(n - v) (2n + 2 - n - v)/2. 

We see it from (29) combined with the fact that the coefficient Z is a polynomial6 in S 2. 

V. THE SUM RULE FOR SPECTROSCOPIC FACTORS 

In this section, we deduce a compact form of F as a solution of a recurrence relation for F. 
Substituting (26) into (4), we get 

{ 
v2(2n + 2 - n2 - v2) } " ' F(nv,nlvl,nzvz ) = 2 "- F(nv,(n l + 1)v ,(n2 - 1 )(v2 - 1))F(nl + 1)v',n lvl,l1) 

(n + 1 - vz) v' 

_ { (n 2 - Vz + 2) (2n + 4 - v2 ) }F( (2)) nV,nlvl,nZ Vz - . 
(n + 3 - v2 ) 

(37) 

(38) 

(39) 

(40) 

Here, the factor F( ... , 11) seen on the rhs is explicitly given by (36). To solve (40), we start from the case of Vz = 1. Using 
(35), we getthe explicit form of F(nv,n lvl,n21). Next, let us put /)z = 2 into (40). The factor F(nv,n lvl,n22) is then represent­
edin termsofF(nv,(n l + 1 )v', (nz - 1) 1) andF(nv,nlvl,nzO) whose explicit forms have been deduced. Repeating this way, we 
obtain 

F(nv,nlvl,nzvz ) =(:) L 1 (n Zv2a Z + nlvlallnva) I Z 

1 a lG 2 

{
(n+l-V l )(n+l-Vz)( n+l )( n+l )( 2n+2-v ) 

- (n+l)(v+l) (v+v l -v2)/2 (V+V2-vl )/2 (v l +v2 -v)/2 

X (2n - (v + VI + /)2)12)(n + 1 - (~I + /)2 - V)/2) - I} {(n - (v + VI + Vz)/2) 
n v + 1 n - (n + v)/2 

x(n - VI - Vz)/2)[(2n - (v + VI + V2)/2)(2n - (n + VI + V2)12)] -I}, 
(n l - vl )/2 (n - v)/2 n - (n l + VI )/2 

(41 ) 

where the first equality is the summary of (7) combined with (3). The rhs of (41) is factorized, though not in a unique way, 
into two parts, one depending on any of n I' n2, and n, and the other written only in terms of VI' /)2' V, and n. 

The expression (41) has a remarkably compact form in comparison with the expression of Z, i.e., (31): we see the 
convenience of (41) by checking (37). Substitution of (31) into (29) would agree with (41), though it is difficult to check. 
Substitution of (41) into (9) yields a new type of expression of Z. 

We show in Appendix B that the relation (40), from which (41) is obtained, is derivable without recourse to the seniority 
projection operator. We actually find, using (B5), that expression (41) is valid also for the seniority scheme of identical 
bosons,zl if we have only to replace n here by - n and to take the absolute value of the resultant expression.22 

It is not easy to give a physical interpretation for (41). The following two sections are devoted to extract some properties 
embedded in (41). 

VI. ASYMPTOTIC FORMS IN THE DILUTE SYSTEM 

We present here asymptotic forms of various expres­
sions in the dilute system, i.e., the system with n~n, where 
the correction due to Pauli principle disappears. 

From (41), it follows that 
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lim F(nv,n lv l ,n2v2 ) 
0-00 

=2(V,+V2 -V)/2( V ) 

(v + v2 - vd/2 

(
n - VI - V2 )/2)( (n - v)/2 ) 

X (n l - vl )/2 (VI + Vz - v)12 . 
(42) 
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In the case v = VI + V2, the rhs gives the number of ways to 
pick up VI and n l - VI particles, respectively, from V un­
paired and n - V paired particles. If n ~ V I' V2, v, and n I' 
which is often realized in practical cases, the rhs with V2 

being varied takes the maximum value at V2 = VI + v. The 
relations (29) and (31) have asymptotic forms 

lim F(nv,n lvl,n2v2) 
0-00 

x ( - I) (/ - n, + V,)
/2 lim Z(nv,n I + Iv l ) (43) 

0-00 

and 

lim Z(nv,nlv l ) 
0-00 

= ( (n - v)/2 ) I ( _ I)m(n - nl + VI - V)/2) 
(n l - v l )/2 m m 

x(n -nl + VI - 2m), (44) 
n -nl 

respectively. Expressions (42) and (44) are associated with 
each other by (9), as is shown by using the identity 

I2m(P)( q ) = I ( _ I)m(P)(2P + q - 2m). 
m mm+r m m 2p+r 

(45) 

To see the consistency of (42)-( 44), we substitute (44) into 
( 43) and, subsequently, sum over I and m by using ( 45 ), etc. 
Then, we get (42). 

VII. DESCRIPTION BY MEANS OF THE QUASISPIN 
FORMALISM 

We point out here that the relation (41) contains a new 
relation that is not easy to deduce by means of the quasispin 
formalism. 13 

The factor Fis easily transformed, by using the Wigner­
Eckart theorem in quasispin space13 as 

F(nv,n lvl,n2v2) 

= ( 0 ~ VI ~2 nl ~ 0 ~21 0 ~ V n ~ 0 r 
X ( 0 - v2 .!:l n2 - O.!:ll 0 - V n2 + VI - 0 )2 

2 2 2 2 2 2 

X {en _ V + 1)( 0 -VI n2 VI - 0 n21 
2 222 

o ~ V n2 + ~I - 0 rr I 

(46) 

Here, the operator T(SSz ,via I) denotes the quasispin tensor 
of the rank S with its z component Sz that belongs to the 
same multiplet as A + (n = 2S,v l a I) does: for example, the 
quasi spin S + is represented as Iff T( 11,0). The state I nva) 
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is specified in the quasispin space as 1(0. - v)/2 (n - 0.)1 
2 a)s' 

The dependence of F on n I' n2 and n is surely obtained 
from (46), and the result agrees with the relevant part of 
( 41 ). However, it is difficult to get the explici t dependence of 
F on V etc. by means of the quasispin formalism. 

Let us compare (46) with (41). Then, we obtain 

t;,ls(n~v)aIIT(~I'Vlal)11 (0~V2)a2)sI2 
= (0 + I - v2 )(n + I - v) ( 20. + 2 - VI ) 

0+ 1 - VI (v + V2 - vl )/2 

( 
20. + 2 - VI )(20. + 2 - VI) - I 

X 0. + I - (v + VI - v2 )/2 0 + I ' 
(47) 

a relation that has not been discussed before. 
The multiplet of the operator Tis describable in terms of 

normal products as 

T(vI2(vI2 - k),va) 

= I( _l)k(k-I)!2(kka"IA(v'v'a')lvva) 
a'a" 

XA +(v'V'a')A(kka")(~) -112, 

where v' = V - k and, in the case of a = ({3JM) , 

A (nv{3JM) = ( - I)J - M A (nv{3J - M). 

(48) 

(49) 

We can verify (48),applyingS_ by k times toA + (vva). The 
expression (48) makes it possible to modify (47) further. 

VIII. REMARKS 

Expression (41) shows that the spectroscopic factors 
are summed into the closed algebraic form including no 
summation. The result looks still involved, which, however, 
is due to several arguments in it and to the effect of the Pauli 
principle. The asymptotic form (42), where the effect of the 
Pauli principle disappears, clarifies a specific form of ( 41). 

In the analysis of the multinucleon transfer in the heavy 
reaction, it will reasonably be assumed that the initial state to 
be fragmented is statistically distributed with probability 
proportional toexp ( - E In, where E stands for the excita­
tion energy, roughly proportional to the seniority l2 v, and T 
the temperature relying on the incident beam energy. Rela­
tion (41), which is used for the spectral analysis of projectile 
(or target) residues, will then be accompanied by multipli­
cation of the statistical factor and the sum over v. Seniority 
schemes for protons and for neutrons are to be treated sepa­
rately. Study on projectile residues along this line will be 
given in a future paper. 

APPENDIX A: ANOTHER REEXPRESSION OF Z 

The seniority projection operator P(n,v), rewritten in 
form ( 15), makes it possible to transform the fixed-seniority 
average into a normal average as 

I (nvalO Inva) = I (nrIOP(n,v) Inr), (AI) 
y 

where 0 stands for an operator or an operator product that is 
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not always arranged in normal products. The index r speci­
fies the complete set of the n-body states. For evaluation of 
the average, we have only to apply (14) of Ref. 8 to the rhs 
into which (15) is substituted. 

As a simple example, we consider the case when 
0= A + (vlvlal)A (vlvla l ). It is easy to obtain 

Z(nv,vlv l ) 

=L(nvaIA +(vlvlal)A(vlvlal)lnva) d(v l ) (A2) 
a d(v) 

= [I l 
( _ 1)m n + 1 - VI (n - v)/2 + m) 

m~O o'+l-v+m m 

x (20, + 2 ) {( 0, - V + m ) (20, + 2 )} - I 

V I (n - v) /2 + m V 

L (VI)( 0, -/ ) 
XI/ 0, - (n - v) /2 - m 

X (20, - n + V - VI - 2m). 
20, - n-/ 

(A3) 

This gives another expression of Z different from (31) and 
from (9) linked with (41), though these are algebraically 
identical. In the dilute system, the m #0 term on the rhs of 
(A3) vanishes and we get 

. (n - V)/2)( V ) hm Z(nv,vlv l ) = L 21 , 
0-00 1 / k-l 

(A4) 

which agrees with (44), with n I = V I due to the identity 
(45 ). 

APPENDIX B: THE REDUCTION RELATION FOR F 

Here, we deduce (40) without recourse to the seniority 
projection operator. This derivation is applicable to a gen­
eral fixed-symmetry average. 

Let us consider the quantity 

aaoal 

xP(n - no - nl,vm)A (novoao)A(nlvlal) Inva). 

We transform it as 

Q = v'a~a" ( -t «n - nl)v'a'IA + (novoao) 

xP(n - no - nl,vrn )A (novoao) I (n - nl)v" a"») 

X (~(nvaIA +(n - nl)v'a') 

xP(nl,vl)A (n - nl)v"a")lnva»). 

(Bl ) 

(B2) 

Using (4), verified in Sec. III, we represent the rhs in terms 
ofFas 

Q = d(v) L F(n - nl)v',novo,(n - no - nl)vm) 
v' 

(B3 ) 
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where v' runs over the range 

IV rn - vol<v'<vrn + Vo and Iv - vll<v'<v + VI' 

(B4) 

according to the selection rule for seniority. The rhs of (B3) 
is to be symmetric with respect to interchange of the set 
(novoao) and the set (nlvla l ), which implies, in the case of 
no = 1, 

F(nz(vm - 1),(nz - l)vm,ll)F(nv,nZ(vm - 1),n lvd 

+F(nz(vm + 1),(nz -1)vm,ll) 

XF(nv,nZ(vm + 1),n lvl ) 

= F(nv,(n - l)(v - 1),11) 

XF(n - l)(v - 1),(nz - l)vrn ,n lvd 

+ F(nv,(n - l)(v + 1 ),11) 

XF(n-1)(v+ 1),(nz -l)vrn ,n lvil, (B5) 

where nz = n - nl, The first term on the lhs (rhs) is to be 
excluded in the case ofvm = 0 (v = 0). 

Let us substitute (34) into each of F ("" n IV I ) on the rhs 
of (B5) and, subsequently, change notations as n I - 20, - n, 
nr-+nz + 1, n-2o' + 1 - n H VI-V, Vm -Vz, and V-VI - 1. 
Then, we obtain (40). 

The relation (B5) can be regarded as a reduction rela­
tion for F with n I and V I being fixed, The same type of rela­
tions in various coupling schemes other than the seniority 
scheme are deducible for a fermion and a boson systems 
alike. Summing over V m on both sides of (B5) by the use of 
(9) and (36), we get the Chapman-Kolmogorov equation 
for Z, which was given by (12') of Ref. 9, 
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The quasiperiodic solutions to the discrete nonlinear Schr6dinger equation are obtained by a 
variant of a method due to Date and Tanaka [E. Date and S. Tanaka, Suppl. Prog. Theor. 
Phys.59, 107 (1976)]. It is shown explicitly that the nonlinear field variable at the different 
lattice points can be determined in a recursive fashion in terms of combinations of Reimann's 
functions depending on lattice position and time. 

I. INTRODUCTION discrete nonlinear Schr6dinger equation (DNLSE). 

II. THE DNLSE AND THE INVERSE PROBLEM 

The equation under consideration is 

(1) 

Periodic solutions to nonlinear partial differential equa­
tions have attracted the attention of researchers over the last 
decade. At present there exist at least three different ap­
proaches for obtaining such solutions. The most general me­
thod being that of Krichever and Dubrovin 1 based on the 
technique of algebrogeometry. Next is the age-old tech­
nique2 of analyzing the periodic spectrum of the associated 
linear operator as in the case of the full line 1ST problem. 
Third is the method put forward by Date and Tanaka3 and 
elaborated by Forest and McLaughlin.4 Though in the paper 
of Date and Tanaka both the cases of continuous and dis­
crete nonlinear equations are considered, here we show that 
a variation of this method can lead to an elegant formulation 
of the periodic-inverse problem for a discrete nonlinear 
equation. We present the methodology by an analysis of the 

The inverse problem associated with Eq. (I) is written as 

where Fn (z),Gn (z) are the matrices 

, 
Ax(-qnz+Z-1qn_l) ) 

- (1_Z2+ (Ax}2qn_lq~) , 

and tJ n is a two-component vector (tJ1n ,tJ2n ). The consisten­
cy between (3) and (4) is equivalent to ( I) and is written as 

(5) 

We now assume that the nonlinear field q n obeys the periodic 
boundary condition qn + N + 1 = qn with period N + 1, 
where N is an arbitrary non-negative integer. From the first 
equation of (2) we observe that Fn can be interpreted as the 
transfer matrix over the single lattice site, so that we can 
define the translation operator Hn (z) by 

tJn+N + 1 =Hn(z}tJn· 

Then it is easy to ascertain that 
A'j;' 

Hn (z) = II 0+ 1 (z), 
j=l 

(6) 

(7) 

where the curved arrow indicates that the order of increase 
of the indices in the product. 

The monodromy matrix Hn (z) satisfies the equations 

The matrix Hn is such that 

a 
atS(JHn = 0, n,m = 0,1,2,00' 

Let us consider the matrix Hn as 

Using these conditions Eq. (8) becomes 

Z(ln+l -In} = +gn+lq~Ax+hnqnAx, 

zl(ln+l -In) =hn+lqnAx-gnq~Ax, 

-zgn +zlgn+l =qnAx(ln+l +In), 

-zlhn +zhn+ 1 = +q~Ax(ln+l +In}. 

The corresponding time evolutions are governed by 
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(2) 

(3) 

(4) 

(9) 

(10) 

(11 ) 
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a;; = [i1(ax)2][ax( -qnZ+Z1qn_l)hn 

± ax(q~ _ lZ - zlq~)gn]' 

a:; = [i/(ax)2[2Inax( -qnz+zlqn_l) 

+gn{(2-z2_z2) 

+ (ax) 2 (q n q~ _ I + q n _ I q~ )} ] , 

ahn 2 I --at = [il(ax) 1[ ± 2Inax(q~_lz -z q~) 

+ hn {( - 2 + Z2 + Z2) 

± (ax)2(qnq~ _ I + q~qn -I)}]' 

III. SOLUTION OF THE PERIODIC PROBLEM 

(12) 

It is now interesting to observe that Eqs. (11) and (12) 
are analogs of those equations satisfied by the square eigen­
functions/2

, g2, andlg, as deduced by Date and Tanaka and 
Forest and McLaughlin.4 Indeed we can deduce that the 
quantity 

(13) 

is independent of hand t, so that it is an absolute constant. 
With these comments in mind we now represent the function 
P(~) as 

2N+2 2N+2 
p(Z2) = L Pk~k=P2N+2 II (z2-Ej ), (14) 

k~O j~1 

so that the Ej are the zeros of p(Z2). Now we try a polynomi­
al solution for In' g n' and h n in the form 

N+I 
In (z,t) = L/~k)(t)~\ 

k~O 

N 

hn (Z,t) = L h ~k)(t)~k+ I, 
k~O 

n 

gn (z,t) = L g~k)(t)~k+ I. 
k~O 

(15) 

Substituting these in Eqs. ( 11 ) and ( 12) and comparing 
various powers of z, we obtain 

1~~11) =/~N+ I), (16) 

I~o~ I - I~O) = ax [ + q~q~O~ I + qn h ~O)]. (17) 

From the third equation of the set (11) we deduce 

(/~~11) + I~N+ I»qnax 

Also we get 

(18a) 

g~O~1 =axqn[/~O~1 +/~O)], (18b) 

and from the same set equating term involving Z2N + 2 we get 

q~_1 = +h~N)/2ax/~N+I). (19a) 

Then 

(19b) 
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From (17), (18b), and (19b) we deduce 

I~oll =/~O). (20) 

In addition we also take notice of the following important 
relations: 

In(z.t) = ~(N+ 1)ln (Zl,t), 

qnhn(Z,t) = +z2(N+I)q~gn(zl,t), 

q~gn(z,t) = -z2(N+I)qnhn(zi,t). 

Using expansion (15) in (21) we obtain 

I~k)(t) =/~N+ I-k)(t), 

qn h ~N)(t) = +q~g~O)(t), 
q~g~N)(t) = - qn h ~O)(t). 

From these equations follow two important relations; 

qn h ~N) = q~(/~O)II~N+ I)*)h ~N)*, 

q~g~N) = ± qn (/~O)II~N+ 1)*)g~N)*. 

(21) 

(22) 

(23) 

As in (14) we now postulate the existence of the zeros of the 
function gn (z,t) and write it in the form 

N 

gn (z,t) = zg~N) II (Z2 - Ilj (n,t)). 
j~ I 

(24) 

When this is used in conjunction with (21), we deduce 

h (N)* I(N+ 1)* N 
_n_= + n (-I)N+III .(nt) 

(N) - (0) . III ' . 
gn In l~ I 

Also, from (18a) and (19a), 

which finally leads to 
N 

qn-I (t) = qn (t)( - I)N+ I IIllj(n,t). (25) 
j~1 

Thus the lattice field qn (t) obeys a recursion relation, given 
via Ilj (n,t), indicating the fact that they can be explicitly 
determined if we can have a determination of Ilj (n,t). 

To deduce such an equation we equate coefficients of 
Z2N + I from both sides of the second equation of ( 12): 

a (N) 

~t = [i1(ax)2] [2axqn _ I/~N+ I) - 2axqJ~N) + g~N) 

X {I + (ax) 2 (q n q~ _ I + q n _ I q~ - I )} - g;; - T 
(26) 

We then use 

g~N) = _ 2/~N+ I)qn ax, 

N N 
g~N-I) = _ g~N) Lllj = 2ax/~N+ I)qn Lllj' 

j~1 j~1 

(/~N+ 1)2 = P2N + 2 , (27) 

2/~N + 11~N) - g~N)h ~N) = P2N + I' 

I (N) P 
n _ -2 * (ax)2 2N+I 

I
(N+ I) - + qnqn-I + 2P 
n ~+2 

This immediately leads to 
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_ 2f(N+ I) aqn Ax 
n at 

= __ i_[2Axq feN + I) _ 2Axq,,/(N) 
(Ax)2 n-I n n 

- 2f~N+ l)qnAx{! + (Axf(qnq~_1 + qn-Iq~)} 

- 2Axf~N+ l)qn L Pj], 

which finally, by use of (25), can be converted to 

P2N INN + + + (-I)NIIpj(n,t)+ LPj(n,t) 
2P2N + 2 j= I j= I 

± Iqn 12(Ax)2( - 1) NiXpj (n,t) l (28) 

We now use the original nonlinear difference equation shift­
ed by 1: 

.aqn _ I _ qn + qn _ 2 - 2qn - 1 • ( ) 
1 at - (Ax)2 ±qn-Iqn-I qn +qn-2 . 

Now equating the two expressions of aqn _ Ilat, we arrive at 

N 

qn + qn - I LPj (n,t) 
j= I 

= ± qn-I [3qn_Iq~_2 (Ax)2 - q~-Iqn (Ax)2 

+ P2N
+

I + 1]. 
2P2N + 2 -

(29) 

Equations (25), (28), and (29) will be of utmost impor­
tance in the computations that will follow. 

IV. MOTION OF THE ZEROS ~J(n,t) 

Since we have assumedgn (t,z) to have the zerosp/n,t) , 
N 

gn (t,z) = zg~N) (t) II (Z2 - Pj (n,t»). 
j=1 

Differentiating this equation with respect to t, we get 

ag(N) N N (ap .) 
z_n_ II (Z2 - Pj) + zg~N) II (Z2 - Pj) _J 

at j= I j= I at 

_ i [2Ax/" ( -I (N) - (Ax)2 ;In -qnz+zqn_l) +zgn 

xiii (Z2pj ){1 - ~ - Z2 += (qnq~ _ I + qn- I q~))]. 

Setting Z2 = Pj' we obtain 

2'f(N+ I) Ax apj _ 2i/,. 1 ( _ + 1 ) 
n qn a - A qn -qn - I , 

t ux III #j (Pj - PI) Pj 

which finally leads to 
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apj i .JP(.jiJ 
a;= (Ax)2 f~N+l)II/#j(pj -PI) 

x [ - 1 + ( - 1)N + I IIpl]. 
Ih 

(30) 

V. EXPLICIT SOLUTION FOR ~J(n,t) 

Equation (30) shows that the variablespj (n,t) satisfy a 
complicated system of dynamical equations. This flow can 
be straightened out by exploiting the fact that eachpj resides 
on the Reimann surface of 

2N+2 
R2(E) = II (E-Ej ). (31) 

j=1 

We define N Abelian differentials of the first kind on it by 

cEN-1+···+c 
du = v, vN dE v = 1,2, ... ,N. 

v R(E) , 

The matrix of the constants cvJt are fixed in terms of {Ej } and 
the normalization conditions 

fdUv = 8vJt ' 

while the "b" cycles define the period matrix 

BJtv = idUv. 

On the Reimann surface designated in this manner, Eq. (30) 
can be written as 

apj =_1_' -2 [-1 + (-I)N+lIIpl] 
at (Ax) Ih 

(II2N + 2(11.. _ E ) 112) 
X k= I r'J k • 

III #j (Pj - PI) 
(32) 

We now define some functionals of Pj on this Reimann sur­
face through 

N fl-'k N N il-'kEI-I 
lj (p) = - L dUj = - L cjI L =--dE, 

k= 1 1= I k= 1 0 R(E) 

from which we deduce 

dlj (p) 

dt 

(33) 

= __ 1_' -2 fCjI I [-1 + (_l)N+I IIPm] 
(Ax) 1=1 k=1 m#k 

I-I 
X Pk 

IIn# (Pk - Pn ) 
(34) 

With the help of standard Lagrange interpolation formulas 
it can seen that these summations over the Pc's are really 
very simple. Instead of the general case we indicate here the 
result for PI and P2' In this case we get 
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a/. a; (11-1,11-2) 

i 2 Cjl [(1 + 11-2) 11- I + (1 + 11- I ) 11-2 ] 
(tu) 11-1 - 11-2 11-2 - 11-1 

. [ 1 + (~)2 Cj2 (1 + 11-2) 
11-1 - 11-2 

1 ] i + (1 + 11- I) ( A _) 2 [Cjl - Cj2 ] • 
11-2 -11-1 ~ 

Hence we have a linear flow given as 

Ij (11-1,11-2) = [if (tu )21[ Cjl - Cj2 ] t + I J(11- 1,11-2)' (35) 

Similar considerations hold also for Ij (11-1,f-l2, ... ,f-lN) and we 
have 

Ij (11-1, ... ,I1-N) = [if(tu)2J[ cjl - ( - 1 ) NCjN ] t + IJ. 
(36) 

So now the solution for the I1-j'S can be obtained by the fam­
ous Jacobi inversion problem. 

VI. EXPLICIT FORM OF THE SOLUTION 

From our previous discussions we observe that the peri­
odic nonlinear field at the nth lattice point, defined to be q n' 

satisfies the elegant recursion relation (25) with I1-j (n,t) sa­
tisfying (32). Also there is another algebraic connection 
betweenl1-/n,t)qn' and qn-l> given by Eq. (29). All these 
equations involve some symmetric functions of the zeros 
11-. (m,t). It is interesting to note that these symmetric func­
tions ofl1-j (n,t) can be expressed in terms of combinations of 
Reimann () functions. Since this result is now quite standard5 

we will quote the result and use it in the sequel. It is known 
that 

n
N 

( ) -1 ()(at+Y+D)()(at+Y-D) 
11-. n,t - n 

j= I J ()(at + Y + D)()(at + Y - D) 

+jtl£lnZdUj(Z), (37) 

jt
l
l1-
j 
(n,t) = :t lIn :~:~: ~ ~:: :~ I r=O 

+ jt§z dUj (z), (38) 

where the vectors, a, Y, D, CT, etc. are defined as below: 
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We now set 

N 1 N -1/2 
Yj = i~IUj(I1-j>O) +2j~IBjJ ' 

Uj = JdUj dz, 

Cj•O 
a·=-. 

J Ina 

LUj = x' nUj = "', 

for the right-hand sides of (37) and (38). Using these with 
Eqs. (25) and (29), we can eliminate qn _ I and solve for 
Iqn 12 as 

Iqn 12 = [",-I + X
2 
+.p], /3 = P2N+ I . 

2(..:lX) '" P2N + 2 

It is useful to remember that these formulas are valid for N· 
phase periodic waves in general. 

VII. DISCUSSION 

In the previous sections we have developed an analog of 
the methods of Date and Tanaka and of Forest and 
McLaughlin to investigate the quasiperiodic solutions of the 
discrete nonlinear Schrodinger equation. It is important to 
remember that the first periodic inverse problem for the dis­
crete nonlinear equation-the Toda lattice-was solved by 
Kac6 using the spectrum of the Jacobi matrix. Also the alge­
brogeometric method exists, and it has been applied by Du­
brovin and Krichever,7 but our approach, in the line of Refs. 
3 and 4, is perhaps simplest and does have some computa­
tional convenience. 

I I. M. Krichever, Funct. Anal. Appl. 9, 105 (1975); B. A. Dubrovin, ibid. 
9,215 (1975). 

2p. Lac, Lect. Appl. Math. 15, 85 (1974); Y. C. Ma and M. J. Ablowitz, 
Stud. Appl. Math. 65,113 (1981). 

'E. Date and S. Tanaka, Suppl. Prog. Theor. Phys. 59, 107 (1976). 
4G. Forest and D. W. McLaughlin, J. Math. Phys. 23, 1248 (1982). 
5B. A. Dubrovin, V. B. Matveev, and S. P. Novokov, Russ. Math. Surv. 31 
( 1976). 

6M. Kac and P. Van Moerbeke, Natl. Acad. Sci. (USA) 72, 1627 (1975). 
7B. A. Dubrovin and I. M. Krichever, "Integrable systems," in London 
Mathematical Society Lecture Note Series, Vol. 60 (Cambridge U. P., Lon­
don, 1981). 
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Towards the proof of the cosmic censorship hypothesis in cosmological 
space-times 
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A theorem supporting the view that the cosmic censorship hypothesis proved recently by 
Krolak [A. Krolak, Gen. Relativ. Gravit. 15, 99 (1983); J. Class. Quantum Grav. 3, 267 
( 1986)] for asymptotically flat space-times, is true in general, is generalized so that it is 
applicable to cosmological situations. 

I. INTRODUCTION 

An idea originally put forward by Penrose! to circum­
vent the problem of space-time singularities is that there ex­
ists a "cosmic censor" that forbids the appearance of naked 
singularities (i.e., singularities visible from infinity) in gen­
eric collapse that starts off from a perfectly nonsingular ini­
tial state, clothing each one in an event horizon. 

It is important to know whether or not the cosmic cen­
sorship is true for the following three reasons. First, if it is 
true then the singularities resulting from gravitational col­
lapse cannot appear arbitrarily in space-time but they are 
always hidden behind an event horizon. Thus the indeter­
minism introduced by the presence of singularities is consid­
erably reduced. Second, many important results of relativi­
ty, the black hole area principle, the black hole uniqueness 
theorem, and the positivity of gravitational energy, all rely 
on the assumption that Penrose's hypothesis is true. Third, 
the validity of the cosmic censorship hypothesis is important 
for astrophysics. If it is valid then the final stages of evolu­
tion of stars of mass above certain critical value must be 
black holes and not something as ill defined as a naked singu­
larity. 

The author has recently proved a theorem that supports 
the validity of the cosmic censorship hypothesis in asymp­
totically flat space-times. 2

,3 The idea of his approach and the 
outline of the proof of the theorem is given in an essay sub­
mitted to the Gravity Research Foundation in the year 
1982.2 The full account is given in Ref. 3. The aim of this 
paper is to generalize the censorship theorem given in Ref. 3 
to cosmological situations. The paper is based on a part of an 
essay submitted by this author to the Gravity Research 
Foundation in the year 1983. 

In Sec. II we shall give basic notions and definitions 
including the statement of the cosmic censorship, which we 
shall prove in the following section. In that section we shall 
also formulate our proposals to characterize the singularities 
arising in physically realistic situations. These proposals 
constitute the basic assumptions of the censorship theorem 
given in Sec. III. In Sec. III we shall state and prove our 
censorship theorem. 

a) On leave of absence from the Mathematical Institute, Polish Academy of 
Sciences, Warsaw, Poland. 

II. BASIC NOTIONS AND DEFINITIONS 

By space-time we shall mean a pair (M, g), where M is a 
connected orientable four-dimensional Hausdorff Coo mani­
fold and g is a C 00 Lorentz metric on M. 

The cosmic censorship hypothesis asserts that no space­
time singularity visible from infinity can arise from generic 
gravitational collapse that starts off from nonsingular initial 
surface. In this section we shall define the concepts con­
tained in the above rather rough statement of Penrose's hy­
pothesis in precise mathematical terms. 

We shall denote by Iff a connected component of the set 
of all past end points of the future-complete null geodesics. 
We shall call the set Iff an external region. The external re­
gion Iff is interpreted as a region of space-time visible from 
infinity. In definition of Iff we demanded merely the exis­
tence of the future-complete null geodesics without further 
restrictions on the behavior of space-time at infinity (cf. the 
definition offuture-null infinity .7+ in Ref. 4 for asymptoti­
cally flat space-times). Thus our definition of region visible 
from infinity is very general and is applicable to cosmologi­
cal situations with exception to closed cosmological models 
in which no complete null geodesics exist. 

We shall say that a future-endless nonspacelike curve A 
terminates in a naked singularity if I - (A), the chronological 
past of A, is contained in the chronological past of some point 
p of the external region Iff. 

In the following definition we shall describe the concept 
of nonsingular initial surface. 

Definition 1: A space-time (M,g) is said to be general­
ized partially future asymptotically predictable from a par­
tial Cauchy surface S with respect to a nonempty subset Iff 0 

of Iff if the following conditions hold: ( 1 ) 
Iff onI + (S) CD + (S); (2) when Iff 0 =1= Iff, then H + (S) con­
tains a future-complete null geodesic generator y such that 
I - (y) nI + (S) C Iff 0; and (3) for every past-endless non­
spacelike curve a such that I + (a) CI + (S) there exists a 
point s in I + (S) such that I + (a) CI + (s). 

Remarks: Condition (1) in the above definition means 
that space-time is predictable in some neighborhood of the 
initial surface S. 

Condition (2) ensures that the predictable region ex­
tends to infinity. 

The additional condition (3) ensures that violations of 
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predictability are not associated with the initial surface S. 
For example, consider a Cauchy surface S in Minkowski 
space-time. Suppose that a point of the surface S is removed. 
Let the resulting space-time be denoted by (M',1]), where 1] 

is the flat metric and let the surface S with the point removed 
be denoted by S'. It is clear that the external region If is the 
whole of M' and that M' contains a naked singularity [any 
nonspacelike curve in Minkowski space-time with future 
end point p is a future-endless curve terminating in a naked 
singularity in space-time (M ',1])]. In (M ',1]) conditions (1) 
and (2) hold but not condition (3). The naked singularity in 
this example can be thought of as located on the surface S 
whereas by cosmic censorship one may only expect that no 
naked singularities will arise providing that the initial sur­
face is nonsingular. The role of condition (3) is to eliminate 
initial singularities such as described in the above example. 

We shall say that the cosmic censorship holds in space­
time (M,g) ifit is generalized future asymptotically predict­
able as defined below. 

Definition 2: A space-time generalized partially future 
asymptotically predictable from a partial Cauchy surface S 
with respect to a nonempty subset If 0 of If is said to be 
generalized future asymptotically predictable from S if the 
region If 0 coincides with the external region If. 

We shall prove that the above definition is equivalent to 
space-time being free of naked singularities. 

Lemma 1: A generalized partially future asymptotically 
predictable space-time from a partial Cauchy surface S with 
respect to a nonempty subset If 0 of 'If is generalized future 
asymptotically predictable from S if and only if there is no 
nonspacelike curve 1] terminating in a naked singularity such 
that! - (1]) nI + (S) =1=0 and I - (1]) nI + (S) C If o' 

Proof" Suppose that a generalized partially future as­
ymptotically predictable space-time from a partial Cauchy 
surface S with respect to a nonempty subset If 0 of If is not 
generalized future asymptotically predictable from S. Then 
If 0=1= If. Let y be the null geodesic generator given in condi­
tion (2) of Definition 1. Clearly 1+ (y) CI + (S). SinceS has 
no edge, y is past-endless (Ref. 4, Prop. 6.5.3). Thus there 
exists a points in 1+ (S) such that 1+ (y) CI + (s). Let p be 
any point on y. The closure of the set I - (p) nI + (s) is not 
compact since y is past-endless. Hence sEEint D - (I - (p) ) 

whereas sE/- (p). Thus there exists a future-endless 
nonspacelike curve 1] with past end point s such that 
I - ( 1]) C I - (p). Thus by definition 1] terminates in a naked 
singularity. By construction 1- (1]) nI + (S) =1=0 and 
1- (1]) nI + (S) C If o' 

Suppose that there is a nonspacelike curve 1] terminating 
in a naked singularity such that I - (1]) nI + (S) =1=0. Thus 
there is a pointp in If nI + (S) such that I - (1]) CI - (p). Let 
(qi) be a sequence of points on 1] in 1+ (S) such that 
qi + I CI + (qi) for all i and with no limit point inM. Let (fLi) 
be a sequence of nonspacelike curves from the point q I to p, 
where fLi consists of the segment of 1] from ql to qi and a 
timelike curve from qi top. The curvefLl is simply a timelike 
curve fL from ql to p. If the sequence (fLi) had a limit non­
spacelike curve fL from q I top then I - ( 1]) = I - (fL' ), where 
fL' = fL nI - (1]), and where fL' is not future-endless, being 
continued as fL to the future end point p. We shall show that 
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in such a case the set If nI + (S) cannot be globally hyper­
bolic. If the strong causality fails in If nI + (S), then this set 
cannot be globally hyperbolic by definition (see Ref. 4, p. 
206). If the strong causality holds in If nI + (S), then we can 
use the causal boundary construction of Geroch et al.5 Thus 
the set I - ( 1]) is a terminal indecomposable past set (TIP) 
and therefore any nonspacelike curve [3 such that 
1- ([3) = I - ( 1]) must be future-endless (see Ref. 5, 
Theorem 2.3). This contradicts the existence of the curvefL' 
above. Thus the sequence (fLi ) has no limit curve. Hence the 
set 1- (p) nI + (ql ) does not have a compact closure and 
therefore the set If nI + (S) cannot be globally hyperbolic 
(see Ref. 4, p. 206). Consequently If nI + (S) cannot be in 
int D + (S) as this latter set is globally hyperbolic. Thus If =1= 
If 0 and by Definition 2 space-time cannot be generalized 
future asymptotically predictable from S. 0 

We now come to the main problem of our description of 
generic gravitational collapse. We shall propose two condi­
tions that in our opinion fully characterize the generic gravi­
tational collapse. These two conditions constitute the main 
assumptions of the censorship theorem proved in the follow­
ing section. It has been agreed that a necessary condition for 
space-time to be singular is that it is timelike or null geodesi­
cally incomplete. 6 Geodesic incompleteness is exhibited in 
the singularity theorems of Penrose, Hawking, and Geroch. 
However, the existence of incomplete geodesics in space­
time does not mean that it contains singularities important 
from a physical point of view. For example, a mere removal 
of a point from a geodesically complete space-time results in 
a space-time that is singular. Examples such as the one above 
can be comparatively easily dealt with, for example, by as­
suming that space-time is maximal and hole-free. 7 Unfortu­
nately there exist examples of singularities like, for example, 
the shell-crossing singularities of Yodzis et al. 8

,9 and the 
shell-focusing singularities of Eardley and Smarr lO at which 
even the curvature invariants blow up but which are com­
monly considered as unphysical. Recently the shell-focusing 
singularities were thoroughly investigated by 
Christodoulou. II His claim is that the collapse situations in 
which these singularities appear may be a serious alternative 
to the standard picture of collapse given by Oppenheimer 
and Snyder. In our opinion the most promising way of distin­
guishing the class of singularities important from the phys­
ical point of view is to observe how they affect physical ob­
jects. This approach has been pioneered by Ellis and 
Schmidt.12 They introduced a class of what they called 
strong curvature singularities which have the property that 
all objects are crushed to zero volume at such a singularity 
no matter what the physical properties of the object. It was 
noticed by Seifert13 that tidal forces at the shell-crossing sin­
gularity are finite. This means that a sufficiently strong de­
tector will not be destroyed at such a singularity. Thus shell­
crossing singularities are not of strong curvature type. On 
the other hand, the Schwarzschild singularity and the singu­
larities in Friedmann cosmologies, i.e., singularities that are 
regarded as archetypes for real singularities, are of strong 
curvature type. This has led Tipler et al. 14 to suggest that "in 
any physically realistic space-time, all incomplete causal ge­
odesics terminate in strong curvature singularities." The au-

Andrzej KrOlak 139 



                                                                                                                                    

thor of this paper has independently put forward a similar 
conjecture stating that "singularities in all reasonable phys­
ical cases are of the strong curvature type." 15 The concept of 
the strong curvature singularity was precisely defined in geo­
metrical terms by Tipler. 16 Here we shall adopt the following 
definition which is a modification of Tipler's original idea. 

Definition 3: A future-endless nonspacelike geodesic A is 
said to terminate in a strong curvature singularity in the 
future, iff or every point p onA the expansion 0 of the future­
directed nonrotating congruence of geodesics from p con­
taining A becomes negative somewhere on A. 

In our opinion the above definition is a precise geometri­
cal description of the singularity arising as a result of reach­
ing by the gravitational field the point of no return beyond 
which only its further, unbounded increase in strength is 
possible. All the other singularities are in a certain sense 
artificial originating from some special conditions imposed 
on space-time, e.g., symmetry, Petrov type, special initial 
conditions. 

In the above definition, not only timelike but also null 
geodesics are included. The strong curvature singularity is 
identified by the property that it focuses all the congruences 
of the null geodesics approaching it. 

We shall say that the strong curvature condition holds if 
every future endless nonspacelike geodesics terminating in a 
naked singUlarity terminates in a strong curvature singular­
ity in the future. 

Our second condition is based on the idea that only 
those singularities that are forced on us by singularity theo­
rems are generic. This idea has been recently expressed by 
Seifert l7 and Hawking. 18 We shall say that the trapped sur­
face condition holds to the future of a partial Cauchy surface 
S if for any nonspacelike curve 'T/ terminating in a naked 
singularity, there is a trapped surface Y such that the inter­
sectionYnI - ('T/) nI + (S) is not empty. Thesupportforits 
validity has recently been provided by the proof by Schoen 
and Yau l9 of the trapped surface conjecture put forward by 
Seifert. 13 The now established conjecture says that "any 
mass that is concentrated within a region of a sufficiently 
small diameter can be surrounded by a trapped surface." To 
end the discussion of the trapped surface condition recall 
that Penrose was led to the formulation of the cosmic censor­
ship hypothesis I by the following remark: in the case of the 
Kerr-Newman black hole the singularities that are not na­
ked are accompanied by trapped surfaces and therefore there 
exist theorems (singularity theorems) that say that such sin­
gularities will not disappear under generic perturbations. 

III. CENSORSHIP THEOREM FOR COSMOLOGICAL 
SPACE-TIMES 

Before we can state our censorship theorem we need the 
following definition. 

Definition 4: A future-endless null geodesic of space­
time (M,g) that forms an achronal set and is future complete 
is called an outgoing null geodesic. A null geodesic that is a 
limit curve of outgoing null geodesics is called a marginally 
outgoing null geodesic. 

Theorem 1: Let (M,g) be a generalized partially future 
asymptotically predictable space-time from a partial Cauchy 
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surface S with respect to a nonempty subset '!J 0 of the exter­
nal region '!J, and let r be the null geodesic generator of 
H + (S) given in Definition 1. 

If (1) Rabk ak b? 0 for all null vectors k a, and either 
(2a) (i) for any compact set Crff such that 
Crff CI - (r) nI + (S), the boundary j + (Crff) contains an out­
going null geodesic contained in D + (S), (ii) the trapped 
surface condition holds to the future of S, or (2b) (i) for any 
future-endless nonspacelike curve 'T/, such that j - ('T/) 
nI + (S) #0 and 1- ('T/) nI + (S) C '!J 0' the boundary 
j - ('T/) nI + (S) contains a marginally outgoing null geodesic 
A, (ii) the strong curvature condition holds; then (M,g) is a 
generalized future asymptotically predictable space-time 
from the partial Cauchy surface S. 

Remarks: It has been shown by this author that in an 
asymptotically fiat regular partially predictable space-time, 
condition (2a) (i) is satisfied and condition (2b) (i) is ful­
filled if, at the Cauchy horizon, global hyperbolicity is violat­
ed in such a way that the condition of causal simplicity does 
not hold also (see Ref. 3 for details). This last fact means 
that the censorship theorem proved in Ref. 3 does not deal 
with completely general naked singularities. There may exist 
naked singularities such that everywhere on the Cauchy hor­
izon, which forms as a result of the naked singularity, causal 
simplicity holds. 

We assume that the conditions discussed above also 
hold in cosmological situations. Thus our censorship 
theorem proved below is subject to at least the same short­
comings as the censorship theorem proved for asymptotical­
ly fiat space-times in Ref. 3. 

Proof of Theorem 1: If the generalized partially future 
asymptotically predictable space-time (M,g) is not general­
ized future asymptotically predictable, then by Lemma 1 
there exists a future-endless nonspacelike curve 'T/ terminat­
ing in a naked singularity such that! - ('T/) nI + (S) #0 and 
1- ('T/) nI + (S) C '!J o. 

If condition (2a) holds, then by condition (2a) (ii) 
there exists a trapped surface Y CI - ('T/) ns. Since 
1- ('T/) CI - (r) there exists a future-complete null geodesic 
generator a of j + (Y) by condition (2a) (i). The null geo­
desic a has the past end point on Y since a is contained in 
int D + (S) and the set int D + (S) is globally hyperbolic and 
therefore causally simple. Thus we have a contradiction, 
since by future completeness of a, the Raychaudhuri equa­
tion, and condition (1) there must exist a point s conjugate 
to Y on a. Consequently, points of j + (Y) to the future of s 
can be joined to Y by timelike curves. This is impossible as 
the set j + (Y) is achronal. 

If condition (2b) holds, then by (2b) (i) the boundary 
j - ( 'T/) contains a marginally outgoing null geodesic A. Con­
sider the sequence (A;) of outgoing null geodesics such that 
A is its limit curve. Choose a sequence of points (p;), such 
that for all i p; is a point on A;, and the sequence (p;) con­
verges to some point p on A. Consider the expansion 0; of a 
nonrotating congruence of null geodesics from p; containing 
A;: 0; cannot become negative anywhere onA; to the future 
of Po since otherwise, by completeness of ,10 the Raychaud­
huri equation, and condition (1), there would be a point 
conjugate to p; on A;. This is impossible since by definition, 
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each Ai generates an achronal set. Thus in the limit, the ex­
pansion e of a nonrotating congruence of null geodesics 
from p and containing A cannot become negative. However 
by condition (2b) (ii), A terminates in a strong curvature 
singularity. Therefore by Definition 3, e must become nega­
tive somewhere on A. This is a contradiction. 0 
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On singularity theorems and curvature growth 
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(Received 29 April 1986; accepted for publication 27 August 1986) 

It is shown that the proofs of a series of classical singularity theorems of general relativity can 
be modified such that these theorems also state the maximality of the incomplete nonspacelike 
geodesics. Since along maximal incomplete nonspacelike geodesics with affine parameter u 
certain parts of the tidal curvature cannot blow up faster than (u - u) -2, where u is the 
parameter value until which the geodesics cannot be extended, the classical singularity 
theorems do restrict the behavior of the curvature. 

I. INTRODUCTION 

In the general theory of relativity the singularity theo­
rems of Hawking, Penrose, and others state the existence of 
incomplete nonspacelike geodesics under very general con­
ditions; i.e., space-time is singular. I

,2 However, these theo­
rems do not show which geodesics are incomplete and in 
many cases they do not tell us explicitly if these geodesics are 
future or past incomplete. 

In other parts of classical physics the notion of singulari­
ties is connected with the misbehavior of a characteristic 
quantity; e.g" field strength. Thus, based on this intuitive 
notion of singularities, certain misbehavior of the curvature 
tensor is expected along the incomplete nonspacelike geo­
desics, Unfortunately, such a misbehavior does not follow 
from incompleteness, furthermore the singularity theorems 
say nothing about the curvature's behavior. 3 

Surprisingly, while we are expecting a lower bound to 
the rate of growth of some parts of the curvature along in­
complete nonspacelike geodesics approaching a "true, phys­
ical" singularity, in certain cases the existence of an upper 
bound can be proved, which is due to the causal structure,4-7 
The basic ideal,2 is the fact that a nonspacelike curve is maxi­
mal iff it is geodesic without any pair of conjugate points. But 
the occurrence of conjugate points is a very general phenom­
enon: if a nonspacelike geodesic gathers enough curvature in 
some sense, then conjugate points must occur. Null geodes­
ics are maximal if they lie in an achronal set, furthermore 
there exists a maximal nonspacelike geodesic between caus­
ally related points in a globally hyperbolic set. Thus maxi­
mality, in certain situations, follows from causality. Conse­
quently, if r is a maximal nonspacelike geodesic, then r 
cannot gather arbitrarily large curvature; and in particular if 
r is a maximal incomplete nonspacelike geodesic (and so it 
hits a singularity), we obtain an upper bound to the rate of 
the blowing up of certain parts of the curvature. This argu­
ment was used to obtain an upper bound to the rate of the 
divergence of the Ricci and Weyl part of the tidal force along 
incomplete null geodesics lying in an achronal set by Tipler 
and the author,6 respectively: they cannot blow up faster 
than (u - u) -2, where u is the affine parameter and u is the 
parameter value until which the geodesic cannot be ex­
tended. 

Unfortunately, incomplete nonspacelike geodesics are 
not necessarily maximal, so we do not have any upper bound 
in general. For example, if r is a future incomplete null geo-

desic [so the TIP P: = I -rrepresents a singular point ofthe 
causal boundary a c (see Ref. 3) ] , then r is not necessarily in 
an achronal set, therefore r is not necessarily maximal. On 
the other hand, though the boundary ap is achronal and is 
generated by future endless null geodesics, these geodesics 
are not necessarily incomplete, even if r is. Therefore one 
may ask the question: Is there any "physically realistic" situ­
ation in which the incomplete nonspacelike geodesics are 
maximal; i.e., in which the existence of an upper bound can 
be proved? 

In this paper we show that the proofs of a number of 
classical singularity theorems can be modified such that they 
state not the existence of incomplete nonspacelike geodesics 
only, but that these geodesics must be maximal, therefore 
these theorems do restrict the curvature's behavior. We con­
clude that in "physically realistic" situations, defined by the 
conditions of the classical singularity theorems, certain parts 
of the curvature cannot blow up faster than (u - u) - 2 along 
the geodesics approaching the singularity. Furthermore, in 
many cases they show where the incomplete geodesics lie, 

This paper consists of four parts. In the first one we 
review what restrictions on the growth of the curvature can 
be obtained from the maximality of incomplete nonspacelike 
geodesics. The second part contains the auxiliary statements 
we need for the new proofs, Four of the most important 
classical singularity theorems with modified proofs are con­
tained in the third part. Finally, in the fourth part some 
remarks are given. 

This paper is based on the matter given in Refs. 1 and 2, 
so the continuous references to well-known statements are 
omitted. Our conventions and notations are the same as 
those of the book of Hawking and Ellis I except that the 
chronological, causal, etc. future of the set K is denoted by 
1+ K,J + K, etc., respectively. 

II. MAXIMAL NONSPACELIKE CURVES 

A nonspacelike curve r from p to q is said to be maxi­
mall if p and q cannot be joined by any nonspacelike curve, 
obtained from r by small deformation, longer than r. Since, 
by definition, incomplete nonspacelike curves are inextend­
able, we are interested in nonspacelike curves without end 
points. A future inextendable nonspacelike curve r starting 
at p is said to be maximal if for every qEr, the segment of r 
between p and q is maximal. Based on the statements of 
Chap. 4 of Ref. 1, one can state that a future inextendable 
nonspacelike curve r from p is maximal iff it is geodesic and 
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contains no point conjugate to p along y. 
Ruling out the possibility of the occurrence of conjugate 

points along future directed incomplete nonspacelike geo­
desics, Tipler has a restriction on the growth of the R ab K a K b 
part of the curvature, where K a is the tangent to the geodes­
ics.4-7 

Proposition2.]: Let y: [O,U) -+M be a maximal incom­
plete nonspacelike geodesic with affine parameter U and tan­
gent K a. If the convergence condition RabK a K b>O holds, 
then, for Va > 0, the inequality 

( i
U-(l+a)IlU ) 

lim inf - t:.u RabKaK b du <,2n 
.6.u_O u -.6.u 

must be satisfied, where n = 2 for null and n = 3 for timelike 
geodesics. 

This proposition implies that the energy-density-like 
expression RabKaK b cannot blow up faster than (u - U)-2 

as we approach the singularity at U, provided the metric is 
C 2

• For timelike geodesics, the equations describing the Ja­
cobi fields (and so the conjugate points) are very complicat­
ed, therefore obtaining restrictions on further parts of the 
curvature seems to be almost hopeless. 

Along maximal incomplete null geodesics, however, a 
restriction on the eigenvalue E of CmanbKaKb can be ob­
tained in certain situations. Before considering the statement 
giving us this restriction, we have to examine the possible 
behaviors of CmanbKaKb as u-+U. Since CmanbKaKb is a 
symmetric and traceless 2 X 2 matrix, it has the form 

(
COS 2X sin 2X ) 

E sin 2X - cos 2X . 

Thus it is completely characterized by the functions E( u) 

and X(u). Consequently, the behavior of CmanbKaK b is de­
termined by those of E and X (see Ref. 7). From physical 
points of view the most important case is that in which the 
components of CmanbKaKb diverge; i.e., there is a definite 
limiting eigenframe of CmanbKaKb [Iimu_u X(u) exists] 
and E tends to infinity. Introducing the notation 

Wu,.u _ u, : = J... fU ( f
U
' CmanbK a K b dU") 

2 Ju, Ju, 

X (lU' C K eK f dU")dU' menf u, 

+ (f' E sin 2X dU"Y]dU' , 

the next proposition gives us a restriction on the diverging 
CmanbKaKb.6 

Proposition 2.2: Let y: [O,u) --+Mbe an incomplete null 
geodesic lying in an achronal set, U be its affine parameter, 
and K a be its tangent. If the convergence condition 
RabKaK b>Oholds, limu_u X(u) exists and 38> Osuch that 
E( u) does not change sign on (u - 8,u), then for Va > 0, the 
inequality 

lim inf ( - t:.u W(U -llu) -llu. _ allu) <, (2 + a) (1 + a)3 
llu_O 
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must be satisfied. 
This statement implies that E cannot blow up faster than 

(u - u) - 2 along maximal incomplete null geodesics, pro­
vided the metric is C 2 and lim X (u) exists. Otherwise, as­
suming for example that E(U) = b(u - u) - 2 - v for some 
b #0 and v>O, we would obtain that 

- t:.u W(U _ 211u). _ allu = b 2G(a,v) (t:.u) -2, 

Va> 0, where G(a,v) is a nowhere zero expression of a and 
v; which would tend to infinity as t:.u --+ O. 

III. AUXILIARY STATEMENTS 

In this section we state four lemmas that will be used in 
the modification of the proofs of the classical singularity 
theorems. 

Lemma 3.]: If ( 1) the null convergence condition holds 
on M, (2) the null generic condition holds on M (i.e., on 
each inextendable null geodesic with tangent K a there is a 
pointwhereK[aRb]ef[cKd ]KeKf#O),and (3) thechrono­
logy condition holds on M, then the strong causality condi­
tion holds on M or there is a point p where the strong causal­
ity condition is violated and there is an incomplete null 
geodesic throughp lying in E -{P}UE +{P}. 

This lemma is a modified form of Proposition 6.4.6 of 
Ref. 1 and its proof is almost the same. 

The following lemmas state compactness of certain sub­
sets of space-time, provided the maximal nonspacelike geo­
desics generating them, in some sense, leave these sets. The 
proofs are based on the standard matter given in Chap. 6 of 
Ref. 1. The first one has been published yet,8 so its proof will 
be omitted here. 

Lemma 3.2: Let K be a nonempty set. If each future 
directednullgeodesicygeneratingE + K - K leavesE + Kin 
the future direction (i.e., each y has a point r such that the 
points of y following r do not belong to E + K and the points 
of y preceding r belong to E + K), then E + K is compact. 

Lemma 3.3: If there is no past directed past endless non­
spacelike geodesic y from p such that its segment y - {P} is 
maximal, or each such a nonspacelike geodesic leaves 
D - E -{P} in the past direction, then D E -{P} is com­
pact. 

Sketch o/proof Using the technique developed in Refs. 
1 and 2, one can show that for each point q of D E {P} 
there exists a past directed nonspacelike geodesic y from p 
through q, such that the segment (q,p) of y is maximal. 

Let {qn} be an infinite sequence of points of 
D E {P}. Because of Lemma 3.2, E -{p} is compact. 

Thus without loss of generality one may assume that p is not 
limit point of {q n} and no point of this sequence belongs to 
E - {P}. Let y n be the past directed nonspacelike geodesic 
fromp through qn such that its segment (qn'P) is maximal. 
{y n} has a limit curve y from p which is geodesic. Further­
more, the segment of y consisting of those points that are 
limit points of the maximal segments (qn'P) of the Yn's is 
maximal. Consequently, there is a point qEy - {P} such that 
this maximal segment is [q,p) or (q,p). Of course, 
qED E {P}, and q is a limit point of {qn}' i.e., 
D E {P} is compact. 
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In a similar way one can prove our fourth lemma. 
Lemma 3.4: Let S be a compact C 2 partial Cauchy sur­

face. If there is no future inextendable maximal timelike geo­
desic orthogonal to S, or each such a timelike geodesic leaves 

D + S in the future direction, then D + S is compact. 

IV. CLASSICAL SINGULARITY THEOREMS MODIFIED 

In this section the four classical singularity theorems 
contained in Ref. 1 will be reexamined and it will be clear 
that the original conditions of these theorems guarantee the 
maximality of incomplete nonspacelike geodesics. 

The first one is Penrose's theorem9 and, since its modi­
fied proof has been published elsewhere, 8 its new proof, 
which is based on Lemma 3.2, will not be repeated here. 

Theorem 4.1: If (1) RabKaKb;;.o for every null vector 
K a

; (2) (M,g) admits a noncompact Cauchy surface; and 
(3) there exists at least one of the following: (a) a closed 
trapped surface T, (b) a point t such that along each future 
directed null geodesic from t the expansion e becomes nega­
tive (t may be called a future trapped point); then there 
exists a future incomplete null geodesic lying in JJ + T or in 
JJ+{t}, respectively. 

Possibility (b) in condition (3) is due to Tipler lO and we 
note that this concept of trapped point differs from the 
trapped point of Kr6Iak. ll

•
12 

The second theorem is that of Hawking and Penrose. 13 

Theorem 4.2: If (1) RabK aK b;;.O for every nonspacelike 
vector K a; (2) the chronology condition holds on M; (3) the 
generic condition holds on M; and (4) there exists at least 
one of the following: (a) a compact achronal set S without 
edge, (b) a closed trapped surface T, (c) a future trapped 
point t; then at least one of the following statements holds: 
(a) there exists a compact set C #0 and an incomplete null 
geodesic lying in E +CUE -C, and/or «(3) there exists an 
open globally hyperbolic set D and an incomplete maximal 
nonspacelike geodesic in D. 

Proof: LetK be S or Tor {t} in case (a), or (b), or (c), 
respectively. In cases (b) and (c), E + K - K is generated by 
future directed null geodesics with past end points on K. If 
each null geodesic generator of E + K - K leaves E + K, then 
E + K is compact (Lemma 3.2). Thus, if E + K is not compact 
then there must be a null geodesic generator y which does 
not leave E + K in the future direction. However, y cannot be 
future complete, as otherwise a point conjugate to K would 
occur on y, thus statement (a) holds with C = Tor {t}o 
Since S is achronal without edge, one has E ± S = S and so, 
because of the compactness of S, E + S is compact. Hence one 
may assume that E + K is compact (i.e., K is a future trapped 
set). 

Since K is a future trapped set in a strongly causal space­
time, there exists a future inextendable timelike curve J1 in 

intD + E +K. ThesetF: = E +Kn J -J1iscompactandach­
ronal. Furthermore, E - F = FU G, where G is a connected 
subset of JJ - J1. Thus through each point of G there is a 
future inextendable null geodesic. Here E - F may be com­
pact or noncompact. If E - Fis not compact, then by Lemma 
3.2 there is a null geodesic generator y of E - F - F that does 
not leave E -Fin the past direction; i.e., y is an inextendable 
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null geodesic in JJ - J1 through p: = ynF. But y must be 
incomplete, as otherwise conditions ( 1) and (2) would im­
ply the existence of a pair of conjugate points along y. Thus 
with C = {P}, statement (a) holds, therefore one can as­
sume that E - F is compact. 

F is a past trapped set in a strongly causal space-time, 
thus there exists a past inextendable timelike curve A in 
int D - E - F. From this point the proof is the same one given 
in Ref. 1: one can show that there is a point qEE + K and a 
maximal inextendable nonspacelike geodesic y through q in 
D: = int DE - F. This geodesic must be incomplete, because 
if it were complete then a pair of conjugate points would 
occur, which would contradict its maximality. 

The original version of the following theorems were 
published by Hawking. 14.1 

Theorem 4.3: If ( 1 ) RabK a K b;;.O for every nonspacelike 
vector K a; (2) the strong causality condition holds on M; 
and (3) there is a point p, a past directed unit timelike vector 
W at p and a positive number b such that the expansion 
e = V a

.a of the past directed timelike geodesics fromp with 
unit ta~gent va becomes less than - 31 WaVa Ib -I within 
parameter distance ~t = I wa Va I-I b; then at least one of the 
following statements holds: (a) there is a past directed in­

complete null geodesic fromp inE -{P}, and/or (fJ) there is 
a past directed maximal incomplete nonspacelike geodesic 
fromp in D - E -{P}. 

Sketch of proof' If E -{P} is not compact, then by 
Lemma 3.2 there is a null geodesic from p in E -{P}. If 
E - {P} is compact, then D E {P} must be noncompact, 
as otherwise there would be a past imprisioned timelike 

curve in D E {P}. Thus, because of Lemma 3.3, there is a 
past endless maximal nonspacelike geodesic in D - E - {P}. 
However, these curves must be incomplete, according to 
condi tions (1) and (2). 

Theorem 4.4: If ( 1 ) RabK a K b;;.O for every timelike vec­
tor K a, (2) there is a compact C 2 partial Cauchy surface, (3) 
the unit normals to S are everywhere converging then there 
exists a maximal future incomplete timelike geodesic orthog­
onal to S in D + S. 

Based on Lemma 3.4, a similar argument can be used to 
prove this statement too. 

V. DISCUSSION AND FINAL REMARKS 

Since we summarized the results in the Abstract and the 
Introduction, we do not repeat them, but we have some final 
remarks. 

The second condition of Theorem 4 of Ref. 1 is weaker 
than that of Theorem 4.4: for the proof of the existence of 
incomplete timelike geodesic, only a compact spacelike hy­
persurface without any edge is needed. Of course, in Hawk­
ing's covering space M H' the maximality of the incomplete 
timelike geodesic y orthogonal to an S-homeomorphic pre­
image SH of S (Ref. 15) can be proved. Thus, it would be 
interesting to see whether or not the geodesic might lose its 
maximality under the projection 1T: MH --+M. Ifnot then, of 
course, the second condition of Theorem 4.4 can be weak­
ened to that of Theorem 4 of Ref. I (see Note added in 
proof). 

There is another class of singularity theorems l6
,17 where 
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the maximality of the incomplete nonspacelike geodesics can 
be proved in certain covering spaces. However, it is not clear 
whether or not their maximality is preserved under the cov­
ering projection (see Note added in proof). 

Among the oldest singularity theorems,18.19 there is a 
great variety of statements that predict maximal incomplete 
timelike geodesics. For example, one can show easily the 
next theorem. 

Theorem 5.1: If (I) Rab VaVb;>O for every timelike vec­
tor va; (2) (M,g) admits a compact C 2 Cauchy surface S; 
and (3) the unit normals to S are everywhere converging; 
then every future inextendible timelike curve has finite total 
length measured from one of its points, furthermore for ev­
ery TIP P there exists a maximal incomplete timelike geo­
desic r orthogonal to S such that I - r r;; p. 

Condition (3) can be replaced by one of the series of 
conditions that guarantee the expansion of the timelike geo­
desics becoming negative. 18.19.20 If the future causal bound­
ary of space-time has no null part,3.21 then Theorem 4.1 
states that each point of the singular future boundary can be 
reached by maximal timelike geodesics. 

Finally, it is worth noting that the incomplete null geo­
desic in Theorem 1 of Ref. 22 (which states that, roughly 
speaking, chronology violation creates incomplete null geo­
desics in an asymptotically flat space-time) is also maximal. 

Note added in proof Since the covering projection is a 
local diffeomorphism, the maximality of the inextendable 
nonspacelike geodesics is preserved: if there were a nontri­
vial Jacobi field along tr°r with zeros then a Jacobi field 
describing conjugate points could be given along r. (I am 
indebted to C. J. S. Clarke for suggesting this idea of the 
proof.) 
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The Hamiltonian dynamics of gravitational theories with general Lagrangians quadratic in 
components of the curvature tensor is investigated. It is shown that the Noether generator 
corresponding to the action of the diffeomorphism group of space-time naturally defines the 
energy-momentum function E. The analysis of the differential of E gives rise to a formula for 
the symplectic two-form n and thereby defines symplectic (canonical) variables of the system. 
This construction is four-covariant, that is, independent of a chosen slicing of space-time. A 
more thorough analysis is performed in the (3 + I) decomposition. In this scheme the 
canonical classification of quadratic Lagrangians is presented. It singles out the class of 
canonically regular Lagrangians as well as four classes of degenerate ones. The Cauchy­
Kowalewska problem for all these classes is formulated. 

I. INTRODUCTION 

The dynamics of classical fields is governed by Euler­
Lagrange equations of corresponding variational problems. 
In mechanics, where the least action principle is related to 
one-dimensional variational integrals, the correspondence 
between Lagrangian and Hamiltonian formulations was al­
ready discovered in the 19th Century. Early attempts to gen­
eralize that construction for multidimensional integrals, 
that is, for the field theory, cannot be considered satisfactory 
mainly because of the lack of a single-out time coordinate for 
relativistic Lagrangian field theories. 1 

Even if these apparent difficulties can be overcome by 
introducing families of spacelike surfaces in space-time to 
parametrize the evolution picture ("many-fingered time"), 2 

the next problem, namely, the canonical degeneracy ofphy­
sically interesting Lagrangians and the related noninvertibi­
lity of corresponding Legendre transformations, seems to be 
the main obstacle for the construction of an adequate Hamil­
tonian dynamics. 

In the late 60s and early 70s in order to construct a 
consistent Hamiltonian fomulation of field theories several 
groups of mathematical physicists started investigations on 
the geometric structure of the multidimensional variational 
problems. It turned out that the necessary mathematical 
structure had already been presented in the literature in 1953 
by Dedecker. 3 His paper gave a geometrized and updated 
version of the results that had earlier been obtained by Car­
atheodory, Weyl, Lepage, and De Donder. Written in a rath­
er difficult language of modern differential geometry, De­
decker's paper was not known in the physical community for 
several years. In this scheme the geometric formulation of 
first-order variational problems is based on the Hamilton­
Cartan four-form 8HC constructed from the Lagrangian of 
the system under consideration. 8HC is not simply a differen­
tial form on space-time M but a four-form on some bundle P 
over M, whose fibers are parametrized by four-momenta (or 
four-velocities) of variational potentials. The variational 
Euler-Lagrange equations for the Lagrangian L can be re­
written in an elegant geometric form using the exterior de­
rivative d8Hc of the Hamilton-Cartan four-form. Moreover 

the five-form d8Hc transvected with two vector fields on P, 
which represent vectors tangent to the variety of all geomet­
ric configurations of the system, and integrated over a three­
dimensional initial surface if gives us the numerical value of 
the symplectic two-form n on the variety of all geometric 
configurations G. 

The action of the diffeomorphism group of space-time in 
the bundle P induces a mapping Z -> X z from the space of 
vector fields on space-time to the space of vector fields on P. 
Therefore we can construct the energy-momentum three­
form V z onP transvecting8Hc withXz . Taking the pullback 
of V z onto M and integrating it over a three-dimensional 
initial surface (J we obtain the energy-momentum function E 
onG. 

Now, the functional Hamilton equation reads 

dE· V = - n ( Y!\ V), (1.1 ) 

where Vis an arbitrary (sample) vector tangent to G, and Y 
is the vector of evolution in G generated by the vector field Z. 
In local coordinates Yis represented by the Lie derivatives of 
corresponding geometric variables taken in the direction of 
Z. 

For first-order variational principles the geometric 
multisymplectic formulation of the calculus of variations 
with applications to physical problems has been developed in 
papers by Garcia-Perez-Rendon, Gawedzki, Kijowski, 
Goldschmidt-Sternberg, Szczyrba, Kijowski-Tulczyjew, 
Kondracki, and Aldaya-Azcarraga4

; see also a review paper 
by Kastrup.5 

The general method of how to pass from the multisym­
plectic formulation of field theories to the Hamiltonian dy­
namics, as it has been outlined above, was presented in the 
author's previous papers6 and then applied to gravitational 
theories with general Lagrangians. 7

•
8 

These papers reveal relations between the symplectic 
Hamiltonian dynamics and Dirac's theory of constrained 
Hamiltonian systems. 9 Recently analyzed cases of gravita­
tional theories with quadratic Lagrangians 10 show, however, 
that some results effectively obtained in the symplectic ap­
proach would be very difficult to get in a rather formal Dirac 
scheme. 

146 J. Math. Phys. 28 (1), January 1987 0022-2488/87/010146-13$02.50 © 1987 American Institute of Physics 146 



                                                                                                                                    

So far, the symplectic dynamics is known for theories 
based on first-order variational principles. In theories of 
gravity these cases correspond to the Einstein-Palatini 
method of variation, where the components of a metric gl'v 

and the coefficients of a connection r I' A v are varied indepen­
dently. 

For higher-order variational problems a consistent 
multisymplectic formulation has not yet been found. In spite 
of essential efforts in that field II the problem seems to be 
more elusive than ever. Up to now nobody has succeeded in 
the finding of appropriate symplectic positions and mo­
menta for general higher-order variational systems, and it 
could even seem that for such theories the symplectic Hamil­
tonian formulation does not exist. 

In the present paper we show, however, how to formu­
late the Hamiltonian dynamics for second-order gravita­
tional theories based on Einstein-Hilbert variational princi­
ple with ten variational potentials gl'v and the connecting 
coefficients expressed by the Christoffel symbols {I' A v}. 
Here the primary entity is the Lagrangian L depending on 
the metric, its first and second derivatives. The invariance 
properties of the Lagrangian with respect to the action of the 
diffeomorphism group of space-time enable us to define a 
conserved Noether current EA. The integral of the corre­
sponding dual three-form over a three-dimensional surface a 
defines the energy-momentum function E on the space of 
geometric configurations G. 

Of course, for first-order variational problems such a 
method is equivalent to the geometric construction of E de­
scribed previously. For higher-order systems, however, we 
do not know how to construct the symplectic two-form n. In 
order to overcome this difficulty we compute the differential 
dE and show that the integrand in the explicit formula for 
dE· V can be rearranged in such a way that dE satisfies the 
equation of type (1.1) with the vector of evolution Y given 
by the Lie derivatives of corresponding field variables taken 
in the direction of the field Z. The proper formula for the 
symplectic two-form n can be naturally inferred from these 
considerations. 

This construction is entirely four-covariant and does 
not depend on a particular choice of a surface a in space­
time. It enables us to find elegant formulas for symplectic 
variables without (3 + 1) decomposition. 8 

However, four-covariant symplectic variables derived 
in such a way are not independent. In order to determine 
kinematically independent symplectic variables on the ini­
tial surface a we have to decompose the field variables in 
their a-tangential and a-normal parts. This decomposition is 
performed by means of the bar operation (see Ref. 6 and 
Appendix A). As the result we get 12 symplectic positions 

( 1.2a) 

and 12 symplectic momenta 

( 1.2b) 

on the initial surface a. 
Here gij is a Riemannian metric on a and zij is propor­

tional to the second fundamental form Kij of the embedding 

a-+M (zij = - 2Kij)' 
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The formulas for the momenta ::,ij, ; ij are given in Sec. II. 
Gravitational Lagrangians divide in two classes. For re­

gular Lagrangians 24 symplectic momenta ( 1.2b) are kine­
matically independent quantities on the initial surface a. For 
singular Lagrangians there are kinematical (primary) con­
straints among the quantities ( 1.2). In such cases we have to 
find kinematically independent symplectic variables and ex­
press the symplectic two-form in terms of them. In Sec. III 
we present a classification of gravitational Lagrangians qua­
dratic in the curvature tensor and determine their kinemati­
cally independent symplectic variables. 

The field equations 

(Eq)l'v = 8L = ° (1.3) 
8gl'v 

written in terms of symplectic variables divide in two sub­
sets, 

(Eq)OV = 0, ( 1.4a) 

and 

(Eq)mn = 0. (l.4b) 

We show that Eqs. (1.4a) are the symplectic constraints. 
They can be expressed in terms of symplectic variables and 
their spatial derivatives. Equations (l.4b) determine the dy­
namics of the system. The dynamics preserves the con­
straints. 

Of course, as in any theory of gravity, we have four 
gauge variables N, N k [ADM's (Arnowitt-Deser-Misner) 
lapse and shift] whose dynamics is not governed by the field 
equations and they have to be fixed arbitrarily on space-time. 

The analysis presented in this paper enables us to give a 
canonical classification of gravitational Lagrangians. If we 
restrict ourselves to Lagrangians at most quadratic in the 
curvature tensor then such a general Lagrangian can be writ­
ten as 

(1.5 ) 

By virtue of the Bach-Lanczos identity [cf. (3.2)] we may 
neglect the D term. Let D = 0. Then Lagrangians ( 1.5) are 
canonically regular if and only if C #0 and C # - 6B. 

Besides class I of canonically regular Lagrangians there 
are four classes of singular Lagrangians: 

II. C#O, C= - 6B, A #0 

III. C#O, C= - 6B, A =0, 

IV. C=O, B#O, 

V. C=O, B=O, A #0. 
In case III we have additional gauge invariance with respect 
to conformal (scale) transformation gl'v -+7gl'v and tr Z is 
the gauge variable related to this gauge transformation. 

The canonical analysis of quadratic theories of gravity 
has recently been discussed by Boulware. 12 His paper fol­
lows the routine procedure of the (3 + 1) decomposition of 
the action integral as a method of finding the canonical vari­
ables. He separates the conformal case (III in our terminol­
ogy) but does not make clear distinction between classes II, 
IV, and V. The classical (standard) method employed in 
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that paper requires tedious calculations of Poisson brackets 
to prove that the constraints (2.31) are first class. In our 
approach this property is obvious because the explicit for­
mula for the energy momentum vector density (2.12') 
shows that the constraints are generators of the action of the 
diffeomorphism group of space-time. 

The symplectic-Hamiltonian picture helps us to formu­
late the dynamical initial value problem. It is not the only 
useful application of this technique. In the case of Einstein's 
gravity geometric-Hamiltonian methods were used by 
Fischer, Marsden, Moncrief, Arms, and Anderson 13 to in­
vestigate singularities of the space of solutions. In a subse­
quent paper we will show how the symplectic methods en­
able us to extend these results for general gravitational 
Lagrangians. In the present paper we deal only with second­
order gravitational theories whose Lagrangians are con­
structed from the metric and Riemann tensor. It is clear, 
however, that the idea and methods presented here can also 
be applied to higher-order gravitational theories with La­
grangians constructed from the metric, the Riemann tensor, 
and its covariant derivatives up to a certain order. Moreover, 
we may couple a tensor matter field to gravity with a Lagran­
gian depending on matter potentials and their partial deriva­
tives up to a fixed order. 

The Hamiltonian fomulation of the gravitational theor­
ies as presented in Secs. II and III requires the boundary 
integrals to be neglected. It is justifiable if initial surfaces are 
compact manifolds without boundary, that is to say, for spa­
tially closed space-times. If initial surfaces are noncompact 
manifolds then the functional Hamilton equation (1.1) is 
not valid. In such cases the value of the symplectic form 
depends essentially on the choice of the initial surface and 
instead of ( 1.1) we get 

dE = - n( Y!\') +~, ( 1.6) 

where ~ is a one-form on G, which is responsible for noncon­
servation of the symplectic structure. In general, ~ is not 
closed and it cannot be expressed as the differential of a func­
tion on G. Therefore for spatially open space-times the dy­
namics is not Hamiltonian in sense of Eq. (1.1). 

However, if we restrict the space of geometric configu­
ration G to metrics asymptotically Euclidean at spatial infin­
ity on the initial surface (7, then we can preserve the Hamilto­
nian dynamics (1.1) with a modified energy function E tot 

= E + E 00 and with the same symplectic two-form n. 
Then the Hamilton equation reads 

dEtot = - n( Y!\ '). ( 1. 7) 

The additional term Eoo is expressed by the surface integral 
over the two-dimensional boundary of (7. We prove that for 
the general Lagrangian (1.5) only its Einstein term contrib­
utes to Eoo' This result was earlier observed by Boulware l2 

and Strominger. 14 

Because the energy formula for the general quadratic 
Lagrangian coincides with the standard ADM expression, 15 

it is natural to ask whether the positivity arguments by 
Shoen-Yau, Witten, Horowitz-Tod, Reula, and Parker­
Taubes l6 can be applied for a general case. Boulware l2 ar­
gues that for higher-order Lagrangians the positivity of ener­
gy does not hold in general. However, Strominger l4 proved 
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the positivity of energy for Lagrangians of class IV. 
The notation in this paper follows that of Ref. 6--8. In 

particular, Greek indices run from 0 through 3; Latin indices 
run from 1 through 3. Three-covariant ("barred") geomet­
ric quantities are defined by means of the (3 + 1) decompo­
sition of corresponding four-covariant ("unbarred") quan­
tities according to rules presented in Appendix A. 

II. THE SYMPLECTIC DYNAMICS OF GENERAL 
GRAVITATIONAL LAGRANGIANS 

A general gravitational Lagrangian L is a scalar density 
constructed from the metric g!'-v and its first- and second­
order partial derivatives. Natural transformation properties 
of L with respect to the action of the diffeomorphism group 
of space-time imply that the Lagrangian can be rewritten as a 
function of the metric g!'-v and components of the curvature 
tensor R a/3!'-v' We take this fact for granted; the idea of a 
proof is presented in Refs. 8,17, and 18. Thus, 

L = L (g!'-v,R a/3!'-v)' (2.1) 

The diffeomorphism invariance of L can be expressed as the 
following relation: 

JL JL 
i:;zL = ai:;zg!,-v + ~i:;zRa/3!'-v' (2.2) 

'g!'-v a/3!'-v 

where Z is an arbitrary vector field on space-time and i:;z 
denotes the Lie derivative in the direction of Z. 

We define the gravitational momenta 

p!'-va/3 = 2 ~. (2.3) 
JRa/3!'-v 

The properties of the curvature tensor in Riemannian space­
times give rise to the following relations: 

p!'-va/3 = pa/3!'-v, p!,-va/3 = _ pv!'-a/3 = pV!'-/3a, 

p!'-va/3 + p!,-a/3v + p!'-/3va = o. (2.4 ) 

Taking into account the formulas 

i:;zL = Jr(zrL), i:;zg!,-v = V!'-Zv + VvZ!,-, 
(2.5 ) 

i:;z R a/3!,-v = zrVrR a/3!'-v + VaZERE/3!'-V + V/3Z ER aE!'-v 

+ V!'-ZER a/3Ev + Vv ZERa/3!'-o 

we get from (2.2) the following relations: 

(
Lnf'V _ 2JL _ 2pwwsR v )v Z = 0 (2.6) 

.5 J rws!'-v' 
'g!'-v 

(V rL-1I2pa/3!'-VVrR a/3!'-v)zr=o. (2.7) 

It follows from (2.6) that 

(2.8a) 

and 

LgI'-V _ 2JL _ 2p w wsR vrws = O. 
Jg!'-v 

(2.8b) 

From (2.7) we get 

VrL = 1I2pa/3!'-VVrR a/3!'-v' (2.9) 

The variational Euler-Lagrange equations for L read 
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= 1 [LrJ-lV _ p!-,waPR v 
2 5 wap 

(2.10) 

Now we return to formula (2.2). Making use of (2.5) and 
(3.8) we rewrite it in the Noether form 

J;,EA + (Eq)!-'vf=zgw = O. (2.11) 

The explicit expression for the energy vector density E A 

reads 

EA = - [LtJA
T - pAwaPRTwaP - Va Vp (paAPT 

(2.12 ) 

where 

B TA = 2V P TAWVZ _ P TAW!-'V Z 
ill v ill ~ 

(2.13 ) 

is a skew-symmetric tensor density on M. 
We observe that 

(2.12/ ) 

This result could be expected because in theories of gravity 
the energy-momentum generators are expressed by the left­
hand sides of field equations. 15,19.20,21,6--8 It follows from 
(2.11) that 

(2.14 ) 

provided that the field equations (2.10) are satisfied. There­
fore the vector density EA defines a conserved integral quan­
tity. We take the dual three-form on space-time 

3 

V = I (- l)A E A dxO /\ ... A ... /\ dx3 (2.15 ) 
A=O 

and integrate it over any three-dimensional surface CT, 

E= iv, (2.16 ) 

The convergence of the integral in (2.16) can be achieved by 
imposing appropriate boundary conditions at the infinity on 
CT or by assuming that CT is a compact three-manifold without 
boundary. 

For a fixed vector field Z on space-time the formula 
(2.16) gives us a function E on the space of all Lorentz me­
trics on space-time. In general, E depends on the choice of a 
surface of integration CT. Only if we restrict ourselves to me­
trics satisfying the field equations (2.10) do we get a func­
tion independent of CT. In this case, however, E is the trivial 
zero function. 

Nonetheless the function E plays the role of the Hamil­
tonian of an infinite-dimensional dynamical system. The 
idea is to consider E as a function in the space of all Lorentz 
metrics and to compute its differential dE. We \~ill show that 
the differential can be expressed as the sum of two integrals. 
The first of them vanishes if the field equations (2.10) hold, 
the latter should be expressed by means of the symplectic 
two-form n that is to be defined. 

Let us observe that the integral of the divergence in 
(2.12') can be transformed into an integral over the bound­
ary of CT and therefore neglected. To calculate dE we take 
variations of the first summand in (2.12') and integrate the 
result over CT. After performing some algebraic-differential 
calculations we are able to write 

dE· V = - ( ± (- l)AZA(Eq)!-'vtJg!-,v dxo /\"'A ... /\dx3 

Ju A = ° 
- iTto (-lV[f=z(V"'PT(!-'",V»tJg!-'v -f=zg!-'vtJ(V"'PT(!-,W V» 

+ f= pT(!-' v) tJr A _ f= r A tJpr(!-' v) ]dxO /\ ...... /\ dx3 
Z A !-'V Z!-'V A T 

+ ( I (-1)A+rA AT dxO/\ .. ·A· .. T .. ·/\dx3. 
JauA<T 

Here Vis a (sample) vector tangent to the space of all Lor­
entz metrices, which is represented by variations tJg!-'v; A AT is 
a skew-symmetric tensor density [see (B 1 ) ] . 

Formulas for the Lie derivatives are these of (2.5) and 

f=zr!-, \ = V!-' VvZA + R \U!-'ZU, 

f=zpT!-'A v = Vu(zapT!-'A V) + VAZ'PT!-" v 

_ VUZTpu!-'A v _ VUZ!-,pTUA v _ VUzvpr!-'A u, 

(2.18 ) 

and an analogous formula forf=z(VWpT!-,w V). In (2.17) 

the variations tJpT!-'A v can be computed by means of (2.3) 
and the following relations: 
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(2.17) 

tJR Tp!-'V = V!-' tJrvTp - Vv tJr!-, Tp. (2.20) 

The first term in (2.17) vanishes if the field equations (2.10) 
are satisfied, the third one vanishes by virtue of the boundary 
conditions on JCT. The second term can be considered as ex­
pressed by a skew-symmetric two-form n constructed from 
the variables 

g!-'v' r!-, Av 

and their conjugate momenta 

VWpT(!-' w v), PT(!-'A v). 

(2.21a) 

(2.21b) 

Now we postpone the discussion of the formula (2.17) and 
define the following symplectic two-form on the space of all 
Lorentz metrics on space-time [Lor(M)]. For two vectors 
VI and Vz tangent to Lor(M) and represented by symmetric 
tensor fields tJIg!-'v and tJzg!-'v we set 
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n( VI> V2 ) 

= lrto (- l)r[D I(vwp r(l'w v) /\DUSl'v 

+ DIP r(1' A v) /\ 02r I' "v] dxo /\ ... r ... /\ dx3• (2.22) 

To compute the integral (2.22) formulas (2.19), (2.20), 
and the linearized version of (2.3) should be used. If appro­
priate boundary conditions on au are satisfied then (2.22) 
defines a differential two-form on Lor(M). Here n is a 
closed two-form because the integrand in (2.22) is expressed 
in terms of complete variations. 

Ifvectors VI' V2 are tangent to Lor(M) , then the value 
of the integral essentially depends on the choice ofa surface 
u. If, however, we take a background metric gl'v satisfying 
the field equations (2.10) and vectors VI' V2 satisfying the 
linearized version of field equations, then the value of n does 
not depend on u. This fact is proven in Appendix B. 

Therefore the formula (2.22) restricted to the space of 
solutions offield equations (Sol) gives us a natural symplec­
tic structure on this space. In our further considerations we 
treat n as a two-form on Lor(M) but remember that it is an 
extension of a geometric object internally related to the space 
of solutions. 

Let us return to formula (2.17). From now on, we as­
sume that the vector field Z is transversal to u. Therefore the 
vector Y with components 

Dygl'v = i:;zgl'v' (2.23) 

and, respectively, 

Oyr Jl A v = i:;zr Jl A v' Oy (vwpr(1' '" v) = i:;z (v"'pr(1' W v), 

(2.23' ) 

determines infinitesimal transformations of the symplectic 
variables induced by the evolution of their initial values from 
the surface u into the direction of the vector field Z. Here Yis 
called the vector of evolution. 

Now we formulate the following. 
Theorem: The variational Euler-Lagrange equations 

(2.10) are equivalent to the functional Hamilton equation 

dE V= - n(y/\ V), (2.24) 

where V is an arbitrary vector tangent to Lor(M) and Y is 
the vector of evolution. 

The four-covariant Hamiltonian formulation presented 
above is very elegant and simple. It is not very useful, how­
ever, for the dynamical analysis of particular Lagrangians. 

J 

As a matter of fact, on the initial surface u only ten of 40 
quantities r v A v are independent. The remaining 30 express 
by means of u tangential derivatives of g vI' . Similar problems 
may arise with the momenta (2.21 b). 

Therefore in order to determine truly independent sym­
plectic variables we have to perform the (3 + 1) decomposi­
tion of four-covariant symplectic variables (2.21). By means 
of the bar operation described in Appendix A we obtain 

o (VWPO(I' v) /\o_a + D pO(1' v) /\0 r A 
I w R>l'v I A 2 I' v 

= 0 1=/1 /\o;gij + Ol~ij /\O~ij 
+ ap [0 1 (lINp Op Ou ) /\ 02N u - DIPOipj /\ o;gij ]. 

(2.25) 

Here 

Zij = 2ri
O
j , ~ij = P°(irP, 

:aij = ( 'ij(UP°(iwj) + VVP°(i/) 

+ 1 (pOUOir j + p0uOjr i ) 
2 uO uO· 

Therefore the quantities 

(2.26) 

(2.27a) 

(2.27b) 

are three-covariant symplectic variables on the initial sur­
face u. 

The symplectic two-form n can be rewritten in terms of 
these variables, 

n( VI' V2) = 1 [012ij /\o;gij 

(2.28) 

where the boundary terms have been neglected. 
Let us observe that the quantities zij are in a one-to-one 

correspondence with a~ij' that is, 

zij=V~ij [cf.(A13)], (2.29) 

and therefore gij and zij are kinematically independent sym­
plectic variables. Their conjugate momenta :aij and ~ ij are 
related to third and second time derivatives ofgij. For canon­
ically regular gravitational Lagrangians the quantities ~ ij are 
in a one-to-one correspondence with a ~gij and :aij are in such 
relations with a 6gij. These problems are discussed in Sec. 
III. 

Now we are able to write the field equations (2.10) in 
the dynamical formulation 

( Eq)mn = _ V o;:;"mn + rr;mny' _l(pmrwi'R n +pnrwER m ) _1 V r n [-mr _1 V r m [-nr 
0- 20 4 rWE TillE 2 0 r 0:' 2 0 r O~ 

- H - Aa nppopam + (Va + aa In N)(Vb + ab In N)pambn 

+ (Va + aa In N) ( - va In N~ mn - r w m;poawn + r w a;P0nwm + vm In N~an + r w a;pomwn + r w a;ponwm) 

+ vn In N(Vw~mw + r w °vPOwmv) + r/o( - rv mo~vr + (VV + av In N)pomvr + av In NpOrvm + rv ° wpwmvr) 

+ r n (V pOsmr + r r [- ms _ r m [- rs)] - 1 [m n 1 = 0 
r 0 s s O~ s o~ 2 ~ • (2.30) 

Here the Christofel-like tensors A a n p are defined in (A 18 ) . ~ Eq)on = vp::r + Vp (Zq n~qp) - !~pqvnZpq = o. (2.31b) 

Equations (2.30) determine the dynamics of:aij, Eqs. (2.31) 
are constraints. It is easy to see that the left-hand sides of 
(2.31b) are functions of the symplectic variables (2.27) and 

( -E )00 - I [ =ij -L 2[-sb-R q - '2 zij_ - - ~ OsOb 

+ 2Vp Vq~pq + ¥ijzjp~iP] = 0, (2.31a) 
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their spatial derivatives. The same is true for (2.31 a) but to 
prove it we have to consider the linearized version of this 
equation and observe that it depends only on variations of 
the symplectic variables [cf. (B4)]. 

The constraints (2.31) are conserved in the process of 
evolution. This fact can be proved either by a direct compu­
tation or making use of the contracted Bianchi identities 

(2.32) 

Those, in turn, we get by a direct differentiation of (2.10). 
Equations (2.30) and (2.31) in the form presented 

above give us the complete dynamical picture only for regu­
lar gravitational Lagrangians. In these cases we have 24 kin­
ematically independent symplectic variables (2.27) and 
their initial values have to satisfy four symplectic constraints 
(2.31 ). The constraints reduce four degrees of freedom. 
Moreover, the action of the diffeomorphism group, Diff M, 
reduces four further degrees of freedom. Thus for canonical­
ly regular gravitational Lagrangians of second order we have 
24 - 2·4 = 16 independent degrees of freedom in the phase 
space. 

If we write the system (2.30) and (2.31) in terms ofgij 
and gauge variables N, N k then we have six fourth-order 
dynamical equations and four constraints. For degenerate 
Lagrangians we have kinematical relations among variables 
(2.27) and to accomplish the dynamical analysis we have at 
first to find kinematically independent symplectic variables. 
In Sec. III we deal with several such examples. 

III. THE CANONICAL CLASSIFICATION OF QUADRATIC 
GRAVITATIONAL LAGRANGIANS 

A general gravitational Lagrangian (at most) quadratic 
in components of Riemann tensor is 

L =A!=iR + ~B~ - gR 2 +!C!=iR flvR flV 

+ !D ~ - g R a/3flvRa/3flv. (3.1) 

It turns out, however, that the last term in this expression 
can be replaced with a linear combination of other terms. 
The Bach-Lanczos identity 

I r----= -uvpuR a/3 R AT 4'1 - gEa/3AT I::· flY pu 

=~_g(R2_4Ra/3R +Ra/3flvR ) a/3 a/3flv (3.2) 

and triviality of the variational equations for the left-hand 
side Lagrangian in (3.2) enable us to eliminate the D term in 
(3.1). Therefore without loss of generality we may assume 
thatD = O. 

The variational principle for the Lagrangian (3.1) leads 
to the Euler-Lagrange equations (2.10) which are expected 
to form a fourth-order system for the components of a metric 
on space-time. It is known, however, that for the Einstein 
theory (i.e., B = C = 0, A #0) we have a second-order sys­
tem for the components of the metric. Therefore we expect 
that different combinations of the coefficients A, B, and C in 
(3.1) give rise to qualitatively different systems offield equa­
tions. 

First of all, we specify conditions for the general La­
grangian (3.1) to be canonically regular. This means that 
the Euler-Lagrange equations in the (3 + 1) picture split 
into the set of six independent fourth-order equations for six 
components of the spatial metricgij' 

( Eq)ij = 0, 

and four Hamiltonian constraints 

( Eq)Ofl = O. 

(3.3 ) 

(3.4 ) 

In such a case we expect a one-to-one correspondence 
between the values of the metric components gij' its first, 
second, and third derivatives on an initial surface (T, and the 
values of the canonical variables aij,gij' {;ij, zij on (T. We start 
with some formulas valid for a general Lagrangian (3.1) 

pa/3flv = (A + BR)!=i (gaflgf3v _ ~Vgf3fl) 

+ !C !=i (~fl R /3v _ ~v R /3fl 

_ gf3flR av + gf3vR afl), (3.5) 

V w pa/3WV = B!=i (VaRgf3v - v/3Rgav) 

+ !C!=i(VaR/3v _ V/3R av) 

+ AC!=i( _gaVV/3R +gf3VVaR). (3.6) 

To get (3.6) we make use of the contracted Bianchi identities 

(3.7) 

In the (3 + 1) picture 

pObOn = -!C Jg R bn + Jg( - A _ BR + lCR OO)gbn, 
(3.8) 

pObmn =!C Jg( _ gbmRon + gbnRom), 

V w P Obwn = (B + Ac)Jggbn "OR 

+ !CJg( "OR bn _ VbR On). 

(3.9) 

(3.10) 

Taking into account formulas of Appendix A we have 

pObOn = -!C [Jg 3R bn + Vo(Jg r bOn ) + 2Jg rbOurnou - Jg(Vb + Vb In N)Vn In N] 

+ !Cg1m[ Jg(Vs + Vs InN)VSlnN - Vo(Jgr/o) + Jg(r/o)2 - rr°.rrlJS)] 

- Bgbn [ _ 2Jg(Vs + Vs In N)VS In N + 2Vo( Jg r:o) + Jg 3R + Jg(r/qrpOq - (r:o)2)] - A Jggbn; (3.11 ) 

(3.12 ) 
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v",pOb",n = - (B + AC)gI'n(vo - 1":0) [2Vo(~r:0) - 2~(Vs + Vs InN)VSlnN 

+ ~ 3Ji + ~( _ (rs so)2 + rp 0q rpOq)] -lC(Vo - rs SO) [ ~ 3Ji bn + VO( ~ r bOn ) + 2~ r bO
v r

nOv 

- ~(Vb + Vb In N)vn In N] - !C(Vb + Vb In N) [~( - VvrvOn + Vnr:o)] 

_ !c~vn In N( - VvrbOv + Vbr:o) - !C(rrbo + r bO
r ) [~3Ji rn + Vo(~ r/Qn) + 2~f/Qvfnov 

_ ~(vr + vr In N)vn In N] - !c'fr no [ ,;g 3Ji br + VO( ~ fbOr) + 2~ fbOv r/Qv 

-~(Vb+VblnN)VrlnN] _!c'fbOn [ -Vo(~f:o) -~r/qrpOq+~(f:0)2 

+ ~(VS + Vs In N)VS In N]. (3.13) 

It follows from (3.11) that ifC #0 then there is a chance to solve these equations for Vo( ~ fbOn) and obtain these quantities 
as functions of symplectic variables, the gauge variable N, and spatial derivatives of these variables. Similarly, we may try to 
solve (3.13) for VoVo(~ f bon ). [The terms v 0

3Ji ij and 3Ji in (3.13) do not cause any problems because we can transform 
them making use of (A24) and (A25).] 

Let us observe that even if C #0 some difficulties may arise in determining the traces Vo( ~ fiOi)gij and VoVo( ~ fiOi)gij 
from (3.11) and (3.13). We have 

pObongbn = ( - 3B - !·C)~ 3Ji + G'C + 3B)~(f:0)2 - rp °qfpOq) - 3A ~ 

+ (C + 6B)(Vs + Vs In N)VSlnN - (C + 6B)Vo(~f:0), (3.14 ) 

V",P ob",ngbn = - 3 (B + kC)(Vo - f:o) [ ~ 3Ji + ~(fp 0 q fpOq - (f:o)2)] -lC(Vo - f:o)( ~ 3Ji) 

+ !c'f:o[2Vo(~r:o) - 2~(VS + VS In N)Vs InN - ~(f:0)2 + ~f/qfpOq] 

- !C~Vb InN( - VvfbOv + vbf:o) - !C.JgVn ( - Vvrnov + vnf:o) 

- !c'fn Os [~3Jins + Vo(~rnos) + 2~rnovrsOv - ~(vn + vn In N)VS InN) ] 

- (6B + C) [VoVo(~ rSSo) - VO(~(VS + Vs InN)VS InN)]. (3.15 ) 

We infer from (3.14) and (3.15) that if C # - 6B then 

Vo(~ f:o) and VoVo(~ r:o) can be determined as func­
tions of the symplectic variables, their spatial derivatives, the 
lapse N, and its spatial and time derivatives. Therefore we 
cancomputeVo(~fiOi) andVoVo(~riOi) from (3.11) and 
(3.13). Bearing in mind that V~ij = 2ri

O
j [cf. (A13)] we 

conclude that if C # 0 and C # - 6B then we have a regular 
fourth-order system for the spatial metric gij' In such a case 
we have a one-to-one correspondence between the momenta 
; ij and the time derivatives of zij as well as a one-to-one 
correspondence between the momenta aij and the time de­
rivatives of; ij. That is, 

;ij =; ij(VoZpq,zpq,gpq,N, 

spatial derivatives of (zpq ,gpq ,N»), 
;:::ij - ;:::ij(-V t-pq t-pq - N - - - o~ ,~ ,Zpq,gpq' , 

spatial derivatives of (;pq,zpq,gpq,N). 

(3.16 ) 

Remark: In (3.16) first- and second-order spatial de­
rivatives of corresponding variables may appear. 

It follows from (3.11) and (3.13) that for regular La­
grangians the expressions 

Vo(~ fiOj ) - ~(Vi + Vi In N)Vi ln N, 

Vo[Vo(~ fiOj
) - ~(Vi + Vi In N)Viln N] 

(3.17 ) 

'" t' f t- pq - 3R- d f -pq t- pq -
a~ lU~C lon~o_~ '~q' gpq' pq an 0 .::. ,~ ,Zpq' gpq' 
3Rpq , VrZPq , Vs VrZPq , Vr In N, respectively. 

Taking into account relations (3.16) and (3.17) and the 
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I 
field equations (2.30) we have the following first-order dy-
namical system: 

V~ij=zij' 
VoZij = VoZij(;pq,zpq,gpq,3Jipq ,Vr InN,VsVr InN), 

Vo;ij = vo;ijeE.pq,;pq,zpq,gpq,VrZpq,VsVrZpq,3Jipq, 
- - - (3.18) Vr In N,Vs Vr In N), 

-V ;:::ij - -V ;:::ij(":pq t-pq - -V t-pq-v -V -V 3R-
0- - 0- - ,~ ,zpq,gpq' r~ ,Zpq s rZpq. pq' 

Vr In N,Vs Vr In N). 

If C #0 and C = - 6B then the terms gVV oZij and gij V ~ ij 
cannot be determined from (3.11) and (4.13). In such cases 
Eqs. (3.14) and (3.15) become symplectic constraints, 
which in the explicit form read 

tr; = ~ B ~[3Ji + !(tr Z)2 - ZpqzPq)] + 3A~. 

tr;::: = - 1 t-pqz + J B Eg-(V V zPq 
- 2 ~ pq 2 'It; p p 

- VPVp tr z) - ,;pq 'Zpq' 

(3.19 ) 

(3.20) 

We have a one-to-one correspondence between ,;pq and 
VO'zij as well as between '::;pq and VOl; pq but from the kinema­
tical relations (3.11) and (3.13) nothing can be said about 
Vo tr Z and Vo tr;. (Here ,;pq, 'Zpq. ,::;pq are the traceless 
parts of corresponding entities. e.g .• 'Zpq = Zpq - jgpq tr z.] ) 
In order to understand better the dynamics of the system we 
rewrite the formula for the symplectic two-form (2.28) in 
terms of new symplectic variables. After some ditferential­
algebraic operations the integrand in (2.28) can be trans-
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formed to the following form: 

DIEij II.D~ij + Dlt ij II.DzZij 

= Dlyij II. D
2
(g-1/3gij ) + DI (g-1/3 't ij) II. D2(g1/3 'zij) 

+ DI (g-1/3 tr t) II. D2(gI/3q)tr z) 

+ DI(g-1/3(tr E - 't ij 'zij) II. D2 (gI/3). (3.21 ) 

The quantities 

g-1/3gij , gl/3 'zij (3.22a) 

are the dynamical symplectic positions with the conjugate 
momenta 

yij =gI/3('Eij + j('z'j tr t + 'tij tr z»), g-1/3 'tij. 
(3.22b) 

These 20 quantities are kinematically independent on the 
initial surface. 

It follows from (3.11), (3.13), and the equations 

( Eq)pq - Wq( Eq)mngmn = 0 (3.23) 

that the dynamics of the quantities 

g--1/3g-.. 'z.. 't-ij t-;:ij 
I)' '1' ~, -

is determined by the following first-order system: 
-V (--1/3- ) _ --113 t o g gij -g Zij' 

votZij = VO'Zij ('tpq,'zpq,tr Z;g-1/3gpq ;g/Rpq , 

V, In N,VsV, In N), 
-V tt-ij - -V tt-ij(t-;:pq 't-pq' t --1/3- --V t -V -V t 
O~ - O~ -,~ ,zpq' rz,g gpq,g, ,zpq' s ,Zpq' 

- -- 3- - --
V, trz,VsV, trz, Rpq,V, InN,V,Vs InN), (3.24) 
-V t-;:ij - -V '-;:ij(t-;:pq tt- pq tz tr Z,g--1/3g- ,g-
0- - 0 - -, ~ 'pq' pq , 

V/{;pq,V/Zpq,VsV/Zpq,V, tr z, 
-- 3- - --
Vs V, tr z, Rpq,V, In N,Vs V, In N). 

The quantities tr E and tr t do not appear at the right-hand 
sides of (3.24) for they have been eliminated by means of 
(3.19) and (3.20). Of course, we remember that the dynam­
ics of g is given by 

V~=gtrz. (3.25) 

Therefore the only quantity whose dynamics is not deter­
mined yet is tr z. To clarify the situation we recall that so far 
we have made use only of five dynamical Hamiltonian equa­
tions (3.23). The question is, what does the equation 

( Eq)mngmn = 0 (3.26) 

bring about? The following lemma helps us to answer this 
problem. 

Lemma 1: If in the general formula (3.1) C = - 6B 
then 

(Eq)IWgJ.'V =AR.J -g. (3.27) 

LetA :fOthen (Eq)mngmn - (Eq)oo=A.,JgR. 
Taking into account (3.26) and the Hamiltonian con­

straint (2.31a) we get 

.jg R = - 2.jg(VS + VS In N) Vs In N + Vo(.jg tr z) 

+.jg 3R + l.jg('Zpq 'Zpq - ,(tr Z)2) = O. (3.28) 

Equations (3.26) and (3.28) enable us to determine the dy-
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namics of tr z. Let us observe that the first-order dynamical 
system (3.24), (3.25), and (3.28) can be written as a system 
offive fourth-order equations for (five independent) quanti­
ties g-1/3gij and one second-order equation for g1/3. 

Now we discuss the case C :f0, C = - 6B, A = O. We 
observe that Eq. (3.26) is equivalent to the Hamiltonian 
constraint (2.31a). Therefore we have no equation for the 
evolution oftr z. This quantity seems to be a gauge-type vari­
able. As a matter of fact, the following lemma describes the 
corresponding gauge transformation. 

Lemma 2: If C = - 6B, A = 0 then the Lagrangian 
(3.1) is invariant (up to a total divergence) under the con­
formal (scale) transformation 

(3.29) 

where r = r(x,!) is a positive function on space-time. For 
details see Appendix C. 

Therefore the theory is scale invariant and 

trz=g-IV~ (3.30) 

is the gauge variable for the transformation (3.29). In such a 
case the system (3.24), (3.25) gives rise only to five fourth­
order equations for five independent components of the uni­
modular, symmetric 3 X 3 matrix [g-1/3gij ]. 

NowweconsiderR + R 2 gravity,Le., C = O,B :f0. We 
have from (2.10), 

(Eq)J.'v = B.r=g (VJlVVR - gIl"VOVuR) 

+B.r=gR(~VR _RJ.'V) 

+A.r=g(~V_RJ.'V) =0. 

Let us observe that 

and 

(Eq)J.'v _ jgIlv(Eq)a{3ga{3 

= B.J - gVJ.'vvR + B .r=gR(J$'vR - R J.'V) 

+A.J -g(ti'vR _RJ.'V). 

(3.31) 

(3.33) 

In the symplectic picture the symplectic variables (2.27) are 
not independent. It follows from (3.8)-(3.10) that 

tij = .jg(A + BR)tj, 
(3.34) 

The symplectic integrand in (2.28) can be expressed as fol­
lows: 

DIEij II.D~ij + D1tij II.DzZij 

= DIA ij II. D2 (g-l13gij ) 

+ D1\{l II.D2(gI/3) + DI (tr 1T) II. D2BR) , (3.35 ) 

where 

tfi = .jg(fiOi _ tifp 0qg"'l) (3.36a) 

are the standard ADM momenta, 

Aij=gI/3(A +BR)'tfj, 

\{I =g-1/3( - 3B.,JgVo"R + (A +BR)tr1T). 
(3.36b) 

The dynamics can be written in terms of 14 dynamical sym-
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plectic variables, 

A ij --1/3- 'T', g-1/3, t BR­,g gij' "t" r'IT,. 

These quantities are kinematically independent. 

(3.37) 

Let us observe that ifR =I - A IB then the set (3.37) is 
in a one-to-one correspondence with the following system of 
variables: 

gij' zij' R, vJi. (3.38) 

In the (3 + 1) picture we write 

(Eq)aPga/3= -3B~[-VoVJi + (VP+VPlnN)VpR 

-~fp 0q vJi] +A ~R = 0, (3.32') 

( Eq)pq - ~( Eq)a/3ga/3 

- Vo[ (A + BR)tnJ'q] + B~pVqR 
- jB ~g"9fJi fv vo + ~(A + BR)~ fpOqfv Vo 

- (A +BR) [~3Rpq + 2~pOufqOu 
- ~(VP + VP In N)Vq In N] 

+ i(A + BR)g"q[ - 2~(V. + Vs lnN)VS In N 

+ ~ 3R + ~(_ (f:0)2 + fu 0J~uOV)] 

(3.33') 

Taking into account relations (A22) we see that Eq. (3.32') 
is a fourth-order dynamical equation for g and the system 
(3.33') gives us five second-order dynamical equations for 
the metric density g-1/3gij . 

The last case that should be considered is the Einstein 
theory, i.e., C = B = 0, A =10. Then 

Eij= -!~(grf/o+gjrf/o)' 
(3.39) rij _ -pOi j _ ~g-g-

~ - 0 - ,,~. ij' 

After some algebraic-differential transformations the sym­
plectic integrand in (2.28) reads 

(3.40) 

This result was already known to ADM 15 (see Ref. 22 for a 
geometric derivation). For the Einstein theory Eqs. (2.30) 
govern the dynamics of til. When expressed in terms of gij 
they form a second-order dynamical system for components 
of the metric on slices. We do not discuss this system because 
such an analysis has already been presented in the litera­
ture.15.19.21-23 

I~INDEPENDENTDEGREESOFFREEDOMIN 
GRAVITATIONAL THEORIES WITH QUADRATIC 
LAGRANGIANS 

The gravitational theories discussed in the previous sec­
tion are theories with constraints. For all the cases consid­
ered in Sec. III the diffeomorphism group of space-time is 
contained in the full gauge group and ADM's lapse and shift 
N, N k are the diffeomorphism gauge variables. 

It is obvious that in theories with constraints we have 
reduction of the number of independent degrees of freedom. 
q symplectic constraints reduce q primary (kinematically 
independent) geometric degrees of freedom. Moreover, the 
symplectic analysis shows us that the m-parameter action of 
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a gauge group reduces m further degrees of freedom. More 
precisely, such an action induces a distribution W of vectors 
tangent to the subvariety C of symplectic variables satisfying 
constraints. W is the gauge distribution of the symplectic 
two-form n and the quotient space TC IW represents direc­
tions of independent degrees offreedom. Therefore ifp is the 
number of kinematically independent (geometric) symplec­
tic variables, then we have 

!=p-(q+m) 

independent degrees of freedom in the phase space. 
For the Einstein theory this problem was profoundly 

investigated in Refs. 21-24. The symplectic approach advo­
cated in those papers can be considered as an alternative to 
the Dirac theory of constrained Hamiltonian systems.9 In 
our opinion, for theories of gravity with quadratic Lagran­
gians the symplectic approach seems to be more effective 
than Dirac's original one. It can be concluded from the re­
sults of the present paper as well as from the analysis of 
SO (3,1) -gauge theories of gravity. 7,8,10 

Let us briefly summarize the results of Sec. III. We have 
five different cases of quadratic gravitational Lagrangians. 

(I) Canonically regular cases C #0, C =I - 6B. We 
have 24 dynamical variables, 

-;::ij - rij _, gij' ~ , zij' 

whose initial values are subject to four Hamiltonian con­
straints (2.31). The full gauge group is Diff M: 

p = 24, q = 4, m = 4, ! = 16. 

(II) C =I = 0, C = - 6B, A =10. We have 22 kine­
matically independent dynamical variables [cf. (3.22)], 

yij g--1/3g-.. g--1/3 trij 
, lJ' ~ , 

gl/3 tZij' g1/3, gl/3 tr z, 

p = 22, q = 4, m = 4, ! = 14. 

(III)C=I =O,C= -6B,A =0.Wehave21kinemati­
cally independent dynamical variables, 

yij g--1/3g-.. g--1/3 trij g-1/3 tz .. g-1/3 
, I)' ~ , 'J' 

and an additional one-parameter gauge transformation gjl-v 
-+"TgJ.'v with the corresponding gauge variable tr z, 

p = 21, q = 4, m = 5, != 12. 

(IV) R 2 + R - gravity, C = O,B =10. We have 14inde­
pendent dynamical variables [cf. (3.37)]. 

Aij --1/3-,g gij' 

p = 14, q = 4, m = 4, ! = 6. 

(V) Einstein gravity C = 0, B = 0, A =10. We have 12 
kinematically independent dynamical variables, 

tlj , gij' p = 12, q = 4, m = 4, ! = 4. 

V. BOUNDARY INTEGRALS IN THE HAMILTONIAN 
FORMULATION AND THE DEFINITION OF ENERGY 

The functional Hamiltonian equation (2.24) has been 
obtained from simple geometric principles. The energy-mo­
mentum vector density EJ.. is the Noether current for the 
action of the diffeomorphism group. The symplectic two­
form n is given by a natural expression built from the field 
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potentials gl'v and their momenta pATI'V. Let us observe, 
however, that the elegant dynamical formulation as de­
scribed in Sec. II is relevant only for spatially closed space­
times. In order to get the equivalence of the Euler-Lagrange 
equations with the Hamilton equation (2.24) we have to 
neglect the following boundary integrals over two-dimen­
sional surfaces: (i) in formula (2.16), which defines the en­
ergy-momentum function E; (ii) in formula (2.17), which 
gives us the differential of E; and (iii) in formula (2.25), 
when we pass to the (3 + 1) representation of the symplectic 
two-form !l. 

Now we are going to discuss these boundary terms more 
thoroughly. It is clear that a successful discussion can be 
carried on only if specific asymptotic falloffs of field vari­
ables at the spatial infinity are assumed. Then we can pre­
serve the Hamiltonian form of the dynamics with a modified 
energy-momentum function. 

The idea is to analyze the asymptotic behavior of bound­
ary integrals, discard those of them that vanish asymptoti­
cally when the two-dimensional boundaries of compact do­
mains on the initial surface (7 tend to infinity, and to 
reformulate the remaining ones as contributions to the ener­
gy function. This is a classical approach due to ADM,15 De 
Witt,I9 and Regge-Teitelboim. 20 In order to give a precise 
definition of asymptotic conditions we assume that the ini­
tial surface (7 is decomposed into a compact set K and its 
complement CK that is diffeomorphic to the complement of 
a contractible compact set in R 3 (see Parker-Taubesl6 for a 
more general case). Thus, outside K we have a Cartesian 
coordinate system (Xk) on (7 and the limit at spatial infinity 
is well defined. 

We assume the following asymptotic conditions: 

gij =oij +O(1lr), r j Oj =O(lIr), 

N=1+0(lIr), N k =O(1lr), (5.1) 

aoN = O( lIr), aoN k = O(1lr), 

where r = (~i= I (X;)2)1/2 is the Euclidean radius. First of 
all, we assume that 

ZO=l, Zk=O (5.2) 

and start the discussion of the boundary integral in (2.16). It 
is given by the following formula [cf. ~2.12)]: 

- f I( -l)r+ AB rA dxo/\···:;-···A···/\dx3
• 

Jaa ",-<A. 

Taking into account that XO = const on (7 we get 

(5.3 ) 

From (2.13) we get 

liOk = 2( - V wP okwON + V wP OkWSNs ) 

+ pOkOa( _ 2aaN - aoNa - lINaaNWs ). 
(5.4 ) 

It follows from (A15), (3.8), and (3.10) that 

Vwpokwo=O(lIr4 ), Vwpokws=O(lIr4 ). (5.5) 

Taking into account (5.5) we see that the only O(lIr) 
asymptotic term in (5.4) is 
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(5.6) 

The integral oflio,: over the two-dimensional boundary of (7 

depends on the asymptotic values of a kN and aoN k on a(7. 
Such a contribution destroys the Hamiltonian form of the 
field equations because the coefficients at variations oN and 
oN k in dE· V have to be proportional to the Hamiltonian 
constraints (2.31) and this property is ensured by other 
terms. We conclude that the divergence term in (2.12) must 
be discarded a priori. Therefore we define 

E = - f ± (- l)A2(EqVAZT dxo /\ .. T· ·/\dx3
• 

JUA=O 
(5.7) 

Computing the differential of E we obtain the integral ofthe 
divergence arA TA as well as the symplectic two-form term. 
The integral of the divergence will be analyzed later. Now we 
observe that the symplectic term while transformed to the 
(3 + 1) picture gives rise to the following surface integral 
[cf. (2.25)] 

iUktl (-1)k[oy(lINpO\u)/\ovNu 

- OyPO;kj /\ovgij ]dxl/\···k·· ·/\dx3
• (5.8) 

Here Oy are variations corresponding to the vector of evolu­
tion Yand Ov are variations corresponding to a sample vec­
tor V. We know from Refs. 6 and 22 that 

oyN =N(v;Z°+Zkak InN) 

= N(aoN + Nkak In N) = aoN, 

oyNk = N(V;Zk + ZoaklnN - akZO) 

= N(aoN k + lINNPap Nk) =aoNk, 
(5.9) 

Oygij = (V;Zj + VjZ;) + 2I..jg( 1Tij - ! gij tr 1T)Zo 

= (V;~ + VjN;) + 2N 1..jg(1Tij - !gij tr1T). 

We see that all these quantities have O( lIr) asymptotic 
behavior. It follows from (3.8) and (3.9) that 

p0pOq= -Af>P<J+O(lIr), PpOij=O(1/y3). (5.10) 

The corresponding variations of these quantities by no 
means decrease slower and the integrand in (5.8) has O( 11 
y3) asymptotic behavior. Therefore in the limit r-+ 00 the 
integral (5.8) vanishes. The boundary integral in (2.17) 
reads 

_ r ± (_ 1 )k+ IAok dx l /\ .. T· ·/\dx3
• (5.11) 

Jau k= I 

It follows from (3.5), (5.2), and (B1) that only the term 

A~k=N( -pkAI'VVI'0gvA _p0kwA VwogOA ) (5.12) 

may have O( lIr) asymptotics. Other terms fall off more 
rapidly. Expanding (5.12) and taking into account (5.10) 
we observe that the unique term with O( lIr) behavior is 

A~k = _ Npkambv mogab. (5.13) 

Finally, making use of (3.5) we get the following formula: 

Ao,: = NA ..jg(~ra _~mgab)Vmogab. (5.14) 

If we substitute (5.14) into (5.11) and change the sign [the 
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energy term should be on the left-hand side of (2.17) 1, then 
we get 

E", = r ± (_ l)k+ IA(okboma 
Ja<7~k=1 
- okmOab)amgab dxll\"'k" 'l\dx3

, (5.15) 

where au", is a two-dimensional surface representing the 
boundary of u at infinity. 

The formula (5.15) coincides with the classical ADM 
expression for the energy of asymptotically flat gravitational 
fields. We observe that only the Einstein part of Lagrangian 
(3.l) contributes to the final result. This fact was earlier 
observed by Boulware l2 and Strominger. 14 
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APPENDIX A: THE (3+1) DECOMPOSITION OF 
GEOMETRIC OBJECTS 

Let (U)tER be a slicing of space-time M in a family of 
three-dimensional surfaces. Let (XIL) be local coordinates 
consistent with the slicing, that is, 

U t = {xEM: X
O = t}. 

We consider only such Lorentz metrics gILv on M with 
signature ( - + + + ) that all the surfaces U t are space­
like for these metrics. Let 

N=(_gOO)-1/2, Nk=gOk (AI) 

be ADM's lapse and shift. For any tensor density 
Fa,p, .. 'akp, of weight ron M we define its bar components 

pal .'oak 

p, p, 

= N - 'A iX, ···A iXk A - Iv,_ .•• A - Iv,_ FIL, "'ILk 
J-tl J-lk /31 /35 VI V s ' 

(A2) 

where 

A 00 = N, A kO = N\ A iis = OILs, 

A -100 = liN, A -Iko = _Nk/N, A -Iv, =ovs' 
(A3) 

In particular for the metric tensor we have 

goo = - 1, gOk = 0, gij =gij' 
-::00 -::.Ok -" i g = -1, g =0, g''gkj =Ok' 

g = det[gILv ] = - N 2g = - N 2 det[gij] ' 

N k =gksNs' 

For connection coefficients we define 

I" A. =AA A -la_A -IP_r " +AA a A -1,,_ 
J.l v 'T J-l v a {J 'T J.l v' 

where 

(A4) 

(AS) 

(A6) 

aIL =A -I"iia". (A7) 

For the Riemannian connection r
lL 

\ = {IL '\} we have 
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1"0°0 = 0, 

rlo=VPlnN, 

rOOk =ak InN, 

r k °0 = 0 

I" k So = Ng'ur k ° u 

rkOs = Nrkos' 
(A8) 

1"0\ = Ng'"rko" + lINakNs, rk's = rk's + N'rk os. 

Here rk's are the Christoffels ofgij; r k Os represent the sec­
ond fundamental form of the embedding U-+M.6

•
25 For a 

tensor density pa b of weight ron U we define covariant de­
rivatives 

vkpab = akpab - rrkPpP\ + r k appPb - r k qbpaq, 
(A9a) 

v;Fab = a;Fab - 7'U"u pab + ~PPPb - ~bpaq, 
(A9b) 

where 

~P = (lIN)apNq (AW) 

are ao-connection coefficients. Formula (AW) assures 
proper transformation properties of (A9) under reparame­
trizations of the slicing 

(All) 

It was observed in Ref. 7 that the lapse N is an X O density of 
weight 1 under transformations (All). Nonetheless as In N 
is a covector field on u. The shift N k is not a vector field on 
slices. Its transformation rules are explained in Ref. 7. 

The covariant derivative of a tensor density (of weight 
r) Fap is a tensor density of valence (1,2). Therefore 

VA.Fap is defined by means of (A2). It turns out, however, 
that the following very useful formula holds6

: 

VA.Fap = aA.pap - rrA. "Tpap + rA. a€p€p - r A uppau. 
(AI2) 

Analogous formulas hold for tensor densities of any valence 
and they enable us to express the left-hand side of (AI2) by 
three-covariant derivatives. Some examples are the follow­
ing: 

0= V~ij = V~ij - 2rj Oj , i.e., V~ij = 2rj Oj ; 

(A13) 

v wP Oawb = V;P°aob + (V
r 
+ a, In N)poa,b + 1"/ ;P0sOb 

+ a, In NpraOb + rr °spsarb; 

VaR bn = v;Ii bn + Vb In NROn + vn In NR bO 

+ 1", b;Ii rn + r/;Ii br; 

VkR On = VkROn + r k Os (R sn + gsnR 00); 

V"V"R = - vov;Ii + (VP + VP In N)VpR 

_ nl'qr ° V IS. o p q O'~, 

the commutation relations for VA.' 

(AI4) 

(AI5) 

(AI6) 

Let pmn be a tensor density of weight ron u, then 
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- - - m 3- m - s 3- u - m 
[VOVj]F n = R sijF n - R nijF u' (A17a) 

[VO,'Vj ]pmn = aj In NV;Fmn - r-J../ppmn 

+J..jmpPPn -J../npmu, (A17b) 

where the Christoffel-like tensor J..j up is given by 

J../p =! gUS [ (Vj + aj In N)V~ps 

+ (Vp +ap InN)V~js 

- (Vs +as InN)V~jp], (A18) 

where V ~pq should be expressed by means of (A13). For the 
curvature tensor its bar components R a pp,v are defined by 
means of (A2). We have the following relations as well: 

R~v=~~~-~~~+~~~~-~~~~ 
(a A -IE a A -IE )A Cii f a (A19) 

- J.t V - v jl E ttl /3. 

For the curvature tensor of a Riemannian connection we get 
from (A19) and (A8) 

- _--0 --0 
R,"Omn - vmrn ; - vnr m 0 

- 3- - 0 - 0 - 0 - 0 
R ijmn = Rijmn + (r m ; r n j - r n ; r m j)' (A20) 

R,"Omo = V m V; In N + V; In NV m In N 

- vof m 0; + f;oaf mao. 

Here 3Rijmn is the Riemann tensor ofgij' From (A20) we get 

,jg R ij = ,jg 3Rij + Vo( ,Jgf;Oj) + 2,Jgf,"OufjO U 

- ,jg(Vj + Vj In N)V; In N, (A21) 

,jgR = - 2,jg(Vs + Vs InN)VSlnN + 2Vo(,jgfa °bgab) 

+,jg 3R +,jg( _ (f:0)2 + fp °qfpOq). 

We also have 

,jg ROO = ,jg(Vs + Vs In N)VS In N - Vo(,Jgf:o) 

+ ,jg((f:O)2 - fr °sf'{)S), 

ROk = vsf/o - vkf:o, 
-3-; - ; 
Vo R jpq = (Vp + ap InN)J..qj 

- (Vq +Bq InN)J..p~ [cf. (A18)]. 

In particular, 

Vo
3R = (VU + VU In N) (Vk + v k In N) V ~uk 

(A22) 

(A23) 

(A24) 

- (VU + VU In N)(Vu + Vu In N)(V~ksgks) 

+ 3RpqVr£'q. (A25) 

APPENDIX B: TIME CONSERVATION OF THE 
SYMPLECTIC TWO-FORM 

The skew-symmetric tensor density in (2.17) is given by 
the following formula: 

A ra = ( _ pa;'p,vZT + pdp,vza)Vp,8gv;' 

- zaprawsv w8gas 

- 28(V wpaTWP,)Zp, - ZUV wpaTWE8gaE 

+ (V wpavw;'ZT - V wp -rvw;'za)8gv;' 
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+za(VWPTwas - VwpawTs)8gas 

_8pTaP,vvp, Z v +pTavUVaZP,8gvp,' 

Direct calculations show that 

a-r [81 (VWPT(p, W v» 1\8zgp,v + 81 (p-r(p,;. v» 1\ 82rp, ;. v] 

(Bl) 

= -81(Eq)p,vI\8zgp,v' (B2) 

It follows from (B2) that if vectors VI' V2 represented by 
tensor fields 8 Igp,v, 8zg!-'v satisfy the linearized field equa­
tions 

8 (Eq )P,V = 0, (B3) 

then the integrand in (2.22) has vanishing divergence. 
Therefore the value of the integral (2.22) is independent of 
the choice of (7. 

The variation of the Lagrangian gives rise to the follow­
ing formula: 

8L = (1 19ab - parwsR b-rws )8gab + !paPp,v8Rap!-'v' 
(B4) 

Therefore 

8(I + 2;abRoaOb) = (([gab - paTwsR bTWS )8gab 

+ 28;abRoaOb + 2pObmn8Robmn 

+ I-P abmn C:R-
2 U abmn· (B5) 

It follows from (A20) and (B5) that the linearized con­
straints (2.31a) can be expressed by variations of the sym­
plectic variables (2.27). 

APPENDIX C: CONFORMAL GAUGE TRANSFORM 

If the scale transformation 

(Cl) 

is performed, where r is an arbitrary positive function on M 
then 

T;.ap =r;.ap + ! (8ap a;. Inr 

+8a;.ap Inr-g;.paalnr); 

'Rpv = Rpv - V v V p In r - !gvp VUV a In r 

(C2) 

+ !(Vp In rVv In r - gvP VE In rVE In r), (C3) 

'R = (lIr)R + lIr[ - 3VUV a In r - ~ va In rVa In r]. 

Taking into account these relations we get for the Lagran­
gian (3.1) with C = - 6B and A = 0, 

'L = L + !B ap, [ ~ - g ( - 3V v In rVP,Vv In r 

+ 3VP, In rVa Vain r 

+ ~Vp, In rVv In rV v In r) ] . (C4) 
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A particular class of McVittie's new nonquadratic solutions is examined with respect to its 
physical characteristics. It is found that center regularity is not compatible with negative 
pressure and density gradients. These solutions also have the strange geometric feature that the 
physical radius is a decreasing function of comoving radial coordinate. Models for nonstatic 
"gaseous" ~pheres (i.e., the density p vanishes at the outer surface of the perfect fluid sphere 
together wIth the pressure p) have been constructed. The global motion is studied, and it has 
been found that pulsations are not possible. It is shown, however, that the density and pressure 
gradients are both negative. The pressure and the density are thus positive within the boundary 
of these "gaseous" spheres, and it is also seen that the density is increasing for contracting 
models. For the layers close to the outer boundary, it is shown that the pressure is increasing 
when the sphere is contracting. The speed of sound is thus real, and it is further seen that this 
speed is less than the speed of light. It is found that there exist bouncing models where the rate 
of change of circumference as measured by an observer riding on the boundary of the 
"gaseous" sphere is zero just at the moment when the sphere starts its reexpansion. 

I. INTRODUCTION 

It is common opinion today that the problem of gravita­
tional collapse of massive objects is very important. How­
ever, the exact nature of the collapse process is generally not 
understood, partially because we do not know which "equa­
tion of state" matter obeys during the last stages of gravita­
tional collapse. Even worse, it is expected that general rela­
tivity itself breaks down and cannot describe the physics for 
these moments. Hence, we shall suppose that the reader is 
aware of the importance of having at hand some easily sur­
veyable exact models related to these strange phenomena. 

McVittie1 has given a very important procedure for ob­
taining exact solutions of Einstein's field equations without 
having to specify a particular equation of state. McVittie 
demonstrated that for a special form of the metric and for 
certain symmetry conditions, the field equations break up 
into three differential equations that may be solved indepen­
dently. McVittie dealt with two of these equations in his 
fundamental paper, but the last equation was only solved for 
the special case where the derivative of the unknown func­
tiony is a quadratic function ofy. Later, McVittie2 has given 
several new nonquadratic solutions. 

However, McVittie's approach does not necessarily lead 
to models that are physically plausible. That is our main 
motivation for investigating in some detail the physical 
properties of one of Mc Vittie's new nonquadratic solutions. 
In particular, we find that there must exist an irregularity at 
the origin at the fluid sphere if the pressure and the density 
have negative gradients. Closely connected to this result is 
the following strange geometric feature of the model; the 
physical radius is a decreasing function of the radial coordi­
nate. 

For McVittie's class of solutions the matter density does 
not generally vanish at the outer boundary of the perfect 
fluid sphere. However, the heavenly bodies are generally 
gaseous spheres where the density drops to zero at surface 

together with the pressure. We have previously3-5 shown 
that for McVittie's class of quadratic solutions, oscillatory 
motion is forbidden for physically reasonable gaseous 
spheres. 

The global motion for the subclass of gaseous models is 
also studied in this paper, and we show that pulsations are 
forbidden. 

Previously we have also put forward6-9 several different 
models for gaseous spheres and examined their physical 
properties. This kind of analysis is also carried out in this 
paper. Particularly, we have constructed models where the 
density and the pressure p are positive, and their respective 
gradients are negative. The density is seen to be increasing 
for contracting spheres, and it is decreasing for expanding 
models. 

Moreover, we find that even more physical conditions 
are valid for the outermost layers of the nonstatic gaseous 
sphere: (i) the pressure is increasing for contracting spheres, 
and it is decreasing for expanding spheres, (ii) the adiabatic 
speed of sound is less than the speed of light, and (iii) the 
energy condition p > 3p holds. 

The total mass is also found to be negative, and we point 
out that there exist models where the rate of change of cir­
cumference as measured by an observer riding on top of the 
sphere is zero just at the moment when the sphere changes its 
motion from collapse and starts expanding. 

II. THE BASIC EQUATIONS 

Mc Vittie's line element reads 

ds2 = y2 dt 2 _ e'1S2 [dr + p(d(} 2 + sin2 () dcp 2)] • 

(1) 

Here is S the so-called scale function and is a function of 
t alone, and/is a function of comoving radial coordinate r 
alone, and 1] and yare functions of a variable z defined by 

~=Q/S, (2) 
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where Q is another function of r alone. 
For a perfect fluid the following equation is now ob­

tained from Tl4 = 0 (T,.. v here denotes the energy-momen­
tum tensor), 

y = 1 -! 1]z • (3) 

Here the suffix means differentiation with respect to z. 
Assuming stress isotropy, Walker'slO equation yields 

the following three differential equations: 

~' _f~~' =a (~'r, (4) 

L 1 - /,2 _ b (~)2 
f + P - Q ' (5) 

yzz + (a - 3 + y) yz + [a + b - 2 - (a - 3)y - y2] y = 0, 
(6) 

where the prime denotes differentiation with respect to r. 
Moreover, McVittie l obtains the following expressions 

for the density p and the pressure p: 

(
8)2 e-" { 1 - /,2 f'Q' 

81TGfl=3 - +- 3---6(1-y)-
r S S2 f2 fQ 

- [2b-2yz + (1-y) (2a-l-y)] (~'r}, 
(7) 

81TGp = ~ { _ 2 S _ (3y _ 2) (8 )2 _ e -" [Y 1 - /,2 
Y S S S2 f2 

+ 2(y2 - Y - yz)f~~' 

+ (1 - y) (y2 - y - 2yz) (~' r]) , (8) 

where an overdot means differentiation with respect to time. 

III. THE NON QUADRATIC SOLUTION 

In this paper we shall examine one of McVittie's2 new 
nonquadratic solutions of Eq. (6), i.e., we shall investigate 
his solution 

y2=9/32 (cosh/3z+1) , (9) 
(cosh/3z-1) (cosh/3z+2)2 

e" = eE+2z (COSh/3z - 1)2, 
cosh/3z + 2 

where 

a= 3, 

b= -1-/3 2
, 

and E is an arbitrary integration constant. 

(10) 

(11) 

(12) 

Inserting into Eq. (6) we have in fact found that the 
only valid solution is 

- 3/3 1 fK±I 
y - - (X + 2) \j X-I ' 

(13) 

with 

-3/32 (X+V2+~ 
yz - (X-l)(X+2)2 (14) 

Here we have written 

X = cosh/3z. (15) 
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IV. IRREGULARITY AT THE ORIGIN 

The pressure gradient is most easily found from the 
equation which represents conservation of linear momen­
tum, i.e., Tt;,.. = 0 (a semicolon denotes covariant differen­
tiation), which yields 

p' = - (YzQ '/yQ) (p + p) . (16) 

The general expression for the density gradient p' for the 
McVittie metric has been given in a previous paper.4 For our 
particular model we now obtain 

81TG ' = We - " ~ (y + y2 + /3 2) (I' Q' + Q ,2 ) . 
P S2 Q z fQ Q2 

(17) 

From Eq. (14) we observe that yz is positive. 
Restricting the pressure and the density to be non-nega­

tive, and their respective gradients to be nonpositive, Eqs. 
( 16) and (17) immediately yield 

(18) 

and 

(19) 

However, to have regularity at the origin it must be the 
case that the "physical radius" 

R = ± e,,/2 Sf, (20) 

vanishes at the center,l1 i.e.J(O) = O. 
Hence, we have 

/,/f> 0 . (21) 

It is thus seen that Q ' > 0 is not compatible with condi­
tion (19). 

Differentiating Eq. (20) we now find 

(22) 

Using conditions (18) and ( 19) with a negative Q ' it is 
immediately seen that we have R ' < O. This is not, however, 
compatible with vanishing of the non-negative function R at 
the origin. Hence, it is the case that positive pressure and 
density and negative gradients imply center irregularity. 

V. ON THE POSSIBILITY OF OSCILLATIONS 

To fit the internal solution to an external vacuum 
Schwarzschild solution it is necessary and sufficient to put 
the pressure equal to zero at the boundary: 

Pb=O. (23) 

Henceforth the suffix b denotes boundary values. We 
have previously3 shown that this gives an ordinary first-or­
der differential equation for 8 2

• Solving that equation we 
obtain for the present case (after some calculations) 

82=e-ES2(Y+2)3[ __ A_+B (Y-1) ~Y+l 
Y-I Y+2 (Y+2)2 Y-I 

-c Y+l +D] (24) 
(Y+2)3 ' 

where 

A=3 --+2--+--(
1'2 - 1 /' Q ' Q ,2 ) 

P fQ Q2 b' 
(25) 
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_ (f'Q' Q'2) 
B-6fJ fQ +02 b' (26) 

2 (Q')2 C= -9{3 Q b· (27) 

Here D is an arbitrary integration constant, and we have 
written 

(28) 

Here we have also followed McVittie and Stabelll2 and 
without loss of generality put Qb = 1. From Eq. (24) we 
may study the global motion of the perfect fluid sphere. 
Moreover, this equation also gives a consistency relation 
which must be fulfilled, i.e., 8 2>0. 

From Eqs. (13), (16), and (17) itis seen that we should 
demand 

(29) 

to obtain a physically meaningful model. 
Hence, we take the constant B to be positive. Necessary 

oscillatory conditions are then that the function within 
square brackets on the right-hand side of Eq. (24), call it 
V( y), has at least two positive roots, and that V( Y) > 0 
between these two roots. 

It is thus immediately seen from Eq. (24) that pulsa­
tions are not possible for models with A < 0 and D > 0, since 
the fluid in that case never comes to rest. 

However, the necessary oscillatory conditions are ful­
filled if we choose A, B, C, onD such that we have V( 1) <0, 
D = lim Y _ 00 V( Y) < 0 and observe that we can find Y> 1 
such that V( Y) > o. 

The first restriction is equivalent to 

A> -~C+ 3D, (30) 

and the last restriction may be written 

A< Y+1 2C +(Y+2)D+(Y+2). (31) 
(Y + 2) 

Hence, the following inequality must be fulfilled: 

_ 2Y+ 1 C-D< ~ ~Y+ I . (32) 
9( Y + 2) Y + 2 Y - I 

We thus choose the constants in the following way: first we 
fix D < 0, B> 0, and C < O. Then we observe that for Y~ I 
condition (32) is always fulfilled. Thereafter A is easily cho­
sen such that restrictions (30) and (31) are also fulfilled. 
We thus arrive at an oscillating model. We emphasize, how­
ever, that these conditions are not sufficient to have a physi­
cally acceptable pulsating model. 

VI. GASEOUS SPHERES 

From now on we restrict the sphere to be gaseous, i.e., 
we demand 

(33) 

From Eq. (7) the following differential equation is ob­
tained for the scale function: 

161 J. Math. Phys., Vol. 26, No.1, January 1967 

82 = e-"(Y + 2)2 S2[.!.A +~ ~ Y + 1 
Y-I 3 Y+2 Y-I 

+_I_C 2y2+ 14Y+ 11]. (34) 
27 (Y + 2)2 

Comparing Eqs. (24) and (34) it is seen that the nonsta­
tic sphere is gaseous if and only if the arbitrary integration 
constant D takes the value 

D=.!.A +.2..c 
3 27 

_ [/'2 _ 1 J'Q' ( 2 2) (Q')2] - --+2-+ 1--{3 - . p fQ 3 Q b 
(35) 

The junction condition Pb =0 is thus fulfilled for our 
gaseous model. This result is also an immediate consequence 
of the equation which represents conservation of energy, i.e., 
Ti';1-' = 0, since this equation reads 

p = - 3y(8/S)(p + p) . (36) 

VII. NONEXISTENCE OF PULSATING GAS SPHERES 

To prove that oscillatory motion is forbidden for these 
gaseous models, we investigate the function 

W(Y) =.!.A +~~Y+ I 
3 Y+2 Y-I 

I C 2y2 + 14Y + II +-27 (Y + 2)2 

We first observe 

lim W(y) = 00 • 
Y-I 

(37) 

(38) 

From Rolle's theorem it now follows that for pulsating 
spheres it must be the case that the equation 

dW =0 
dY 

has at least two solutions larger than unity. 

(39) 

We are now going to prove, however, that Eq. (39) can 
have at most one solution. 

Differentiating (37) we find that Eq. (39) is fulfilled if 
and only if 

U(Y) = (y2+ Y+ 1) (Y+2) = _~ C >0. 
(Y-1)5/2.JY-I 9 B 

Differentiating once more, we find, however, 

dU = (Y _1)-712 (Y + 1)3/2 

dY 

(40) 

X(-5y 3 -15y2-18Y-7). (41) 

Hence, U( Y) is a strictly decreasing function of Y, and 
Eq. (40) thus can have at most one solution. We conclude 
that oscillatory motion is not possible for these gaseous 
spheres. 
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VIII. INTEGRATION OF THE ISOTROPY EQUATIONS, 
NEGATIVE DENSITY GRADIENT, AND POSITIVE 
DENSITY 

The first of the two remaining isotropy equations (4) 
and (5) is immediately integrated to give 

f=Al Q'/Q3. (42) 

Here A 1 is an arbitrary integration constant. To inte­
grate the second equation we follow Mc Vittie 1 and introduce 
a new radial coordinate q defined by 

q= -!A 1Q-2, 

which yields 

dq =f. 
dr 

Equation (5) now reads 

1 -(32-1f 
fqq + f3 = 4 q2 . 

(43) 

(44) 

(45) 

Equation (45) is solved by the double substitution 1 

, f'Q' (Q')2 Q >0, f<O, y>O, (3<0, -+ - <0. 
fQ Q 

(52) 

From Eq. (17) it is now seen that the density gradient is 
negative, and the density is thus positive for these gaseous 
models. 

To havef2 > 0, it is also seen that we must have 

1 < q < e - 7r/2{3 , 

i.e., we must have 

qcenter < e - 7r/2{3, qb > 1 . 

(ii) Models with the following characteristics: 

(53) 

(54) 

, /,Q' (Q')2 Q <0, f>O, y<O, (3)0, - + - >0. 
fQ Q 

(55) 
From Eq. (17) it is again seen that the density gradient is 

negative, and the density is thus positive for these gaseous 
models. 

To have f2 > 0, it is now seen that we must take 

q=eW
, f=e w12 v(w). (46) e7r/2{3<q<e7rI{3, (56) 

This double substitution yields, when inserted into Eq. i.e., we must choose 

(45), qb > e7r/2{3, qcenter < e7rl{3 . (57) 
d 2V (32 1 
--= --V--. (47) 
dw2 4 v3 

To avoid complications we put an arbitrary integration 
constant equal to zero, and the solution of Eq. (47) reads 

and 

162 

f2 = (2q/(3) sin «(3 In q) . (48) 

We also have 

Q=~qb/q. 

We further find 

1-/,2 /,Q' Q,2 (32j2 
---2---=--

j2 fQ Q2 4q2' 

- - cos «(3 In q) . ffj'QQ' + (QQ' )2 __ 1 
2q 

We now obtain two different models. 
(i) Models with the following characteristics: 
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(49) 

(50) 

(51) 

IX. POSITIVE PRESSURE AND NEGATIVE PRESSURE 
GRADIENT 

For this gaseous model we find that the density is given 
by 

81TG eEp =H -Hb , 

where 

H=~(I-/,2 _ 2/,Q' _~) {X + 2)2 
Q2 f2 fQ Q2 \X-I 

(3 (TQ' Q'2) X + 2 -18- -+-
Q2 fQ Q2 (X-l)2 

(58) 

X ~X + 1 +!E... Q,2 2X
2 + 14X + 11 (59) 

X-I Q 2 Q 2 (X _ 1)2 

Further, we find (after some calculations) that the pressure 
p is given by 
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From this equation it is easily seen that Ph == O. 
Remembering Eq. (16) we now find that the pressure 

gradient may be written 

81TGeEp' = - 2 -- (X + 2) -- (l-Ib) , YzQ' ~-1 
yQ X+ 1 

where I reads 

_1 {[ 1 _1'2 _ 2 I' Q ' _ Q '2] X + 2 ~ X + I 
Q2 f2 fQ Q2 (X-l)2 X-I 

_ [I' Q ' + Q '2] X 2 + 7 X + 7 
(3 fQ Q2 (X _ 1)3 

(61) 

+ (3 2 (~)2 X + 2 2 ~ X + 1 } . (62) 
Q (X -I) X-I 

To be assured that the pressure gradient is negative, we 
like to prove (l - Ib ) < O. 

However, we find 

aI = 5(3Y cos ((3 In q) (X + 2)2 ~X2 _ 1 , 
ar 4qqb (X - 1)4 

(63) 

and from Eqs. (52)-(57) it is thus seen that we have 

aI <0. (64) 
ar 

Hence, we have proved that the pressure gradient is negative, 
and the pressure is thus positive. 

X. THE LAYERS CLOSE TO THE BOUNDARY 

We shall now consider the outer layers of these nonsta­
tic "gaseous" spheres. 

Differentiating Eq. (16) we find 

(65) 

The pressure is thus a convex function for the surface 
layers. Since we also have p~ = 0 and P~ < 0, it must also be 
the case that the energy condition p > 3p is fulfilled close to 
the boundary. 

We have previously given the formula for the mass func­
tion. 8 Now we find that the total mass M is given by 

M = - ~ 1Tp' R 3 (I' +~) -1 • 
3 b b f Q b 

It is thus seen that the total mass is negative. 

XI. CHANGE OF DENSITY AND PRESSURE WITH 
RESPECT TO TIME 

(66) 

From Eq. (36) it is immediately seen that the density is 
increasing for contracting spheres, and it is decreasing when 
the sphere expands. 

To show that we havep(r:::::;rb ) <0 for expanding mod­
els, it is enough to show that we have Ph < O. Differentiating 
Eq. (16) we obtain 

. " [ a (Yz) 3 S] (Q') , Pb = - - - + Yz - - Pb 
aty Sb Qb 

= (~) (32 S 8 Y 3 + 21 Y 2 + 24 Y + 10 '. 
Q b S (y2 _ 1) (Y + 2)2 Pb 

(67) 
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From this equation it is easily seen that we have Ph < O. 

XII. SPEED OF SOUND VERSUS SPEED OF LIGHT 

The adiabatic speed of sound Vs is given by6 

V; = Pip . 
It is thus seen that this speed is real for the layers close to the 
boundary. 

To show that this speed is less than the speed of light, 
i.e., 

(68) 

it is enough to prove that the following relation holds for 
expanding spheres: 

p~-p~<O. 

We obtain 

(p' - P')b = 3Yb (S IS)p~ . 

We also have 

R = ± eTJ/2 fyS . 

(69) 

(70) 

(71) 

Hence, we conclude that the adiabatic speed of sound is 
less than the speed of light for the surface layers. 

XIII. RATE OF CHANGE OF CIRCUMFERENCE 

McVittie l and Nariai l3 takes VM where 

V~ = eTJj2S2 (72) 

to be the matter velocity. However, this "velocity" is in fact 
the change of (l/21T) X circumference as measured by an 
observer riding in a shell of matter. Remembering Eq. (34) 
we obtain 

d 2 2 S 2 { [I' Q ' Q ,2 ] -(VMb)=-(3~Y-I-fb -6-+-
dt . S fQ Q2 b 

X ( y2 + Y + 1) ~ y2 - 1 
(Y_1)2 (Y+2)2(y+ 1) 

(Q')2 Y _ 1 } 
+2{32 Q b (Y+2)3 . (73) 

Taking Y:::::; 1, it is seen that there exists a certain time 
interval such that we have 

d V 2 -( Mb)<O, 
dt . 

(74) 

for expanding models. 
Using Eq. (40) it found that the equation 

.!!..- (V~b) = 0 
dt . 

(75) 

has a solution if and only if we have 

('j'Q' Q '2) 1 2 (Q')2 (3 -+- <-(3 - . 
fQ Q2 b 3 Q b 

(76) 

However, remembering Eqs. (48 )-( 57) it is easily 
found that condition (76) is fulfilled . 

Equation (75) may in fact be written 

~y2_1 (Y_l)2 
- 3 cot ((3 In qb) = -'----~--­

(Y+2)(y 2 +Y+1) 

We also find that we have S = 0 if and only if 
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3 t(PI ) _ 54~Y+l(Y+2) - co n q b - ---"'----'---'-----'--

~Y-l (5Y2+26Y+23) 
(78) 

From Eqs. (77) and (78) we now obtain the following 
equation: 

5Ys = 43y4 + 31Oy3 + 482y2 + 389Y + 239, (79) 

which is seen to have a solution Y> 1. Hence, it is possible to 
have models where S = 0 and d /dt( V~,b) = 0 at the same 
moment. 

XIV. CONCLUSION 

A particular class of McVittie's nonquadratic solutions 
of one of the isotropy equations has been discussed. This 
class contains models for gaseous spheres where the density 
and the pressure are positive within the outer boundary of 
the nonstatic sphere, and their respective gradients are nega­
tive. But we have shown that there is a center irregularity, 
and this fact is connected with the total mass being negative 
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and the physical radius being a decreasing function of radial 
coordinate. However, we certainly expect a singularity to 
develop during the last stages of gravitational collapse if gen­
eral relativity is able to tell what will happen. As long as a 
satisfactory theory for quantum gravity does not exist, we 
will therefore not discard these models as being without as­
trophysical interest. 
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The Belinsky-Zakharov version of the inverse scattering method is used to generate a large 
class of solutions to the vacuum Einstein equations representing uniformly accelerating and 
rotating disks and rings. The solutions studied are generated from a simple class of static disks 
and rings that can be expressed in a simple form using suitable complex functions of the usual 
cylindrical coordinates. 

I. INTRODUCTION 

Solutions representing disklike configurations of matter 
have been extensively studied in the context of general rela­
tivity.I-3 Less studied are the solutions representing ringlike 
configurations.4

-
5 Much of what is known about the solu­

tions to the Einstein equation describing rotating disks rep­
resents the study of approximate solutions using numerical 
techniques.3 

The purpose of this paper is to use the inverse scattering 
method (ISM) to generate exact solutions to the vacuum 
Einstein equations representing disks and rings. The method 
used is the Belinsky-Zakharov6 version of the ISM that we 
recently employed to produce a large class of metrics of 
physical interest. 7 

The application of the ISM requires the knowledge of 
static solutions which are simple enough in order to explicit­
ly solve the system of differential equations 7 for the functions 
F, the key functions of the ISM for a Weyl solution. 

In Sec. II we study a family of static disks and a family of 
static rings with the above-mentioned characteristics. The 
first two members of the family of disks represent solutions 
that are already known. 2 Both families can be generated 
from the knowledge of a single member belonging to anyone 
of them and can be expressed in a simple form using complex 
functions of the usual cylindrical coordinates. 

In Sec. III we present a summary of the one- and the 
two-soliton solutions generated using the ISM with a general 
Weyl seed solution. In Sec. IV we explicitly compute the 
functions F associated with different disks and rings, and 
study the one- and the two-soliton solutions. In Sec. V we 
discuss some of the found results, we especially point out 
that the interpretation of the studied solutions as represent­
ing true disks and rings may not be totally correct. Finally, in 
the Appendix we compute the metric function v for one disk 
and two rings. 

II. STATIC DISKS AND RINGS 

The vacuum Einstein equations for the static axially 
symmetric space-time 

ds2 = eO"o(r,z) (dr + dz2) + r e - <p(r,z) d() 2 _ e<p(r,z) dt 2 

are equivalent to 

rp,rr + rp,Jr + rp,zz = 0 , 

O'o[rp] = - rp + v[rp] , 

(2.1 ) 

(2.2) 

(2.3 ) 

v[rp] =+ J r [ (rp~r - rp~z) dr + 2rpA,z dz] , (2.4) 

where ( ),r =Jr and ( ),z =J,. 
A physical image of the solutions of (2.2) can be ob­

tained considering that the metric function rp can be related 
to the Newtonian potential Uby8 

U = rp/2. (2.5) 

A. Disks 

The Newtonian potential for the exterior of a disk with 
axially symmetric matter density can be written as9 

00 

U = - I C2n P2n (r!>q2n (s) , (2.6) 
n=O 

where C 2n are constants, and P 2n (1]) and q2n (S) 
= pn + 1 Q 2n (is) are the usual Legendre polynomials and 

the Legendre functions of second kind, respectively. The 
variables 1] and S are the oblate ellipsoidal coordinates that 
are related to the cylindrical coordinates by 

r = a2 (1 + S 2) (1 - 1]2) , 

(- 1<;1]<;1, O<;S < CIJ) . 

(2.7a) 

(2.7b) 

The Newtonian matter density associated to (2.7) is9 

p = S(r) 8(z) , (2.8a) 

S(r) = {21Ta[1- (r/a)2]1I2-1} 

X f (2n+1)C2n Q2n(0)P2n ([1-(r/a)2]1/2). 
n=O 

(2.8b) 

We shall study the specialization obtained by choosing 
the constants C 2n as 

C2n = (_l)n+ 1(4n + 1) (2m + l)!r(m - n +!) 

X [(2n + 1)22n + 1(2m - 2n)!Q2n+ 1 (0) 

xqm+n+~)]-I(M/a), (2.9) 

for n<;m and C 2n = 0, and for n > m, where m is a fixed posi­
tive integer. With this particular choice of C 2n' the potential 
(2.6) defines a family of disks with Newtonian densities 

S = 1- - ,r<;a. Dm (2m+l)M[ (r)2]m-1I2 
21Ta2 a 

(2.10) 

Note that the Newtonian mass of each disk isM. The first three 
members of the family have the associated functions rp, 
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¢Do = _ (2M /a)cot- I t, 

¢D, = _ (2M /a){cot- I t 

+ H (3t 2 + 1) cot-I t - 3t] (37/ - I)}, 

r' = - (2M fa) [cot-I t + (21J2 - 1) K 

(2.11 ) 

(2.12) 

+ (351J4 - 301J2 + 3) L ] , (2.13a) 

K=f4 [(3t 2 + 1) cot-I t - 3t] , (2.13b) 

L=4h [( 35t 4 + 30t 2 + 3) cot-I t - 35 t2 + ~ t] . 
(2.13c) 

The associated Newtonian densities are 

SDo = (M /21Ta) (a2 _ fl) -1/2, 

SD, = (3M /21Ta3) (a 2 _ fl)I/2, 

SD, = (5M /21Ta5) (a 2 _ fl)3/2. 

(2.14 ) 

(2.15 ) 

(2.16 ) 

The first member of the family-the monopole term-is the 
well-known "integrable" disk studied in electrostatics that 
has a singular charge (matter) density on the rim. The sec­
ond member-monopole + quadrupole term-has a well­
behaved matter density, maximum on the disk center, and 
zero on the rim. 10 The third and following members have 
also a density with the same characteristics as D I. 

In cylindrical coordinates, the metric potentials (2.12) 
and (2.13) can be written as II 

¢Do = _ (2M fa) 1m Inp, (2.17) 

¢D, = _ (3M /a3) 1m [(a2 + Z2 - fl/2) Inp 

+!(3z+ia)R], (2.18) 

¢D, = _ (15M /2a5) Im(A lnp- BR _! CR 3) , 

(2.19) 
where 

A =! (a4 _ r4/8 - Z4 + z2fl) 

+ (z2-fl/2) (a2+z2-fl/2) , (2.20a) 

B=A (ia - Z)3 + (ia - z) (3z2 - fl/16) - zfl, 
(2.20b) 

and 

C = ia + 25 z/3 , 

R= + [(ia-z)2+fl]1/2, 
p=ia -z +R. 

The relations 

at= ReR, 

a1J = ImR 

(2.20c) 

(2.21) 
(2.22) 

(2.23a) 

(2.23b) 

are particularly useful in computing II (2.17)-(2.19). 
The associated functions v for the first disk of the family 

can be found in Ref. 1. This function can be expressed in a 
very simple way in terms of the complex function p, 

2M2 fl + 1 12 V[¢Do] = _ -In p (2.24) 
a2 Ifl + p21 

(see the Appendix). The function v [¢D,] is computed in 
Ref. 2 (see also Refs. 12 and 13). 

The diskDn corresponds to the sum of the first 22n -pole 
terms in (2.6) with C 2n given by (2.9). We can pass to the 
next Dn + I disk by adding the corresponding 22n + 2 -pole 
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term. The following algorithm involving a parametric inte­
gration does automatically the indicated operation: 

¢Dn+ ,= 2n + 3 f a2n + 2 ¢Dn da, 
a2n + 3 

since from (2.11) we have 

SDn+1 = 2n + 3 fa2n+2SDnda. 
a2n + 3 

B. Rings 

(2.25) 

(2.26) 

The simplest solution of the Laplace equation in toroi­
dal coordinates that represents a ring with radius a, i.e., it 
does not depend on the cylindrical angle e, is 14 

u= - (M/JJ,) (cost-cOS1J)1/2COS(1J/2) , 

where now 

z + ir = a cot [(1J + it)/2] 

(O<t<oo, 0<1J<21T). 

(2.27) 

(2.28) 

The associated function ¢ in cylindrical coordinates reads l5 

r" = - 2MRe( l/R) . (2.29) 

The ring Ro is related to the disk Do by 

ro = ~ (a¢Do) , 
Ja 

(2.30a) 

¢Do = ~ f r" da . (2.30b) 

These relations tell us that the disk Do is formed by rings like 
Ro of different radii. From Ro we can also generate a family 
of rings as follows: 

¢Rn+I=~(a¢Rn). (2.31) 
Ja 

The functions ¢R, and ¢R, are 

r'= _2MRe[~+a(a+iZ)], 
R R3 

(2.32) 

A,.R 2M R [1 a( 4a + 3iz) 3a
2
(a + izf] 

'I' '= - e R+ R3 + R5 . 

(2.33) 

The expression (2.29) coincides up to the quadrupole mo­
ment with the corresponding function ¢ for a uniform ring of 

radius 16 b = aJJ,. The associated function v is in this case 

The functions v[r' ] is given in the Appendix. 
The functions ¢Do and ¢Ro are equivalent to the func­

tions ¢ associated with a bar of complex "length" 2ia, i.e., 
with a complexified Weyl 8-metric,17 and with two equal 
point masses located on the z axis at z = ± ia, i.e., with a 
complexified two center Chazy-Curzon metric,17 respec­
tively. 
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Note that the Newtonian potentials associated with the 
family of disks of densities (2.10) as well as the family of 
rings can be obtained from the potential associated with any 
one of their members as Eqs. (2.5), (2.25), (2.30), and 
(2.31) indicate. 

III. ONE- AND TWO-SOLITON SOLUTIONS 

The vacuum Einstein equations for the stationary axial­
ly symmetric space-time 

ds2 = eC7(r,z) (dr + dz2) + Yab (r,z)dxa dxb , (3.1) 

with a,b = 3,4, (O,t) = (X3,X4), and det(Yab) = - r, are 
equivalent to 

(rr,ry-I),r + (rY,zy-I).z = 0, (3.2) 

0' = - In r - ~ f r [tr( Y,r y,; I - Y,z Y.; I) dr 

+ 2tr(Y,rY,; I)dz] , (3.3) 

where Y== (Yab ) and y,; 1== (y- I) ,r> etc. 
The one- and the two-soliton solutions of (3.2) are de­

fined as those solutions obtained using the inverse scattering 
method with a "scattering matrix" with one and two single 
poles, respectively. When the initial solution (seed solution) 
is taken as the Weyl solution (2.2)-(2.4), we find for the 
one-soliton case7

•
18 

where 

Plqlr(rlf-ll + f-ll/r) 
pi Yi + qi Y 1- 2 

pi (f-ll/r)Yi -qi(rlf-ll)y l-
2 

4> 
'------'--------.:.-..::....::...----.:.--=------.:.- ( - e ) , 

piYi +qiy l-
2 

Yk == (rlf-lk) 1/2 exp(Fk - ¢12) , 

f-lk ==ak - z + €kRk , 

Rk == + [(ak - Z)2 + r] 1/2. 

(3.4b) 

(3.4c) 

(3.5 ) 

(3.6) 

(3.7) 

(3.8) 

The Pk' qk' and a k are arbitrary constants and €k = ± 1. 
The function F = F( r,z;A,) is the solution of the system of 
differential equations 

(rar - Aaz + UaA. )F = r¢,r , 

(raz + Aar)F = r¢,z , 

F(r,z;O) = ¢ . 

( 3.9a) 

(3.9b) 

(3.10) 

The variable A is a spectral parameter defined on the com­
plex field, and 

(3.11 ) 

Along the poles' trajectories, A = f-lk' the system of equa­
tions (3.9) and (3.10) admits the solution 
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(3.12) 

Y34 = 4(a l - a 2)rf-l1 f-l2 

X €2R 2T I - €IR IT2 (3.13b) 
[r(f-l2 - f-l1)Sd 2 + [(r + f-ll f-l2)S2] 2 

' 

Y = [r(f-l2-f-lI)QI]2- [(r+f-llf-l2)Q2]2 (_e4» 

44 [r(f-l2-f-lI)Slf- [(r+f-llf-l2)Sd 2 ' 
(3.13c) 

O'
2

=O'
o

+ln{ [r(f-l2-f-lI)SI]2+ [(r+f-llf-l2)S2]2} , 

f-ll f-l2R IR 2 

where 

SI==PIP2Y IY2 -qlq2(yl y 2)-I, 

S2==Plq2(YI/Y2) -qIP2(Y2IYI) ' 

PI ==PI P2(r If-ll f-l2) 1/2 Y 1 Y2 

+ qlq2 (f-l I f-l2Ir ) 112 (yl y 2)-I, 

P2 ==Plq2(f-l21f-l I ) 112( YI/Y2) 

- ql P2 (f-l l /f-l2) 1/2( Y2IYI ) , 

T I == (P l y l )2 _ (qlY 1-1)2, 

T2== (P2Y2)2 - (q2 Y 2- 1)2, 

QI ==PI P2(f-l1 f-l2Ir) 112 YI Y2 

+ qlq2 (rlf-l I f-l2) 1/2 (yl y 2)-I, 

Q2==Plq2(f-l l /f-l2) 1/2 (YI/Y2) 

-qIP2(f-l21f-l1)1/2 (Y2IYI )· 

(3.14 ) 

(3.15a) 

(3.15b) 

(3.16a) 

(3.16b) 

(3.17a) 

(3.17b) 

(3.18a) 

(3.18b) 

An important property of the two-soliton transform is 
that it maps diagonal asymptotically flat solutions into as­
ymptotically flat solutions.7 

Note that the soliton solutions associated to a given 
Weyl seed solution characterized by ¢, i.e., a solution to the 
usual Laplace equation in cylindrical coordinates, are com­
pletely determined by the set of constants20 a k , P k' and q k , 
the known functions f-l k , and the function F[ ¢;A] solution to 
the system of differential equations (3.9) and (3.10). Note 
that the function 0'0 is related to the seed solution that is 
assumed to be known. 

IV. ACCELERATING AND ROTATING DISKS AND RINGS 

In this section we first compute the functions F associat­
ed to the family of disks and rings presented in Sec. II. Then 
we study the corresponding one- and two-soliton solutions. 

Using (3.9)-(3.12) one can demonstrate the following 
theorems. 

Theorem 1: Let ¢ I and ¢2 be solutions of Eq. (2.3) and a 
an arbitrary constant, then 
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F[l,b, +l,b2;A] =F[l,b,;A] +F[l,b2;A] , 

F [al,b,;A ] = aF [l,b;A ] . 

( 4.1a) 

( 4.1b) 

Theorem 2: Let l,b(a) =.l,b(r,z,a) be a solution of Eq. 
(2.9) depending on a constant parameter a, then 

~F[l,b(a);A] =F[ Jl,b;A] , (4.2a) 
Ja Ja 

f F [l,b(a);A ]da = F [f l,b(a)da;A ] . (4.2b) 

From (2.25), (2.30), (2.31), (4.1), and (4.2) we get 

F [l,bDn+ I;A ] = ~~n~; f a2n +2 F [l,bDn;A ] da, (4.3) 

J 
F [r°;A ] = a;; {aF [r°;A ]} , (4.4) 

F[l,bRn+I;A] =~{aF[l,bRn;A]}. (4.5) 
Ja 

Thus, the class off unctions F associated with both families of 
disks and rings can be obtained from the knowledge of the F 
associated with a single member of anyone of the families. 

A simple verification shows that2' 

F[lnJ-l;A] = In(J-l-A) (4.6) 

satisfies Eqs. (3.9) and (3.10). From (2.17), (4.1), and 
( 4. 5), for the first disk, we get 

D M II-A 
F[l,b o;A] = --;-In''''-_-, (4.7) 

ra J-l-A 
where the bar denotes complex conjugation, and from (4.3) 
and (4.6), for the second, we have 

F [r';A ] 

3M { (2 --2 r ~ A 2 ) In J-l - A --- 2 a +z---+/l,z+- --
~3 2 4 P-A 

+! [J-l(J-l+8z+U) -P(P+8z+U)] 

_ 2zr In 1 - A I J-l 
A I-AlP 

+ ~ (~_ ~ + ~ln 1 -AIJ-l)} . (4.8) 
U J-l pAl - A lji 

The expressions 

lim ~ In (1 - ~) = 
A_O A J-l J-l 

(4.9a) 

lim 1_1 +_1 In(I-~)1 = __ 1 , 
A_O AJ-l A 2 J-l 2J-l2 

(4.9b) 

tell us that the Eq. (3.10) is verified. 
The functions F associated with the first two rings are22 

F [r0;A ] = ro _ AM [ 1 + 1 ] 
R(J-l-A) R(ji-A) ' 

(4.10) 

( 4.11) 
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From (2.4), (4.1), (3.9), (3.6), (3.7), and (3.11) one 
can get the following relations: 

v[l,b+.81n r] =v[l,b] +.8l,b+!.821nr, (4.12) 

F [l,b + .8 In r,;l ] = F [l,b;A ] + (.8 12) In (r - Uz _ A 2) , 

(4.13 ) 

(4.14 ) 

that will be useful to study the one-soliton solutions. 
Let us recall that the functions l,b associated to the New­

tonian potentials of (i) an infinite wire of density 8 located 
on the z aixs, (ii) as semi-infinite wire of density /5 laying on 
the z axis and located along [ak> + 00 ], and (iii) a similar 
semi-infinite wire located along [ - 00 ,ak ], are, respective­
ly, 

l,b=481nr, 

l,b = 2/51nJ-lk+ , 

l,b = 2/5 In J-l;; , 

where we have introduced the notation 

(4.15 ) 

(4.16 ) 

( 4.17) 

(4.18 ) 

The static limit of the one-soliton solution is obtained by 
puttingeitherp, =Oorq, =Oin (3.4) and (3.5). We get 

InY44=l,b+ln(rlJ-l,) (p,=O) (4.19) 

( r'/2Y~2) (T, = (To + In R II + 21n ql , 

In Y44 = l,b + In(J-l,lr) (ql = 0) 

(
r l12Y

2 ) 
(T,=(To+ln ~ +21np" 

and for both cases23 

Y33 = - r1Y44· 

(4.20) 

( 4.21) 

(4.22 ) 

(4.23 ) 

Thus, if we take l,b as representing a disk or a ring we 
have that the one-soliton transform adds two semi-infinite 
wires along the z axis that have opposite densities starting 
from the point z = a,. To get a more physical solution we 
can eliminate one of the semi-infinite wires by adding to the 
seed solution the potential of an infinite wire of density /5 = ~. 

In this case we have 

In y~ = l,b + In(rlJ-l,) (PI = 0) , 

Iny~=l,b+lnJ-l, (q,=O). 

Note that by virtue of the identity 

J-lt J-lk~ = - r , 

(4.24) 

(4.25 ) 

( 4.26) 

both solutions (4.24) and (4.25) represent a disk or a ring 
depending on the meaning of l,b and a semi-infinite wire. To 
be more precise let me choose a I > 0 and E I = - 1, then 
(3.23) represents a disk or a ring and a semi-infinite wire 
along [aI' + 00]. (See Fig. 1.) But, the Weyl solution corre­
sponding to a semi-infinite wire along (l,b = 0) with Newto­
nian density /5 = ! represents a uniformly accelerated space­
time.7 Then the one-soliton solutions constructed with the 
seed solutions 

l,bDm + In r, 

l,bR m + In r, 
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ex 
1 

FIG. 1. Disk and ring with a semi-infinite wire. 

r~present a rotating and accelerating disk and ring, respec­
tively. 

Note that in this case 

lT 0 [~ + In r] = v [ ~] + pn r , 

Yk [~+ In r] = (2akf-lk lr ) 1/2 Yk [~] • 

(4.29) 

(4.30) 

The static solutions associated to the seed solutions 
(4.28) and (4.29) with m = 0 are characterized by 

114' = f-ll (f-lIP ) M lia , 

J14 = f-ll exp[ - M(1IR + l/R)] . 

(4.31 ) 

(4.32) 

Thus, the one-soliton solution constructed with (4.27) 
where m = 0 can be considered as a rotating complexified 
accelerating Weyl 8-metric, i.e., to a complexified general­
ization of the Kinnersley metric. 17 And the one soliton con­
structed with (4.28) with m = 0 corresponds to a rotating 
complexified Bonnor-Swaminarayan metric. 17 

The static limit of the two-soliton solution is obtained by 
putting ql = q2 = 0 in (3.13)-(3.18). We find the Weyl so­
lution characterized by 

In Y44 = In (f-ltf-l2Ir) + ~, (4.33) 

lT2 = lTo + In{ Ir(f-l2 - f-l )SI1
2

} • (4.34) 
f-l tf-l2R IR 2 

The other possible choices of the constants P I' P2' q I' and q2 
that make Y34 = 0 yield essentially the same solution (4.33) 
and (4.34) as a consequence of (4.26). Taking 
a I = - a 2 = a we have that (4.33) represents the superpo­
sition of a bar oflength 2a, and either a disk or a ring depend­
ing on the meaning of~, i.e., the superposition of a Schwarzs­
child solution8

•
17 with mass equal to a located on the origin 

of the coordinates and either a disk or a ring depending 
whether ~ is taken as ~Dm or ~Rm , respectively. (See Fig. 2.) 

The full solution (3.13) and (3.14) with ~ taken as ei­
ther ~Dm or ~Rm represents the superposition of a Kerr met­
ric with either a disk or a ring, respectively. 17 The Kerr met­
ric is obtained in the limie·2 ~ = Fk = O. 

FIG. 2. Disk and ring with a bar oflength 2a. 
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V. DISCUSSION 

The expressions (4.33) and (2.17) suggest that the disk 
Do itself can be interpreted as a soliton solution since 

~Do = - (M lia) In (f-l+p-Ir) , (5.1) 

where 

f-l± ==ia -z±R. (5.2) 

The factor M lia can be thought as arising from the coales­
cence of M lia two-soliton solution. Note that the appear­
ance of such a factor suggests that (5.1) may be obtained 
from the inverse scattering method with a scattering matrix 
with a more general singular structure. 24 

In the present case, the utilization of complex functions 
together with the use of cylindrical coordinates simplified 
the computations to the point that the functions v[~] and 
F[~,A) are found in an explicit way at least for ~D" , ~DI , r" , 
and ~ I. We want to point out that the generalization of the 
previous results to the case of d coaxial disks and r coaxial 
rings can also be computed easily in an explicit way, in the 
case that the rings and disks belong to the class Do, Ro• and 
R I' The most interesting case appears to be the case of r rings 
on a plane. Work along this line will soon be reported. 

One can also consider the solution of Laplace equations 
in the context of the van Stockum solution and its solitonic 
generalizations. 25 The functions needed to solve the inverse 
scattering method are exactly the same functions F[~,A] 
considered in the present paper. Unhappily to get a physical 
interpretation or a physical image of the solutions generated 
is not an easy task. 

Finally, we want to indicate that the interpretation of 
seed solutions (Weyl solutions) with ~ = ~Dm, ~R", as repre­
senting disks and rings is not without pitfalls since, as we 
indicated, the spherically symmetric Scharzschild solution 
is represented as a bar. By this reason we choose to call the 
interpretation of the solutions representing disks, rings, etc., 
a physical image rather than a physical interpretation. The 
study of the curvature singularities associated with the dif­
ferent solutions presented in Secs. II and III will be the sub­
ject matter of another paper. 
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APPENDIX: THE COMPUTATION OF v[~] 

By using the notation of Sec. IV and the definitions 
(2.4) and 

V[~I'~2] == ~ J r[ (~1.r¢2,r - ~1.z~2,z )dr 

+ (~1.r¢2,Z + ~1.z~2,r )dz] , (AI) 

it is not difficult to show the useful relations 

V[~I + ~2] = v[~t1 + V[~2] + 2V[~I'~2] , (A2) 

v [ a~] = a 2v [ ~] , (A3 ) 

v[~(al)] = lim v[~(a2),~(al)]' (A4) 
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where a l and a2 are parameters. Also 

v[ t;61,t;6Z) = v[ t;6Z,t;6I) , 

V[t;6I,t;62) = V[¢Z'¢I) , 

~ v[t;6(a),t;6I] = v[ at;6(a) ,t;6I] . 
aa aa 
From (AI) and (3.12) we have 

v[t;6,ln,ud = Fdt;6] . 

(A5) 

(A6) 

(A7) 

(A8) 

Now we shall compute V [t;6 D
o ], from (2.18) and (Al)­

(A3). We get 

v[t;6Do] = - (2Mz/az) (Re v[ln,u) - v[ln,u,ln,u) . 
(A9) 

Thus, to obtain v[t;6D o] we only need to compute 
v[ln,ul,ln,uz] as (A4) indicates. From (4.6) and (A8) we 
have that 

v[ln,upln,uz) = In(,ul - ,uz) . (AlO) 

To take the limit ,u1-,uZ' the identity 

(rz +,ul ,u2) (,u2 - ,ul) = 2(a2 - a l ),u1,u2' (All) 

which is a direct consequence of the definition of ,uk , will be 
used. Thus 

v[ln,u) = lim v[ln ,u,ln,u'] , (AI2) 
1"-1' 

(A13) 

The expressions (AI2) and (A13) are equal modulo a con­
stant of integration that we set equal to zero, a practice that 
we shall follow in the sequel. From (A9)-(AI2) we obtain 
(2.25). 

For V [t;6R
o ) we have 

(AI4) 

Equations (A5), (A7), and (3.7) tell us that 

[ I I] a2 

v -, - = v[ln,ul' In,u2] , 
RI R2 aa l aaz 

(AI5) 

= _ r ,u1,uZ _:--__ _ 
RIR2 (r+,u1,u2)2 

(AI6) 

The expressions (AI4)-(AI6) give us Eq. (2.37). 
The coefficient v [t;6R, ] can be written as 

v[r'] = v[t;6Ro] _ 2M Za2{v[ia - z, ia_+ z] 
R 3 R 3 

r
ia - z]} z { [I ia - z] +Rev ~ -4M a Imv Ii'~ 

I I ia +zl} 
+Imv Ii' IP . 

By using (AI6) and (A5)-(A7) we get 

r
ia -z ia + z] 

v R 3 ' li3 
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(AI7) 

(A18) 

V[ia - z] = _ r(R - ia + z)z + 3r
4 

_ r,u(ia - z) 
R 3 4R 8 8R 8 4R 8 ' 

(AI9) 

r(R - ia + z) r,u - +-4R 6 4R 6' 
(A20) 

v[J.. ia_+z] 
R' R3 

rJ,uJ2(R - ia +z) + 2rJ,uJ4 . 
R zJR J2(r + J,uJZ)2 R JR J2(r + J,uJ2)3 

(A21) 

Note that the direct integration of (2.4) for t;6R, is quite 
involved,26 and that the knowledge of (AlO) and (A5)­
(A 7) allows a direct computation of v [t;6R, ]. The integral 
(AlO)-the expression used to compute v[t;6D o], V[tfoRo), 
and V[t;6R, ]-is a by-product of the inverse scattering meth­
od. In principle, the coefficients V[t;6R, ], V[t;6R, ], ... , can be 
computed in a similar way. 
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In the context of the classical Kaluza-Klein cosmology the generalized Bianchi models in 11 
dimensions are considered. These are space-times whose spacelike ten-dimensional sections are 
the hypersurfaces of transitivity for a ten-dimensional isometry group of the total space-time. 
Such a space-time is a trivial principal fiber bundle P(M,G7 ), where M is a four-dimensional 
physical space-time with an isometry group G3 (of a Bianchi type) and G7 is a compact 
isometry group of the compact internal space. The isometry group of Pis GIO = G3 ® G7 , hence 
all the generalized Bianchi models are classified by enumerating the relevant groups G7 • Due to 
the compactness of G7 the result is astonishingly simple: there are three distinct homogeneous 
internal spaces in addition to the 11 ordinary Bianchi types for M. 

I. INTRODUCTION 

There is little doubt that irrespective of the present trou­
bles of the supersymmetric quantum Kaluza-Klein theories, 
the very idea of generating the fundamental interactions by 
means of the dimensional reduction will remain as a signifi­
cant achievement of theoretical physics; therefore studying 
the geometrical aspects of the higher-dimensional theories is 
well founded. Usually the classical Kaluza-Klein (KK) 
theory is understood as the "ground state" of the full quan­
tum version of the KK theory. Initially it was naively as­
sumed that the "ground state" of the theory is a product 
space P = IDl4 X B, P being the total (4 + d) -dimensional 
space-time, IDl4 the Minkowski space, and B the microscopic 
(i.e., "internal") compact, d-dimensional Riemannian 
space of the internal degrees offreedom, the higher dimen­
sions being treated as physically real. Such a definition is, 
however, incorrect for two reasons. 

(a) Even in the absence of the fermionic matter and the 
Yang-Mills fields, the empty macroscopic space-time is 
curved in general. 

(b) For this choice of the "ground state" (with the addi­
tionalassumption that the metric gAB ofP,A,B = 0, ... ,3 + d, 
is the direct sum of the macroscopic metric g/LV (xa

) = 1J/LV' 
fJ"v,a = 0, ... ,3, and the microscopic metric gab (XC) on B, 
a,b,c = 4, ... ,d + 3), the vacuum EinsteinequationsRAB = 0 
reduce to Rab (gcd) = O. A theorem has for a long time been 
known to mathematicians: a compact, Riemannian, Ricci­
flat manifold admits only covariantly constant (if any) Kill­
ing vector fields (cf. Appendix B). Thus such a space cannot 
induce non-Abelian gauge fields. 

We therefore discard the assumption that the macro-

scopic space-time is flat, instead we assume that it is a certain 
Lorentzian four-dimensional manifold M. Every space-time 
P = M XB satisfying the vacuum Einstein equations will be 
referred to as a classical cosmological solution of the Ka­
luza-Klein theory. 

It is interesting to study the cosmological (time-depen­
dent) solutions for the KK theory, since one knows from the 
ordinary cosmology that our universe was much smaller in 
its early stages than it is today. This raises the question of 
whether the effective number of space-time dimensions has 
always been equal to 4. Indeed, the present four-dimensional 
stage of the universe could have been preceded by a higher­
dimensional stage, which at "later times" becomes effective­
ly four-dimensional in the sense that the microscopic dimen­
sions become unobservably small due to dynamic contrac­
tion. 

Higher-dimensional cosmologies have been studied in a 
number of papers (see, e.g., Refs. 1 and 2 and references 
therein), usually in the context of a supersymmetric KK 
theory. Most authors have assumed that the macroscopic 
spaceM is a Robertson-Walker space-time. There are, how­
ever, plausible arguments, both theoretical and observa­
tional,3 that M is anisotropic spatially homogeneous, i.e., its 
metric structure is described by one of the Bianchi types (we 
do not take into account, for the time being, the Kantowski­
Sachs models). Some authors2

,4 have also considered homo­
geneous models, in which M is of Bianchi type I and B is a 
homogeneous space with an Abelian simply transitive iso­
metry group; without, however, attempting to answer the 
question of how large is that class in the whole set of the 
spatially homogeneous (in d + 3 dimensions) cosmological 
solutions. The purpose of the present paper is to give a gen-
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eral classification of the II-dimensional homogeneous cos­
mological space-times, or more exactly, of the so-called gen­
eralized Bianchi types, i.e., those space-times whose 
ten-dimensional spatial sections possess simply transitive 
isometry groups. 

We restrict our analysis to the II-dimensional space­
times since this dimension is distinguished by the realistic 
supersymmetric versions of the KK theory demanding that 
the symmetry group of the internal space B be at least 
SU (3) ® SU (2) ® U (l ). It should be stressed, however, that 
our approach excludes the most interesting (for the super­
symmetric theory) case when B is a "round" or "squashed" 
seven-sphere. The seven-sphere is a coset space rather than a 
group manifold, hence the spacelike hypersurfaces of trans i­
tivity of the form G3 XS 7, where G3 is a three-dimensional 
group space, do not admit a subgroup of the full isometry 
group of the space-time acting simply transitively on the hy­
persurfaces. This exclusion is not a disadvantage of the gen­
eralized Bianchi cosmology since the supersymmetric the­
ory assumes that there are (at least bosonic) matter fields in 
the macroscopic sector of the space-time (the "Freund-Ru­
bin ansatz") and furthermore the SO ( 8) isometry group of 
S 7 does not contain as a subgroup the physically interesting 
phenomenological group SU (3) ® SU (2) ® U ( 1 ). 

Spatially homogeneous space-times of dimension less 
than or not much larger than 11 can be treated in a very 
similar way (see Appendix A). 

II. GEOMETRIC FOUNDATIONS 

The microscopic space of internal degrees offreedom is, 
by definition, a compact Riemannian space, hence the fol­
lowing theorem holds. 

Theorem 15
: The group I(B) of isometries of a Rieman­

nian manifold B is a Lie transformation group with respect 
to the compact-open topology in B. If B is compact, I(B) is 
also compact. 

We assume that the isometry groupI(B) =G7 acts sim­
ply transitively onB, hence there exists a distance-preserving 
diffeomorphism of G7 onto B, dim G7 = dim B = 7. The 
macroscopic space-time M admits a three-dimensional iso­
metry group G3 (of a Bianchi type) acting simply transitive­
lyon its spacelike sections. 

A generic (4 + d)-dimensional KK space-time has the 
structure of an associated or principal fiber bundle.6 As we 
consider only simply transitive isometry groups we do not 
need to use coset spaces, therefore the generalized Bianchi 
space-times are the principal bundles. From the physical 
considerations one knows the base space M and the structure 
group G7• To uniquely determine the bundle space Pone 
additionally needs to know the transition functions connect­
ing different trivializations of the bundle for a given open 
covering of M. Physics, however, does not determine these 
functions, hence it is quite sufficient to consider the simplest 
case, i.e., a trivial principal bundle P(M,G7 ) with 
P=MXG7• 

To correctly perform the dimensional reduction yield­
ing the effective four-dimensional field theory one applies 
the "Kaluza-Klein ansatz,,7 expressing the metric gAB of P 
in terms of the metric tensors g"v on M and gab on B, the 
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Killing vectors of B, and the gauge fields on the space-time 
M. The "ground state" of the KK theory is then defined as a 
principal fiber bundle with the vanishing gauge fields on M. 
It means that the metric tensor gAB is block diagonal, or 
more exactly, the metric gp on the bundle space is the direct 
sum of the metric tensors for M and B, gp = gM $ gB' In 
other words, the bundle space P is a product space M X G7 
not only in the topological but also in the metric sense. 

III. THE ALGEBRAIC CLASSIFICATION OF THE 11-
DIMENSIONAL BIANCHI MODELS 

As usual one classifies the homogeneous spaces in terms 
of distinct Lie algebras for appropriate Lie groups. From the 
very notion of the trivial principal fiber bundle it follows that 
the ten-dimensional isometry group Gto of the bundle space 
P decomposes into the direct product Gto = G3 ® G7 • This 
implies that the Lie algebra L to of the Lie group Gto is the 
direct sum of the Lie algebras of the Lie groups G3 and G7 , 

L to = L3 $ L 7• This is an important result allowing one to 
reduce the classification problem for ten-dimensional Lie al­
gebras to that for seven-dimensional ones. 

To enumerate all distinct real seven-dimensional Lie al­
gebras is a hopelessly uphill task. Four-dimensional real Lie 
algebras were enumerated long ago (see Ref. 8 and refer­
ences therein); five-dimensional real Lie algebras were clas­
sified by Mubarakzyanov,9 who divided them into six nilpo­
tent, 33 solvable, and a number of decomposable algebras. In 
six dimensions only nilpotent Lie algebras were studied. For­
tunately, one needs not to enumerate all distinct real seven­
dimensional Lie algebras, most of which are noncom pact, 
for as is well known, the Lie algebra of a compact Lie group 
is also compact. For compact Lie algebras one applies the 
following theorem. 

Theorem21o: A compact Lie algebra L is a direct sum 
L = N $SI $ ... $Sn' where N is the center of L and the Si 

are simple algebras. 
There are only three distinct real simple Lie algebras of 

dimension <7 (for the classification method see Ref. 10); 
two of them are three dimensional-these are the Bianchi 
types L3 (VIII) and L3 (IX), the third one is six dimensional 
and, according to Ref. 10, is denoted by sl(2,C)R. Among 
these only the algebra L3 (IX) is compact. One thus infers 
that there exist exactly three distinct real seven-dimensional 
compact Lie algebras, namely 

7 

$ L 1 (the Abelian algebra), 
;=1 

4 

$ LI $L3 (IX), 
i= 1 

LI $L3 (1X) $L3 (1X). 

One sees that the compactness condition is crucial for 
the classification problem-it implies that there are no more 
than three distinct homogeneous seven-dimensional internal 
spacesB. Each of them can be joined to any of the 11 Bianchi 
types for the macroscopic space-time M, hence one arrives at 
a surprisingly simple result: there are 33 generalized Bianchi 
types for 11 dimensional spatially homogeneous Kaluza­
Klein space-times P. 

Solutions for the vacuum Einstein field equations in the 
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physically most interesting cases (the macroscopic space­
time Mis of Bianchi types I, V, and IX) and their interpreta­
tion will be presented in subsequent papers. 

APPENDIX A: THE d=6 CASE 

Although in the light of the preceding discussion it may 
seem rather trivial, we also give here, for the sake of com­
pleteness, the algebraic classification of the ten-dimensional 
generalized Bianchi space-times, as D = 10 is one of the di­
mensions distinguished by the superstring theories. Apply­
ing Theorem 2 and the classification method for real simple 
Lie algebras of dimension <6 one finds that there are three 
distinct real six-dimensional compact Lie algebras: 

6 

Ea L, (the Abelian algebra), 
;=1 

3 

Ea L, EaL3 (IX), 
;=1 

L 3 (IX) EaL3 (IX) (a semisimple Lie algebra). 

APPENDIX B: RICCI-FLAT MANIFOLDS ADMIT ONLY 
COMMUTING KILLING VECTORS 

Here we give the exact formulation and proof of the 
theorem mentioned in the Introduction. Its content is well 
known to the active researchers in the field but, to the best of 
our knowledge, its proof has never been published in the 
physical literature. The theorem traces back to Bochner. 11 

Theorem: Let B be a compact connected Riemannian 
manifold without boundary. Then (a) if the Ricci tensor 
field is negative definite everywhere on B, then the isometry 
group I(B) is finite, i.e., every Killing vector field is zero; 
and (b) if B is Ricci flat, Rab = 0, then every Killing vector 
field is parallel, therefore any two Killing vectors commute. 

The original proof is rather long. We give a short proof 
adapted from Ref. 12. One can assume that B is orientable, 
otherwise one has only to consider the orientable twofold 
covering space of B. Then for any vector field A on B one has, 
from the Gauss theorem, 
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LdiVA dV=O. 

Let K be any Killing vector field on B. One has for it 

div(VKK) =Va (KbVbK a) = -Ka;bKa;b + RabKaK b. 

For a Riemannian metric one gets - K a;b Ka'b <0. Assuming 
RabKaKb<O one obtains div(V KK)<O. On 'the other hand, 
f Bdiv( V KK)dV = 0, hence 

div(V KK) = 0 = Ka;bKa;b = RabKaK b. 

(a) For the negative definite Ricci tensor, RabK aK b 
= 0 iff K = 0 everywhere on B. 

(b) For Rab = 0, K a;b Ka;b = 0 implies Ka;b = O--every 
Killing field is parallel on B. If K and L are any two Killing 
vector fields on B, then one easily checks by a short calcula­
tion that [K, L] = 0 on B. 
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On the Hilbert space 2= .,2"'2 (O,L), where (O,L) is a bounded interval of R I, the domain for 
the canonical commutation relation (CCR) and the CCR quasi-*-algebra is constructed. It is 
shown that the Bogolubov inequality for a Bose gas (in a box) is fulfilled. 

I. INTRODUCTION 

The basic ingredient in the algebraic approach to statis­
tical physics is the set ffi: of observables of the system. This set 
ffi: is assumed to be a linear space. The dynamics is then de­
scribed by a one-parameter family 7, of linear transforma­
tions offfi:. 

When one tries to perform the thermodynamical limit of 
the local Heisenberg dynamics some difficulties arise, name­
ly this limit does not belong to ffi:. This problem leads directly 
to consideration in the set of observables of the structure of a 
quasi-*-algebra. 2 

In this paper we consider the quasi-*-algebra generated 
by the operators P and Q (the usual position and momentum 
operators) acting in the Hilbert space 2"2(Q,L), where 
(O,L) is a bounded interval of R. 1 

In Secs. II and III we give the domain of definition for a 
canonical commutation relation (CCR) and construct the 
CCR quasi-*-algebra. This quasi-*-algebra .sf consists of 
elements of the form "2.FkP \ where the Fk'S are distribu­
tions. Thus .sf may also contain very singular objects. 

In Section IV we consider the question posed by the 
Bogolubov inequality. As is known, this inequality for a Bose 
gas leads to a contradiction. The reason for this lies in the 
fact that the operators involved are unbounded and the CCR 
is usally taken as [Q,P] = i. Applying the results of the pre­
vious sections we show that the boundary condition leads, in 
this case, to [Q,P] = i - iL8 (x). By means of this no con­
tradiction arises from the Bogolubov inequality. 

As a result, the quasi-*-algebras approach allows us not 
only to perform thermodynamical limits, but also helps us to 
overcome some other difficulties of the theory such as the 
one discussed above. 

II. DOMAIN FOR CCR 

Let us consider the operators P = - id I dx and Q = x, 
acting on the Hilbert space cW' = 2" 2 (O,L ), where (O,L) is a 
bounded interval of R I. For technical simplicity we take ° as 
the left boundary point. 

As is known, the operator Q is bounded in 2"2(0,L), 
whereas the operator Pis unbounded and it is self-adjoint on 
the domain 

D(P) = {/E2"2(0,L): / is absolutely continuous and 

/(L) = a/(O), lal = 1} . 

We restrict ourself to the case a = 1. The operator P has a 
simple spectrum with eigenvectors 

f/Jn(x) =f/Jp(x) = lI.jLeiPX, 

p = 21TnIL, n = 0, ± 1, ± 2,.... (2.1) 

Let us now consider the following linear manifold of cW': 

where 

Ilf/JII~ = I ISn 12 (1 + (2~n yyk 
= 11(1 +p2)k<,h112<oo, k=O,l,.... (2.2) 

The seminorms <,h-+ 11<,hllk define a topology t on fiJ 
which is Frechet and reflexive with respect to t. 

Lemma 2.1: The domain fiJ is the following space of 
functions 

fiJ = {<,h(X)EC 00 [O,L ]: 

<,h(k)(O) = <,h(k)(L), k = 0,1, ... }. (2.3) 

With respect to the usual multiplication offunctions and the 

involution <,h + (x) = <,h (x), fiJ becomes a topological *-al­
gebra, and for f/J,XEfiJ, one has 

(2.4 ) 

where Ck are certain constants. 
Proof: The proof of (2.3) is straightforward, and (2.4) 

follows from the following estimations: 

IIx<,hll~ = LL 1(1 + p2)k(X<,hW dx 

<SoL Cto e)W
2V

(X<,h) Iy dx 

<ak i~O SoL WXI2 dx jto iL 
W
j
<,h12 dx, 

where the ak are certain constants. Since every integral on 
the right-hand side can be estimated by IIxlik (resp. 1I<,hllk)' 
(2.4) is proved. 

Let fiJ k be the completion of fiJ with respect to the 
Hilbert norm 11'11 k' Then we get the sequence 

fiJ = nfiJkC .. ·cfiJk_ 1 cfiJkC .. ·cfiJO=cW'. 

By fiJ _ k we denote the dual space of fiJ k with the norm 
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II'II-k' Then II¢II-k = 11(1 +p2) -k¢1I and we get that 
9' = U 9 k is the dual space of 9. So we have the scale of 
Hilbert spaces 

lim proj9 k = 9 [t ] C 9 0 = JY' C 9' [t '] = lim ind 9 k • 
n-oo n-oo 

(2.5) 

By interpolation (Ref. 3, 1.4 ) we get 9 s for every real s. The 

scalar product (F,¢) = (¢ + .F +) = ( ¢.F) is defined for 

¢E9k, FE9 -k, kEZ. 

The space 9' carries the strong dual topology t ' defined 
by the seminorms 

FE9'--. sup 1 (F,X) I, 
XE.ff 

(2.6) 

where J( runs over all bounded subsets of § [t]. 
The topology t can also be described by the seminorms 

( )

112 

(an): 11F1I(on) = Ilxn 1
2an 

F= I Xn¢n , (2.7) 
nEZ 

where (an) runs over all positive sequences with 
~nEzann2k < 00 for all k. 

Lemma 2.2: If FE9', gE§, then gF=FgE9' is de­
fined by 

(gF,<p) = (F,g+ <p ) , 

and the map F--.gFis continuous in 9'. 
Proof: We need only to prove the continuity. This is a 

consequence of the following estimates. Let K be a bounded 
set in 9 [t], 

supl (Fg,X) 1 = supl (F,g+X) I = sup I (F,X) I . 
XEK xeK Xeg+ K 

As § is a topological *-algebra, the setg+ K is also bounded 
in 9 [t]. 

The foregoing lemmas prove the following theorem. 
Theorem 2.3: (9' [t '],9) is a topological quasi-*-alge­

bra,zi.e., (i) §' [t'] is a linear topological space with contin­
uous involution and a dense distinguished linear subspace 
§, (ii) for gE§ the multiplication F--.gF= Fg is defined 
and continuous, FE9', and (iii) 9 is a *-algebra. The invo­
lution is F + = F. For a topological quasi-*-algebra 
(W [S'] ,Wo) in4 the left and the right strong topologies 'lYJ,{3 21 
on Wo have been introduced. If (W,Wo) is a commutative 
quasi-*-algebra, then both topologies coincide, 21{3 = {3 21, 
and they are defined by the system of seminorms 

{321: IIA II N
•
P = sup p(AB) , 

BEN 
(2.8) 

where p runs over all seminorms of the topology S' and N runs 
over all bounded subsets NCW[S']. 

Now we get the following lemma. 
Lemma 2.4: For the topological quasi-*-algebra 

(§' [t '],9) the strong topology {3 §' on 9 coincides with 
the Frechet topology t of 9 . 

Proof' First we prove that t is stronger than{3 §'. In fact 
by (2.6) and (2.8) the seminorms lI'II N

,p are given by 
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IIA II N
,p = sup supl (AB,x) 

BEN xEM 

= sup IFB+X (A) I , 
BEN,XEM 

where FB+x(A) = (B +X,A) is a continuous linear func­
tional. The set Y = {FB + x ; BEN,XEM} of continuous 
functionals are pointwise bounded. By the generalized Ban­
ach-Steinhaus theorem Ref. 5, 15.13 Y is equicontinuous 
and therefore IIA II N

•P is continuous in t. 
Now we prove that t is weaker than {3 §'. For this we 

show that every norm 1I'llk of t can be estimated by a norm 
IIA II N

,p. Now we have IIA Ilk = SUPFEB I (F,A ) 1 with a bound­
ed set B of 9'. On 9' we take the very simple seminorm 
p(F) = I (F,l) I, lE§ and N = B +. Then we get 

IIA II N
,p= sup I (AB,l) I =supl(F,A)1 = IIA Ilk' 

BeB+ FeB 

Therefore the proof is complete. 

III. THE CCR QUASI·*-ALGEBRA 

Let § cJY'c§' be the rigged Hilbert space (2.5). 
Then 2" (§,§') denotes the space of all continuous linear 
operators of 9 into §' and Too the topology of uniformly 
bounded convergence on 2" (§,9') defined by the semi­
norms 

IIA 1I.ff = sup I (A¢,X) I, J( bounded in § [t ] . (3.1) 
<P,xe.ff 

In 2" (9,9') the involution A --. A + is defined by (A¢,X) 
= (¢,A +X), 2"+(9) is the *-algebra of all operators 
AE2"(9,9') with A,A +9c9, (2"(9,§') [Too]' 
2" + (9») is a topological quasi-*-algebra. For this and oth­
er properties of 2" (9,9') see Refs. 1 and 2. 

Especially, every operator AE2"+(§) has a continu­
ation to an operator A: 9' --. §' defined by 
(AF,<p ) = (F,A + <p ), <pE9 . We call (iP) the derivation also 
on 9' and write for FE9' 

(3.2) 

For FE9' we denote by E the multiplication operator of 
9 into §' (see Lemma 2.2) 

A A 

F¢ =F¢, FE2"(9,§'), (3.2) 
A 

F--.F defines a injection of 9' into 2"(9,§'). With this 
notations it is straightforward to prove the commutation re­
lations 

PE - EP = - W(I) • (3.4) 
Definition 3.1: By d we denote the linear space of all 

polynomials B in a variable p with coefficients in 9'. 
N 

f= I FkPk, FkE§'. (3.5) 
k=O 

00 

This d is isomorphic to the direct sum Ell 9'. The topology 
1 

of the direct sum on d will be denoted by t' also. By do we 
00 

denote the subspace of d of allfwith FKE9 , do = Ell §. 

By t we denote the direct sum topology on do. 
In what follows we shall equip d with a partial multi-
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plication (see also Ref. 6) such that (..01',..01'0) becomes a 
topological quasi-*-algebra. We start with the following rep­
resentation 1To of ..01' in .!f (9',9"): 

(3.6) 

We put m: = 1To(d), m:o = 1To(do). The following lemma 
shows that (m:,m:o) is a quasi-*-subalgebra of (.!f(9',9"), 
.!f+(9'»). 

Lemma 3.2: (i) 1To is a bijection of ..01' onto m:; (ii) 
m:o = 1To(d 0) c.!f+ (9') is an Op*-algebra; (iii) For AEm: 
and BEm:o we have AB, BAEm:. 

Proof (i) Letl = "2.FkPk #0. Show 1To( I) #0 we prove 
the existence of two elements ,p",p s of the basis (2.1) such 
that (1To(/),p",ps) #0. We have 

N 

(1T1]o(/),pn,,pm) = I (21TIL)n)k (FK,pn,,pm) 
k~O 

N 

=.JL I (21TIL)n)k(FK,,pm_n)' 
K~O 

(3.7) 

The vector «F1,,p, ), ... ,(FN,,p,» is different from zero for a 
certain t. Furthermore, it is not orthogonal to every vector 
(I,(21TIL)n, ... ,(21TIL)n)N) , nEZ. Therefore for one r we 
have 

.JL I (21TIL)r)k(FKI,p,)#0. 
k~O 

This is equal to (1To( I),p",ps) for s = t + r. Therefore (i) is 
proved. 

(ii) Let/l = "2.ak (Q)pk,/2 = "2.bl (Q)i be elements of 
do, i.e.,ak (Q),bl (Q)E9', then making use of the commuta­
tion relations between P and Q on 9', we have 

1To(/I): 1To(/2) = 1To(/3) , 

where 

13 = I ± (Kl ( - i)k-Sak b ?-S) ps+l. 
K.I S~O s) 

(3.8) 

(iii) This follows from calculations similar to the pre­
vious ones taking into account the commutation relations 
(3.4 ). 

Lemma 3:3: (m:,m:o) is a topological quasi-*-algebra 
with respect to the topology Too' 

Proof We need only to prove that m:o is dense in m: with 
respect to T 9 . We will make use of the following facts: (a) 
9' is dense in 9" [t '], and (b) since 9' [t] is a topological *­
algebra with jointly continuous multiplication, if ../I and JV 
are bounded in 9' so also ../I JV is. 

N A 

Now let I FkPkEm:, for each Fk E9" there is a net F~ in 
k~1 

9' which converges to Fk with respect to t'. We have there­
fore for a bounded subset../l of 9' [t] 

sup I I «Fk - F~ )pk,p,X) I 
tf>.¢E..ff k 

,I sup I «Fk - Fnpk,p,x) I 
k tf>.xE..ff 
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,I sup I (Fk - F~,X) 1--+0, 
k XE..ffA/' 

N 

where JV = U pk ../I. This proves the statement [see 
k~1 

(3.1)]. 

IV. BOGOLUBOV INEQUALITY 

In this section we are going to describe the dynamics and 
the equilibrium state of the free Bose system 7 in the interval 
(box) [O,L] by a derivation 

8(A)=i[H,A], (4.1) 

and the Gibbs state 

(A) = (l/Z)tre-PHA ( 4.2) 

on the quasi-*-algebra (m:,m:o), where H = p2 is the free 
Hamiltonian and (J the inverse temperature. 

At first sight the definition of (4.1) and (4.2) might 
look trivial but formal calculations with the Bogolubov in­
equality 

~ (J (AA + + A + A ) ([ [C,H],C +]) > I ([ C,A ] W (4.3) 

and the commutation relation [Q,P] = i leads to the contra­
diction 1,0(!) for C = P and A = Q. In Ref. 8 this contra­
diction has been solved by a new definition of states on un­
bounded operators as sesquilinear forms and a 
corresponding generalization of Bogolubov inequality (see 
Ref. 8, Lemma 2). 

In fact the derivation (4.1) and the state (4.2) are well­
defined on the quasi-*-algebra (m:,m:o) and also the Bogolu­
bov inequality (3.3) is valid. There cannot be a contradic­
tion. The problem will be solved by the fact that the 
commutator of Q and P, which is well-defined on m: is differ­
ent from i. 

Lemma 4.1: Let F(x) be continuous differentiable on 
the closed interval [O,L]. Then FE9" and we get [see (2.2) ] 

F(1) = F'(x) - (F(L) - F(0»)8(x) , (4.4) 

where F'(x) is the usual derivative of F(x). 
Proof (4.4) follows from the relation 

(iPF,cp) = - i(F,Pcp) 

= - i Lpcp , dx = - P(x)cp(x) I~ + i
L 

F'cp dx 

= iLF'cp(X) dx - (F(L) - F(O»)cp(O) , 

for all cpE9', because cp(O) = cp(L). 
If Q = x is the position then we get, from (4.4) and 

(3.4), the commutation relation 

[Q,P] =QP-PQ=i-iL~(x). (4.5) 

The products QP,PQ are well defined in m:, since PEm:. Fur­
thermore, all products in (4.2) and (4.3) are well defined. 

Lemma 4.2: (i) T, (A) = eiH'Ae - iH' defines a one-pa­
rameter group oflinear transformations on .!f (9',9"). 

(ii) The state (A) = (lIZ)tre- PHA, Z= tre- Im, is 
well defined on .!f (9' ,9"). 

Lassner, Lassner, and Trapani 176 



                                                                                                                                    

Proof: (i) This follows from the fact that eiHtE2" + (PlJ ). 
It is even an operator of order zero,7 so that 

IleiHtl,6llk = 11(1 +p2)keiHtl,6ll<lll,6llk' for all k. 

(ii) For every AE2" (PlJ ,PlJ') the operator e ~/3HA is nu­
clear7 and we have 

tre~/3HA = L e~/3€n (I,6n.Al,6n), (4.6) 
nEZ 

where En = (4~ /L 2)n2 are the eigenvalues of H. 
Let us yet remark that the dynamics 7 t (A) does not 

leave 2I invariant, whereas its derivative (4.1) leaves 2I in­
variant. 

Since (I,6n,6I,6n) = 1/L for all n we get (6) = 1/L. 
Hence 

([P,Q]) = o. (4.7) 

Therefore there is no contradiction in applying the Bogolu­
bov inequality ( 4. 3) to C = P, A = Q, because we get zero on 
both sides. 
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Let us finally remark that the considerations of this sec­
tion are valid also for different Bose gases with interaction in 
a finite box.8 The essential condition is the nuclearity of the 
operator e~/3HA for AE2"(PlJ,PlJ'), which is satisfied in 
such cases. 
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An unusual two-group transport equation, associated with particle transport in a duct, and 
possessing a full "removal matrix" is considered. An approximate solution for the exiting 
distribution is obtained by an application of the facile (FN ) method. An integral transform 
technique is used to transform the problem into a singular integral equation, which serves as a 
basis for the FN approximation. The set of basis functions is derived from the singular 
eigenfunctions of the original problem. Comparisons of the reflection probability with 
numerical solutions show the accuracy and the remarkable efficiency of the F N method. 

I. INTRODUCTION 

In recent papers a new transport equation has arisen, 
presenting some peculiar and interesting features. The phys­
ical problem is that of treating neutral particle transport in 
an evacuated duct, with partial isotropic scattering at the 
wall. Pomraning and Prinja I derived a simple model for the 
monoenergetic, time-independent problem, which reduces 
the number of independent variables from 5 (3 in space, 2 in 
angle) to 2 (1 in space, 1 in angle). This was shown2

•
3 to be 

the lowest-order approximation in a hierarchy of approxi­
mations derived by a weighted residual procedure. The next­
order approximation, which was then derived/ leads to two 
coupled planar geometry transport equations. They can be 
written in vector form as 

= 2c O _ 1l2 )1/2B fl dll'O-Il,2)1/2«p(X,Il'), (Ll) 
1T -I 

with ° < x < 00, and with the boundary conditions 

«P(0,1l) = f(Il), 0<1l<1, 

lim «P(x,ll) = 0, 
x_ 00 

( 1.2) 

(1.3 ) 

where the two components of«P are weighted averages of the 
particle flux, f(ll) is the prescribed incident flux, and c is the 
scattering probability at the wall. The elements of the two 
matrices Sand B have been defined for arbitrary cross sec­
tional geometry of the duct. 3 We will focus our attention on 
the case of a circular duct of semi-infinite length. The nu­
merical values of the elements ofS and B are then given by3 

SII = bll = 2/1T, (1.4) 

SI2=bI2 = (31T-16/1T)(9~-64)-1/2, (1.5) 

S21 = b21 = - 2(31T - 16/1T) (9~ - 64) 1/2(128 - 9~) -I, 

( 1.6) 

S22 = - (16/1T)b22 = 16(31T - 16/1T) (128 - 91T2)-1. 

(1. 7) 

Equation (1.1) represents a two-group transport equation 
with anisotropic cross sections. The peculiarity of this prob­
lem is that both the "removal matrix" and the "scattering 
matrix" are full, while in ordinary two-group transport 

equations the "removal matrix" is always diagonal. An addi­
tional unusual feature is the occurrence of a continuous spec­
trum which is complex and involves lines of infinite length. 

In this paper we are interested in an application of the 
F N method to the problem described by Eq. (Ll). The F N 

method, initially introduced in the context of neutron trans­
port theory by Siewert and Benoist4 and Grandjean and 
Siewert,5 has also proved to be particularly efficient in solv­
ing basic transport problems in the field of radiative transfer 
and rarefied gas dynamics (an interesting review of the ap­
plications of the FN method was recently given by Garcia6

). 

The method, though approximate, can yield very accurate 
numerical results with modest computational efforts. The 
method has already been applied to an infinite spectrum,7 

and to a two-group problem,8 but never to a problem with a 
complex spectrum, nor one involving a full removal matrix. 

We first use an integral transform technique suggested 
by Siewert8

•
9 to derive a singular integral equation for the 

exiting flux. The exiting flux itself is then approximated by a 
finite expansion in terms of a set of basis functions. Those 
functions are chosen, after a short discussion, to be the eigen­
functions of the problem. The coefficients of the expansion 
are found by requiring that the integral equation be satisfied 
at certain (collocation) points. Once our approximate solu­
tion is established, we check its accuracy and efficiency by 
evaluating the reflection probability (albedo) at the open 
end x = 0, defined by 

f6dll 1lcf>1 (0, -Il) 
a= f6 dIlIlJ1(1l) , (1.8) 

for different choices of the incoming fluxJand the wall scat­
tering probability c. The results are then compared to the 
ones given in Ref. 3, obtained from a direct numerical solu­
tion of Eq. (Ll). 

II. DI;RIVATION OF THE SINGULAR INTEGRAL 
EQUATION 

We start with a change of variable fromll to S according 
to 

S=IlO-1l2)-1/2, 

"'(x,s) = «P(x,ll) , 

(2.1 ) 

(2.2) 
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F(S) = f(It)· (2.3) 

Equations (1.1) through (1.3) then become 

s~l/J(x,s) +Sl/J(x,s) =CJ'" dS'(S'2+ 1)-2l/J(X,S'), 
ax - '" 

l/J(O,s) = F(s), 0<5 < 00, 

lim l/J(x,s) = 0, 
x_ '" 

where C = (2chr)B. 

(2.4 ) 

(2.5) 

(2.6) 

Now we follow the same procedure reported in Refs. 8 
and 9, and change 5 to - 5, multiply the resulting equation 
bye - xis and integrate with respect to x from ° to 00. Upon 
integration by parts and multiplication by s we obtain 

(sS - 51) 1'" dx e-XISl/J(x, - 5) 

= sCp*(s) - ssl/J(O, - 5), 

where 

(2.7) 

p*(s) = 1'" dx e-
xls J: '" dS(S2 + 1) -2l/J(X, - 5), 

(2.8) 

and I is the identity matrix of rank 2. We must also consider 
only Res>O. 

Disregarding, for the time being, the occurrence of the 
singularities of (sS - 51), weformallymultiplyEq. (2.7) by 
(52 + 1) - 2 (51 - sS) - I and integrate over 5 from - 00 to 

I 

00. Making use of the boundary condition (2.5), we write 
the result as 

A(s)p*(s) =s 1'" dSS(S2+ 1)-2(51-SS)-1 

xl/J(O, - 5) + sr(s), (2.9) 

where 

A(s) = I +s J: 00 dS(S2 + 1)-2(51-SS)-IC, 

res) = 1'" dSS(S2+ 1)-2(51 +sS)-IF(s)· 

(2.10) 

(2.11 ) 

Since the singularities ofEq. (2.9) occur when the de­
terminant of the matrix (sS - 51) vanishes, we look at 

det(sS - 51) = (5 - g+s)(s - g_s) 

=det(S)(s-l+s)(s-l_s), (2.12) 

where 
g± = (!)(Sll +S22) ±!(Sll +S22)2-4det(S»)1/2, 

(2.13 ) 

(2.14 ) 

In our case (Sll + S22)2 <4 det(S), so that the singular 
spectrum consists of the two conjugate linear branches in the 
complex half-plane Re s> ° defined by s = 1 ± v, with v real 
and positive. Those are the continuum eigenvalues of the 
problem, as we will also see later. 

Ifwe now let s approach, say,l+ v (upper branch) in 
Eq. (2.9), we find according to the Plemelj formulas 

A t (v)p~ (v) =1+ vP 1'" ds 5 [(52 + 1)2(5 - v)(s - K+ v)] -1(51-1+ vSt)l/J(O, - 5) 

± 1Tif+ v[(v + 1)2(1 - K+)] -1(1 - I+St)l/J(O, - v) +1+ vr + (v), (2.15 ) 

where 

At (v) = I +1+ vP J: '" ds [(52 + 1)2(5 - v)(s - K+ V)]-I 

X (51 -1+ vst)C ± 1Tif+ v[ (v + 1)2(1 - K+)] -1(1 - I+St)C, 

K+ =g+(g_)-I. 

(2.16) 

(2.17) 

Here P indicates the principal value of the integral, st is the 
adjoint of S, namely det (S) times S - I, the subscript + 
indicates that we are referring to the upper branch, and the 
± refers to approaching the branch from above or from 

below, respectively. We have also rewrittenp*(/+v) and 

r(/+v) as p~ (v) and r +(v), respectively. Adding and 
subtracting the equations that correspond to the two ways of 
approach we find 

4+(V)p~ (v) =1+vP 1'" dss [(52 + 1)2(s-v) 

X (5 - K + v)] -I (51 - 1+ vSt)l/J(O, - 5) 

+I+vr+(v), (2.18) 

(1-I+St)l/J(O, - v) = (1/v)(1 - I+St)Cp~ (v), (2.19) 

179 J. Math. Phys., Vol. 28, No.1, January 1987 

where 

4+(v)=I-I+vP J:", dS[(S2+1)2(S-v) 

X (5 - K+ v)] -1(/+ vSt - sl)C. (2.20) 

When we let s approach the lower branch, the equations we 
obtain are simply the complex conjugates of Eqs. (2.18)­
(2.20). 

From Eq. (2.18) and the corresponding one related to 
the lower branch, we can readily find expressions for p*+. and 
p*- , but the use of Eq. (2.19) and its complex conjugate is 
somewhat less straightforward, since the two matrices 
(I - 1 ± st) are singular. Recalling that the flux l/J is a real 
quantity, it can be checked after some algebra that the real 
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and imaginary parts of Eq. (2.19) are linearly dependent, so 
that we can use either one of them to obtain 

",(0, - v) = P 1'" ds H(v,s)",(O, - s) + K(v), 

(2.21) 

where 

H(v,S) = {Re(l-I+st)}-I Re{(1 - l+st)C~::;l(V) 

x/+s [(S2 + 1 )2(S - v) 

X(S-K+V)]-I(SI-I+vSt )}, 

K(v) = {Re(1 - I+St)}-1 

XRe{(1 - I+St)C~::; I (v)/+r + (v)}. 

(2.22) 

(2.23) 

Since we can straightforwardly compute Hand K (some 
sketches of this algebra are shown in the appendix), Eq. 
(2.21) is the integral equation for the exiting flux which 
constitutes the basic equation to which the F N approxima­
tion is applied. 

III. EIGENFUNCTIONS AND THE FN METHOD 

The F N method consists of approximating the exiting 
flux in Eq. (2.21) as a linear combination of a finite number 
of basis functions. Any complete set of functions could be 
used, but the choice of this set is very crucial to the rate of 
convergence of the expansion. Initially the expansion 

N 

",(0, - S) = L (S + Sn )-IAn, S, Sn >0, (3.1) 
n=1 

was assumed, in which scalar basis functions are used, with 
vectorial expansion coefficients. This was suggested by the 
solution of the one group equation. I However, the conver­
gence of the numerical results proved to be relatively slow, as 
will be shown in Sec. IV. Thus the eigenfunctions of the 
problem were derived, in order to infer from them a more 
natural choice for the basis functions. 

In order to find these eigenfunctions the classic proce­
dure is followed. 10 We start with the ansatz 

(3.2) 

where, because of the condition of finiteness at infinity, we 
restrict ourselves to Re s > 0. After substitution into Eq. 
(2.4) we obtain 

(Ss - sl)Fs (S) = sCNs ' 

where 

Ns = J: '" dS(S 2 + 1) - 2Fs (s)· 

(3.3 ) 

(3.4 ) 

The singularities of the matrix in the left-hand side of Eq. 
(3.3) are the eigenvalues of our problem. They lie on the two 
conjugate branches of the complex half-plane defined by 
s = 1 ± v,O < v < 00. The singular eigenfunctions appear then 
as complex conjugate pairs, and can be written (say for the 
upper branch) as 

F +.v(S) = PI+v[ (S - v)(s - K+V)]-I 

X (/+vS t -SI)CN+.v 

+D+A+(v)8(s-v), S>O, (3.5 ) 
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F+.v( -S) =PI+v[(S+V)(S+K+V)]-1 

X(/+vSt+sl)CN+.v' s>O, (3.6) 

where D + is the vector 

D+ = [/+S12/0 - I+S11) - 1], 
l+s21/(1 - I+S22) - 1 

(3.7) 

and P, as usual, indicates that integrals must be interpreted 
as principal values, and the subscript + refers to the upper 
branch. Again the eigenfunctions corresponding to the low­
er branch are the complex conjugate of the ones correspond­
ing to the upper branch. Substitution ofEqs. (3.5) and (3.6) 
into Eq. (3.4) gives 

~+(v)N+.v = (v+ 1)-2D+A+(V), (3.8) 

where ~+(v) is the same matrix defined by Eq. (2.20). 
Now, choosing the value of the normalization for the first 
component ofN + .v' which physically corresponds to parti­
cle conservation, we obtain from Eq. (3.8) 

N +.v.1 = 1, (3.9) 

N+.v.2 = [D+.2A+.11 (v) -D+.IA+.21 (v)] 

X [ D + .1 A + .22 ( v) - D + .2 A + .12 ( v) ] - I, 
(3.10) 

A+ (v) = det(~+)[ D +.1 A +.22 (v) - D + .2A +.12 (v)] -I. 
(3.11 ) 

Assuming that the eigenfunctions (3.5) and (3.6) form 
a complete set, we can then write the exiting flux as a super­
position of the eigenfunctions themselves, i.e., 

",(O,-S) = 1"'dV[A+(V)F+.v ( -s) 
+A_(v)F_.v( -S)], (3.12) 

with ° < S < 00. Since A ± (v) and F ±.v are complex, but the 
solution", must be real, Eq. (3.12) can also be written as 

",(O,-S) = 1''' dv{a(v)Re[F+.v ( -S)] 

(3.13 ) 

It therefore appears natural to expand the exiting flux as 
N 

",(0, - S) = L [anRn (S) + bnIn (s)], 
n=l 

where 

Rn (S) = Re [F + .v.c - s) ] , 
In(S) = Im[F+.v.c -s)]. 

(3.14) 

(3.15 ) 

( 3.16) 

Equations (3.15) and (3.16) represent our choice for the 
basis functions, and Eq. (3.14) is the relatedFN approxima­
tion. Comparing Eqs. (3.14) and (3.1) we see that now the 
basis functions are vectors, and the coefficients of the expan­
sion are scalars. Substituting Eq. (3.14) into Eq. (2.21) we 
obtain 

ntl{an [Rn (v) -P 1'" dsH(V,s)Rn(s)] 

+ bn [In (v) - P 1'" ds H(v,s)ln (s)]} = K(v). 

( 3.17) 
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If we now evaluate Eq. (3.17) at N collocation points 
V m , m = I, ... ,N, we are led to a linear system of 2N scalar 
equations for the 2N unknowns an and bn. This system can 
be indicated as 

MA=L, 

where 

(3.18 ) 

M 2m + i - 2,2n-1 =Rn,i(vm ) -p l"'ds [H(vm,S)Rn(s)]o 

i = 1,2, (3.19) 

M2m+i-2.2n =In,i(vm ) -p So'" ds[H(vm,S)In(S)]i' 

i= 1,2, (3.20) 

A 2m _ l =am, (3.21) 

A 2m = bm, 

L 2m _ I = K I ( V m ), 

L 2m =K2(vm ), 

with m,n = 1,2, ... ,N. 

(3.22) 

(3.23 ) 

(3.24) 

Once the system (3.18) is solved, Eq. (3.14) gives our 
approximate solution for the exiting flux. 

IV. NUMERICAL RESULTS 

In this section we are interested in testing the accuracy 
and efficiency of our approximate solution. Therefore we 
compare the results for the albedo a, defined, after the 
change of variable (2.1), by 

'" 
(4.1 ) 

SdSS(S2+ 1)-2F1 (s) 
o 

with those reported in Ref. 3 from a completely numerical 
solution of Eq. (1.1). Substituting into Eq. (4.1) the ap­
proximate solution given by Eq. (3.14), the reflection prob­
ability is computed as 

a = ~ i {an Sa'" ds S(S2 + 1)-2Rn.1 (S) 
Q n=1 0 

+bn So'" dSS(S2+ 1)-2I n.I (S)}, (4.2) 

where 

TABLE I. Reflection probability with isotropic incidence. 

Reflection probability 
c FN Numerical 

0.1 0.0256 0.0256 
0.2 0.0540 0.0540 
0.3 0.0861 0.0861 
0.4 0.1227 0.1227 
0.5 0.1654 0.1654 
0.6 0.2167 0.2167 
0.7 0.2810 0.2814 
0.8 0.3673 0.3677 
0.9 0.5010 0.5014 
0.95 0.6147 0.6152 
0.99 0.8019 0.8027 
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TABLE II. Reflection probability with delta function incidence (c = 0.6). 

#0 

0.1 
0.2 
0.4 
0.6 
0.8 
0.99 

Reflection probability 
FN Numerical 

0.3565 
0.3359 
0.2939 
0.2496 
0.1929 
0.05457 

0.3564 
0.3360 
0.2939 
0.2495 
0.1929 
0.05405 

(4.3) 

As for the choice of the collocation points in Eq. (3.17), 
we initially used a set of points uniformly spaced in the vari­
able J.l, i.e., 

f;- (I 2)-1/2 
~i = Vi = J.li - J.li , (4.4) 

where 

J.li = i/(N + I), 1 <.i<N. (4.5) 

However, the choice 

J.li = cos(i/(2N + I)), 1 <i<N, (4.6) 

proved to give better results. The latter set of points is based 
upon the Chebyshev polynomials of the second kind, 11 

which are the natural (Gaussian) quadrature points for the 
integral in Eq. (1.1). 

We then consider two different kinds of boundary con­
ditions. The first case 

F(s) = [~] (4.7) 

corresponds to an isotropic distribution of the incoming 
flux. Another physically interesting case is that of a delta 
function incidence 

(4.8) 

Table I shows the results for the albedo with an isotropic 
incidence, computed for various values of the wall scattering 
probability c. The numerical results perfectly agree up to 
c = 0.7. The slight difference in the range from c = 0.7 to 
c = 0.99 is believed to be related to a noncomplete conver­
gence of the results given in Ref. 3. 

Tables II and III refer to a delta function incidence for 
two different values of c. Again our results agree remarkably 
well with those given by the numerical solution. 

TABLE III. Reflection probability with delta function incidence 
(c= 0.95). 

#0 

0.1 
0.2 
0.4 
0.6 
0.8 
0.99 

Reflection probability 
FN Numeric& 

0.7662 0.767 
0.7502 0.751 
0.7150 0.716 
0.6720 0.672 
0.6039 0.603 
0.2887 0.280 

F. Malvagi and G. C. Pomraning 181 



                                                                                                                                    

TABLE IV. Convergence pattern with isotropic incidence, c = 0.6. 

Number of 
collocation 

points 

2 
4 
6 
8 

10 
12 

Chebyshev 
quadrature; 

eigenfunction 
basis 

0.21424 
0.21670 
0.21672 
0.21672 
0.21672 
0.21672 

Reflection probability 

Equal spacing; 
eigenfunction 

basis 

0.210 97 
0.21648 
0.21670 
0.21672 
0.21672 
0.21672 

Equal spacing; 
scalar 
basis 

0.22826 
0.21760 
0.21687 
0.21675 
0.21673 
0.21672 

In Tables IV and V we compare the convergence pat­
terns for the two choices of the basis functions we consid­
ered, Eqs. (3.1) and (3.14), and for the two choices of the 
collocation points, Eqs. (4.5) and (4.6). The basis functions 
derived from the eigenfunctions of the problem and the Che­
byshev collocation points consistently provide the best ap­
proximation. Moreover we see that a very small number of 
collocation points, as small as 6, is enough to reach conver­
gence up to the fifth decimal place. 

As far as the efficiency is concerned, the computations 
reported in Ref. 3 typically required a Cray-1 time of the 
order of 1 minute. Our computations required less than one 
second on the much slower IBM-3090 machine to reach 
convergence. 

V. CONCLUDING REMARKS 

The F N approximate solution we developed for the two­
group transport problem proved to be accurate and remark­
ably efficient. From this point we can see two different direc­
tions in which to proceed. From a theoretical point of view, it 
would be interesting to show the orthogonality and com­
pleteness of the eigenfunctions we derived [Eqs. (3.5) and 
(3.6) ]. While proving the orthogonality should be, if not 
simple, feasable, proving the completeness of the set could be 
prohibitively complex, if possible at all. From a more applied 
point of view, it would be of interest to extend our analysis to 
finite ducts. In this case Eqs. (1.1) and ( 1.2) would hold in a 
region 0 < x < L, but Eq. (1.3) would be replaced by a pre­
scribed distribution incident at the open endx = L. The der­
ivation of the singular integral equation would be modified, 
using a finite Laplace transform. Moreover, one should ob­
tain two coupled equations for the exiting distributions at the 
two open ends. 

TABLE V. Convergence pattern with delta incidencelLo = 0.6, c = 0.6. 

Reflection probability 
Chebyshev 

Number of quadrature; Equal spacing; Equal spacing; 
collocation eigenfunction eigenfunction scalar 

points basis basis basis 

2 0.24789 0.24692 0.26587 
4 0.24953 0.24947 0.24894 
6 0.24955 0.24954 0.24974 
8 0.24955 0.24955 0.24954 

10 0.24955 0.24955 0.24955 
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APPENDIX: PRINCIPAL VALUE INTEGRALS 

Full details concerning the way the system (3.18) was 
solved are given in Ref. 12. Here we only want to point out 
the way in which the principal value integrals were treated. 

First, in order to know the matrix H, an explicit expres­
sion for .1+ (v), defined by (2.20) as 

.1+ (v) = 1 - f+ vP f: 00 dS [(S 2 + 1 )2(S - v) 

X(S-K+V)]-I(f+vSt -sI)C, (A1) 

has to be found. The function to be integrated is an analytic 
function everywhere in the complex S plane, except for four 
poles. Two of them, at S = ± i, are second order, while the 
other two, one at S = K + v, the other on the real line at S = v, 
are simple. We can then think of closing the contour of inte­
gration in the lower half of the complex plane, where only 
the second-order pole at S = - i is extant. Applying 
Cauchy's theorem we have that the integral in Eq. (AI) 
must equal the residue at S = - i plus one half the residue at 
S = v, both taken with a negative sign because we are closing 
in the lower plane. Then we have 

.1+(v) = 1-1Ti(Ry + 2R_ i)C, (A2) 

where, omitting the algebra, it is found that 

Ry = (v + 1)-2(1- K+)-I(I- f+vSt ), (A3) 

R_i =AU+V)-2U+K+V)-2{[4iv(K+ + 1) -8]1 

+f+v[2v(K+ + 1) +i(K+ +v+ l)]St}. 
(A4) 

Once H is known, it can be seen 12 that the integrations 
required in Eq. (3.17) are ofthe type 

Int = P 100 

ds(als + azt2 + a 3s3 + a4s4 + ass S
) 

X{(S2 + 1)2[ (s - K 1V m )2 + ~~] 
X [(s + K 1V n )2 + ~~] (s - vm)(s + Vn )}-I, 

(AS) 
where 

(A6) 

and the ai's are just constants. Decomposing the integrand 
into simple fractions, we obtain 

Int = !~~{f dS(f3IS 3 + f3zt 
2 

+f33S + (34)(S 
2 + 1)-2 

+ f dS(f3sS + (36) [(S - K 1V m )2 + ~~]-I 

+ f dS(f37S+f38)[(S+KIVn)2+~~]-1 
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+{39 f ds(s + Vn )-1 + {3](j' f ds(s - Vm )-I}, 
(A7) 

where the {3;'s can be obtained from the a;'s from a 10 X 10 
linear system, whose solution was obtained numerically. All 
the integrations can now be performed analytically, yielding 

Int= (rr/4)({32+{34) +~({33-{31) + (rr/2K2) 

183 

X [({3s - {37)K1 + ({3fivm + {3g/vn )] + (lIK2 ) 

Xtan- I (K1/K2 ) [({3s + {37)K1 + ({3fivm - {3g/vn )] 

- !({3s + {37)In (Ki + ~) - ({37 + {39)ln ( vn ) 

-({3s+{3lO)ln(vm )· (A8) 
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The point-splitting method of regularization is applied to alternative Hadamard kernels, for 
scalar fields in curved backgrounds, in order to study the polarization term in the vacuum 
expectation value (VEV) of the energy-momentum tensor. An ansatz to define this term is 
introduced and verified in several cases. The renormalized VEV of the energy-momentum 
tensor of a scalar massive conformally coupled field in a Robertson-Walker universe is 
explicitly computed. Two terms appear, the polarization term, which coincides with the one 
computed using the above-mentioned ansatz, and a creation of particle term. 

I. INTRODUCTION 
The aim of this paper is to study the different terms of 

the renormalized energy-momentum tensor, (Tflv) ren, for a 
scalar quantum field in a curved background, I and the rela­
tion of these terms with the Hadamard structure of the 
Green's function G(x,x') = (Ol{¢(x), ¢(x')}IO) ({ , } is 
the anticommutator). There are several causes for a non van­
ishing vacuum expectation value of the energy-momentum 
tensor, namely the presence of boundaries or nontrivial to­
pologies,2 the presence of horizons,3 vacuum definition re­
lated to noninertial motion,4 particle creation due to the evo­
lution of the universe,5 etc. In these, and other examples that 
can be found in the literature, a "vacuum-polarization" term 
appears. However, a precise and general definition of this 
concept is lacking, and there is only a unanimous agreement 
on the "local" nature of such a term. Also a "particle-cre­
ation" contribution is sometimes computed, and is said to be 
of nonlocal origin. Although the physical meaning of these 
terms is clear in each example examined, we lack a general 
definition. In a general situation, (TflV) ren will be nonlocal. 
Thus, a division of (TflV)ren into local and nonlocal terms 
(without a precise definition of these terms) is of course 
arbitrary, since a non local plus a local term is still non local. 

To solve this problem and to single out the vacuum­
polarization term, we will make a natural ansatz: we shall 
assume that the (local) polarization term of (TflV ) ren can be 
obtained from a propagator with the structure of a symmet­
ric Hadamard solution, constructed entirely in terms of geo­
metric quantities of the background at which (Tflvyen is be­
ing evaluated. In fact, using the point-splitting 
regularization method,&-9 (TflV) can be evaluated as the co­
incidence limit of !!iJflV·G(X,x'), where !!iJflV' is a bivector 
differential operator. The best and more general candidate 
for computing it from the polarization term of (TflV ) ren is a 
Hadamard kernel. 9-1 9 Indeed, any Hadamard solution of the 
Klein-Gordon equation is endowed, in a covariant way, 
with the same divergent structure as the flat-space kernel. 
Moreover, the divergences of any Hadamard kernel are of a 

geometric nature, and they can be absorbed by the bare con­
stants of a generalized Hilbert-Einstein action for gravity 
(including terms quadratic in the curvature). Thus, a sym­
metric Hadamard kernel containing only geometric objects 
of the background might account perfectly well for the po­
larization term of (TflV )ren, i.e., PflV = (TflV )~~d' 

We cannot prove that this ansatz works at any possible 
background geometry, but we will show in a few cases in 
which a trustable vacuum definition is available, at least in 
some regions of the background, that the true vacuum polar­
ization and the result of our ansatz coincide. If, as we sus­
pect, the same result can be found in more examples, then the 
method might have some physical relevance. 

The paper is organized as follows: in Sec. II we briefly 
review some known facts about Hadamard elementary solu­
tions and we present the formulas necessary to evaluate 
(TflV ) with the point-splitting method applied to the differ­
ence of two Hadamard elementary solutions. In fact, (TflV) 
will be renormalized, as usual,I,6,19,20 by subtraction of the 
infinities that appear when a particular Hadamard kernel, 
the de Witt-Schwinger expansion, is subjected to the point­
splitting formula. This section partly duplicates some results 
of our previous paper,15 to which we refer for more details, 
but that was only concerned with the trace of (TflV)ren. 

In Secs. III-V we will construct the polarization term 
from symmetric Hadamard kernels built out at particular 
background geometries. In Sec. III we shall see that when 
Hadamard kernels constructed entirely in terms of the Rie­
mann tensor and its derivatives are required to be symmetric 
only within conformally flat metrics, the resulting PflV 
= (TflV)~~d is entirely determined, up to a term m2GflV 
(where GflV is the Einstein tensor and m the mass of the 
field). The result, in the massless case, is equivalent to that of 
Ref. 8, where similar requirements were imposed directly 
over (TflV ) ren instead of over the kernel. It leads, of course, to 
the usual trace anomaly. In Sec. IV we restrict ourselves to 
spatially flat Robertson-Walker universes, and we show that 
even if we try to enlarge the family of Hadamard symmetric 
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kernels by introducing quantities related to the comoving 
coordinate system, no change for P/-tv is obtained from the 
results of Sec. III. In Sec. IV B we then explicitly compute 
(O[ T/-tv [o)ren in the vacuum states that instantaneously mini­
mize the energy, for massive conformally coupled fields, 
with the result 

(O[T/-tv (x) [o)ren = P/-tv + C/-tv' 

Here P/-tv is the same polarization term of Sec. III (P/-tv 
= (T/-tv )~~d ) and C/-tv vanishes at the time when the energy 

is minimized (it can be taken as the particle-creation term). 
Thus Hadamard kernels that are symmetric at conformally 
flat metrics lead to the correct vacuum polarization in this 
simple case, in which the vacuum definition is well known. 

In Sec. V we show that in a Schwarzschild background 
no symmetric Hadamard kernel can be constructed entirely 
in terms of the Riemann tensor. However, if that "purely 
geometric" condition is relaxed, we can construct a family of 
(T/-tV)~~d that contains the correct vacuum polarization in 
the Hartle-Hawking vacuum at the horizon. Some final con­
clusions are drawn in Sec. VI. 

II. POINT-SPLITTING METHOD APPLIED TO 
HADAMARD KERNELS 

A real scalar field arbitrarily coupled to the curvature of 
the background geometry is described by the action 

S [cp] = - + J d 4x",=g{cp./-tcp, /-t + m2cp2 + SRcp2}, 

which is invariant under conformal transformations of the 
metric only if m = 0 and S = i (conformal coupling).21 A 
variational principle leads to the Klein-Gordon equation 

(0 - m2 - SR)cp(x) = o. (1) 

The energy-momentum tensor operator is defined as the re­
sponse of the field system with respect to metric variations 

T/-tv == (2/~) (oS /og/-tV) 

=!(1 - 2S){cp;/-t;v} + !(2S - !){cp;pcp; p}g/-tv 

- S{cp;/-tv,cP} + S{Ocp,cP}g/-tv 

+ [!S(R/-tv - !Rg/-tv) - !m2g/-tv] {cp,cp}, (2) 

where {cp,tP} = CPtP + tPCP is the anticommutator. This tensor 
is traceless for massless conformally coupled fields. 

The point-splitting method allows one to write the 
quantum vacuum-expectation value of T/-ty as the coinci­
dence limit (x --+x') of a differential operator applied to the 
biscalar kernel G(x,x'), defined as 

GI(x,x') = (O[{cp(x),cp(x')}[O). (3) 

Alternative definitions of the vacuum state (which is not a 
trivial matter in a curved background) are related to differ­
ent boundary conditions for G.22 The point-splitting expres­
sion for (T/-tv) is obtained from Eq. (2) by changing in a 
symmetrized way one of the points from x to x' in each prod­
uct offield operators atx, writing the result in terms ofG and 
its x and x' derivatives, and finally by taking the coincidence 
limit. The formal (divergent) final expression is 
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(T/-tv) = -![GI;/-tv] -~(S-j)[OGI]g/-tv 

+ !(! - S) [Gd;/-tv + !(S - VO[GI]g/-tv 

+ {~(S - j)m2 + SR)g/-tv + !SR/-ty}[Gd, 

where we have abbreviated the coincidence limit as 

[GI] = lim GI(x,x'). 
x-x' 

(4) 

Equation (4) differs from its usual version in the literature 
because we have changed every x' derivative into x deriva­
tives using Synge's theorem,6 which, applied to a symmet­
ric biscalar, leads to [GI; /-t] = H Gd; /-t' [GI; /-ty] 
= - [GI;/-tv] +HGI];/-ty,and [GI;/-t'v'] = [GI;/-tv] , 

Now we shall assume that G is a Hadamard-type ele­
mentary solution of the Klein-Gordon equation (I) 

GI (x,x') = [<l 1/2(x,x')/8~]{2/a + v InJ.l2a + w}. 
(5) 

In fact such GI (x,x') has the same kind of divergences as the 
<ll (x - x') offlat space-time, and therefore we can make the 
ansatz that the GI (x,x') which yields the local term of the 
energy-momentum tensor must be found in the family of 
Hadamard elementary solutions. Here a is half the square of 
the geodesic distance between x and x', J.l is an arbitrary mass 
scale (J.l2 has the same dimension as a-I if h = c = 1), 
<l(x,x') is the Van Vleck determinant, while v(x,x') and 
w(x,x') are given by 

00 w 

v(x,x') = I Vn (x,x')a n; w(x,x') = I Wn (x,x')a n, 
n=O n=O 

Vo+Vo; /-ta;/-t = V_<l-1/20(<l1/2), (V==m 2 +sR), 
(6a) 

1 /-t 
Vn + -- Vn· a." n + 1 ' ,~ 

1 {Vv _<l-1/20(<l1/2V )} (n:>I), 
2n(n+1) n-l n-l 

1 /-t 
Wn +--wn. a." n + 1 ' ,~ 

= 1 {Vw _ <l -1/20(<l1/2W )} 
2n (n + 1) n - I n - I 

(6b) 

2n + 1 1 /-t 
- n(n + 1) Vn - n(n + 1) Vn; a;/-t (n:>I), (6c) 

where <l(x,x') and v(x,x') are univocally determined by the 
background geometry (their coincidence limits and those of 
some of their derivatives can be seen in Refs, 6, 11, and 15), 
Every election of the function wo(x,x') determines the com­
plete w(x,x') through Eq, (6c). For instance, a flat-space 
kernel <l1(X,x'), 

, m2 {H\I)(~2m2a) } 
<l1(X-X) =-Im , 

41T ~2m2a 

can be shown to be the Hadamard solution characterized by 

WOM = m2(2y -In 2 - 1), J.l2 = m2, 

where we use a superscript M to denote a "Minkowskian" 
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h M d M 'f' value. Here yis the Euler constant. T eVn an Wn sabs ymg 
the recurrence relations (6) are 

2(m2/2)n+ I 
~= , 

n n!(n + I)! 

(m 2/2)n+1 
!if.! = - 2 ~-'--~-

n n!(n+l)! 

X {In 2 + tf(n + 2) + tf(n + O)}, 

where tf(n) is the derivative of the r function's logarithm. 
The mass scale is, naturally, fl2 = m2, and no problem arises 
in the massless limit, because v vanishes identically (there is 
no logarithmic term in the massless kernel in flat space­
time). 

All the arbitrariness in any Hadamard solution is com­
pletely contained in wo(x,x') (except for changes in the mass 
scale fl ). In other words, w (x,x') (except for changes in the 
mass scalefl). In other words, w(x,x') is the unique part of 
G1 depending on boundary conditions. Define G:V 
== (A I/2/8r) w(x,x') as the "boundary" part of G I , and 
apply the point-splitting expression (4) only to G :v instead 
ofthe complete G I . The result is 

16r(Tllv ) w 

- {[WO;IlV] - ;\gIlV [Dwo]} + j{[woLllv 

- ;\gllvD[wo]} - (t - V {[woLllv - gllvD[wo]) 

+ (t - V (Rlly - ;\gllvR ) [wo] - !m2 [wo]gllv 

+ 9(t - V [vdgllv' (7) 

This formula does not give the complete (Tllv ), but only the 
contribution that changes when the point-splitting method is 
applied to alternative Hadamard-type symmetric kernels. 
Contrary to Eq. (4), Eq. (7) gives finite results. Moreover, 
we will not need to know the complete (Tllv ) in order to 
evaluate the renormalized stress tensor, because the renor­
malization recipe will consist in the subtraction of the infini­
ties appearing when a particular Hadamard kernel is adopt­
ed [the de Witt-Schwinger representation, G?S (Refs. 19, 
20, and 23) ]. Then, with G?S being a Hadamard kernel,15.20 
we have 

(Tllv ) ~:d = (Tllv ) Had - (4) (Tllv ) DS 

= (Tllv ) W - (4)(Tllv )~S' (8) 

Here (4) (Tllv ) DS denotes the expectation value of T evaluated 
from the de Witt-Schwinger kernel up to fourth order in the 
metric derivatives. The divergences appear only up to fourth 
order. 

Here G1 (x,x') must be, by definition, a symmetric ker­
nel. Moreover, if the point-splitting expression were applied 
to a nonsymmetric kernel, the resulting (Tllv ) would have 
nonzero covariant divergence. 13 For w(x,x') to be a sym­
metric biscalar it can be shown, using the recurrence rela­
tions (6) and Synge's theorem, that w (x,x') is restricted to 
verifyl5 

[WO;IlV]; v - HDwoLIl 

= !D[woLIl + -6.RIlY [wo],v 
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with 

+ !(t - f)R,1l [wo] - Hm
2 + (t - VR} 

X [woLIl + HuILIl' 

[utl = m4/4 + (m2/2)(t - VR + !(t - VR 2 

(9) 

- n(t -i)DR + Jk(R l1pTER I1pTE - Rl1pR I1p + DR). 

Any Hadamard elementary solution defined by a w satisfy­
ing condition (9), when inserted into the point-splitting 
expression (4), leads to a (Tllv ) with zero covariant diver­
gence. However, (Tllv ) W given by (7), which is not the com­
plete (Tlly ), will not necessarily have zero divergence. But 
the renormalized expression obtained through (8) will be 
covariantly conserved, because it will be the difference of 
two conserved expressions, (Tlly ) and (Tllv ) DS' The de 
Witt-Schwinger kernel is such that, up to fourth order, IS 

[w~S] = WOM + (t - !)(2y -In 2)R 

+ (lIm 2){T - ob(2y -In 2)DR}, 

[wo~:v] = (28 - In 2) {[ j (t - V - rh,] R;llv - ifoRRIl~ to) 

+io(RI1PRlll1vP +!DRllv )}' 

with 

T = I (R R I1pTE - R R I1p) TilO I1pTE I1p 

+ !(t - fYR 2 - i(t - !)DR. (11) 

Thus, inserting (to) in (7), we get 

16r( Tllv);rs 

- m2(t - V (Rllv - !Rgllv ) + 9(t - i)[utlgllv 

-!gllyT+ (2y-ln2)[it-ii 

X G - I(k _ 1)2 (2)H _ 1 «(l)H _ 3(2)H )] 
IlV 2!> (; TW IlV IlV' 

(12) 

where Gllv = Rllv - ~RgIlY is the Einstein tensor and (t)Hllv 
and (2)Hllv are defined in the Appendix as the metric varia­
tions of the integrals of R 2 and Rl1pR I1p, respectively. The 
quantity given by (12) will be the one subtracted in (8) in 
order to renormalize any (Tlly ) Had' 

The kernel G?Shas the natural mass scalefl2 = m 2• But 
what happens if we subtract G?S from a Hadamard kernel 
with a different mass scale? As quoted from Wald for the 
massless conformally coupled case,13 it is the finite part of 
(Tllv ) that changes when the mass scale is modified, and the 
change is proportional to the combination 3(2)Hllv - (l)Hllv ' 
We can deduce the change in (Tllv ) in the general case, when 
the changefl->fl' is made, by application of the point-split­
ting expression (4) to the difference G; - GI 

= - 2(A I/2/8r)u(x,x')ln( fl'lfl). The result is 

16r(T~v)W 

= 16r (Tllv ) W - In ( fl' I fl) [ I!O (3(2)Hllv - (l)H
llv 

] 

+ !(t - V 2 (l)Hllv - (t - V m2GIlY + !m4gllv ]. 
(13) 

The ambiguity in (Tllv ) due to mass-scale changes is 
proportional to gllv' GIlV ' (l)Hllv ' and (2)Hlly . Thus, a mass­
scale change only affects the finite renormalization of the 
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bare constants multiplyingA-, R, R 2, and R/ipR /lp in the gra­
vitational Lagrangian. Moreover, the scale dependence dis­
appears in conformally flat metrics9

•
13 where (J)HI-'v 

= 3(2)HI-'v and in vacuum solutions of Einstein equations 
h G - (J)H - (2)H - 0 were I-'V - I-'V - I-'V - • 

III. CONFORMALLY FLAT METRICS 

We have shown in Ref. 15 that it is possible to construct 
Hadamard kernels for massless particles in terms of local 
geometric quantities that verify the symmetry condition at 
any conformally flat metric, although the same construction 
would not lead to a symmetric kernel in an arbitrary back­
ground geometry. 

Here we shall compute the resulting (TI-'v) ~:d applying 
(8) and (12) to such Hadamard kernels. The assumptions 
for the construction of Wo are the following: (i) in the Min­
kowskian limit it should reduce to w~; (ii) the massless limit 
should be well behaved, i.e., there should be no m in the 
denominator as in the de Witt-Schwinger expansion (10); 
and (iii) it should be built from the Riemann tensor, its 
derivatives, or contractions. We can then postulate the fol­
lowing expression: 

[Wo] = ~ +AR, 

[WO;I-'v] = m2BRI-'v + CIRRI-'v + C2R;I-'v + C3RI-'/IR /Iv' 

(4) 

We have also omitted a term in DRI-'v because it can be writ­
ten in terms of RRI-'v' R;I-'v, and RI-'/IR 1-'/1, in addition to irre­
levant terms proportional to gl-'v' as a consequence of the 
Gauss-Bonnet theorem (see the Appendix). Terms propor­
tional to gl-'v are irrelevant because they belong in fact to WI: 
when a covariant Taylor expansion of Wo is made, a term in 
gl-'v would combine togl-'vo-, I-'o-,V = 20- (in Ref. 15 such terms 
were unnecessarily included, without any consequence to 
the final results). 

When the symmetry condition (9) is imposed to (14) it 
reduces to a linear combination of the four independent 
"geometric variables" X I-X4 listed in the Appendix, which 
must vanish. Thus the coefficients at (14) turn to be restrict­
ed by 

B = - A, CI = - C3 = - rio, C2 = ,io + jA. 

Only A remains as an arbitrary coefficient. The introduction 
of this result in Eq. (7) gives 

288<W(TI-'v) w 

= 180Am2GI-'v + RRI-'v - ~R;I-'v 

- RI-'/IR 1-'/1 + .\8'I-'V (R/IpR /lp - R 2 + ~DR). OS) 

A unique local term is obtained for the massless case, inde­
pendently of the value of A, and the ambiguity for the mas­
sive case is again proportional to a tensor also appearing at 
the left-hand side (lhs) of Einstein equations. 

We can now renormalize expression ( 15 ), using (8) and 
( 13). No ambiguity due to mass-scale changes exists for con­
formal coupling and conformally flat metrics (conformal 
triviality). Then 
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P I-'V = (TI-'v) ~e::d 

= 0/288<W) [180Am2GI-'v + RRI-'v - jR;I-'v 

- RI-'/IR /Iv + .\8'I-'v (2R/IpR /lp + ~DR - ~R 2)], (6) 

and A is still arbitrary. The trace is, of course, the usual trace 
anomaly in the massless case24 

PI-' I-' = (l/2880~) 

X [ - 180m2AR +R/IpR /lp + DR -jR 2]. 
(17) 

Thus, the restriction to conformal triviality (in the massless 
case) determines a unique polarization term in the energy­
momentum tensor, according with our ansatz. 

IV. COMOVING OBSERVER IN ROBERTSON-WALKER 
UNIVERSES 

A. Construction of PI'-" in the massless case 

Now we shall consider another kind of possible con­
struction of (TI-'v) ~:d : we shall do it in a particular coordi­
nate system, introducing a priviliged decomposition in 
spacelike and timelike directions. Consider the comoving co­
ordinate system in Robertson-Walker universes, where the 
arc length reads 

dS 2 = - dt 2 + a2U) (dx2 + dy2 + dz2) 

= a2(TJ) ( - dTJ2 + dx2 + dy2 + dZ 2). 

The metric is conformally flat in the conformal-time variable 
defined by dTJ = dt laU). We have shown in Ref. 15 that a 
family of Hadamard symmetric kernels bigger than the one 
obtained for any conformally flat background geometry can 
be constructed by Robertson-Walker metrics for massless 
conformally coupled particles if the comoving coordinate 
system is privileged. It is given by 

[wo] =Alal +A2a 2, 

5 5 

[wo;o 0] = I Tn /3n; [WO;ij] =gij I Sn/3n, 
n=l n=l 

where 

(18) 
/33 = a l a2; /34 = Ha2; /35 = a2, 

where H is the Hubble constant, H = ilia (the dot means 
time derivative). The scalar curvature is R = 6(H + 2H 2

). 

Latin indices (i,j = 1,2,3) denote spatial components. Here 
Al andA 2 maybe chosen at will, and thedifferencesDn = Tn 
- Sn (n = 1,2, ... ,5) must verify 

DI = /0 -ljlA I' D2 = - ~ - ~ I' D3 = ~ + 6A I' 

D4 = 9b - ~I + jA2' D5 = - -Jo - jA2' 
in order to satisfy the symmetry condition (9). Equation (7) 
gives in this case, for the (0,0) component of (TI-'v ) w, 

16~(Too)W =1.Dn/3n +..!..{d
2

2 [wo] -H!!... [wo]} 
44& & 

= rio(6/31 - 3/32 + 3/33 + ¥i4 - ¥i5)' 
Taking into account that (TI-' 1-') W = 0, then (T ij ) W 
= gij (Too) w. Thus, in spite of all the arbitrariness inAI' A2, 
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and Tn (for given Sn), the resulting (Tf'v)B is unique. It is 
the same as the one given by (15), which is valid for any 
conformally flat metric, in particular for R -W universes. 
This can be verified by explicit evaluation of the (0,0) com­
ponent of (15), using the values listed in the Appendix for 
quantities such as RRoo, etc. Renormalization, obtained by 
subtraction of 

16~ (4)(Tf'v)~ 

= - !gf'vtlo{ 12111 - 12/33 - 18114 - 6115}' 

gives, of course, the same result as (16). It is given, in com­
ponents, by 

Poo = (T OO)~~d = (1/2880~) [3111 - 3112 + 6113 + 6114]' 

Pij = (Tij)~~ = (1/2880~)jgij[15111 - 3112 (19) 

- 6113 - 12114 - 6115 ]. 

Thus, the potential dependence of (Tf'v) ~~d on quantities 
like H related to the comoving reference system does not 
change nor does it enlarge the purely geometric result ob­
tained at Sec. III for any conformally flat metric. Morevoer, 
the result (19) is the true vacuum polarization in the confor­
mal vacuum,8 a very reliable definition in the massless, con­
formally coupled case. 

B. Hamiltonian diagonalization 

It is interesting to make a connection between the result 
given at (19), which was obtained via the point-splitting 
method applied to Hadamard propagators, with the evalua­
tion of (Tf'v) via a definition of the vacuum state through a 
normal-mode decomposition of the field. Renormalization 
will be made through adiabatic regularization,25 a method 
which allows cancellation of the infinites before integrating 
the normal modes. Moreover, we shall see terms represent­
ing massive particle creation appear in (Tf'v) ren. 

The real scalar field can be decomposed in normal 
modes as follows 

¢(x) =Jd 3k e
l'k': /2 {aklk(f) +a:::klt(t)}, (20) 

(217'a) 

where/k and It must verify the Wronskian condition 

itlk - Itik = i, 
which can be automatically satisfied, for any real Ok (t), 
writing26 

exp{if'Ok (t ')dt '} 
Ik(t) = [20k(t)r

/2 . 
(21) 

In order to make a solution of Klein-Gordon, Eq. (1), Ok 
must satisfy 

1 Ok 3 (Ok)2 2 ~ 2 ( 1 ) 3 2 ---- - +Ok =(j)k + 5-- R +-H, 
2 Ok 4 Ok 4 4 

(22) 

where w~ = k 2/a2 + m 2. A vacuum state can be defined by 

a k 10) = 0, Vk. 

Obviously, this definition depends upon the normal modes 
Ik used in (20). Taking the vacuum expectation value of the 
classical expression (2) for Tf'v gives 
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(Too) =+ J(::~3 {Ilk 12[W~ + (: -125 )H2] 

+ lik 12 + 4(35 - ! )HRe{iJt}} 

= J~ _1_ {O~ + (j)~ + (1. - 125) 
(217'a)3 40k 4 

XH~ (65_~)HOk +~(Ok)2}, 
2 Ok 4 Ok 

(23) 

(Tij) =gij J(:::)3 {lfkI 2[+ ~: +(25-+)(j)~ 
+ 25 (5 - ~) R + (: - 1; 5) H 2 ] 

-(25- ~)lfkI2+(85- ~)HRe{jklt}} 

=~gJ~_I_{«(j)~ _m2) +(65-~) 
3 IJ (217'a)3 20k 2 

X «(j)~ - O~) + 5( 65 - I)R + 3 (: - 1; 5 ) 

( 3) Ok 3 ( 1) (Ok)2} xH~3 45- 4 HO;:-4 25- 2 Ok . 

The dependence of Eq. (23) upon Ik (or Ok) reveals the 
dependence upon the quantum state in which the expecta­
tion value is evaluated. A possible way to define the quantum 
state is through boundary conditions for the function Ok at a 
particular time r, i.e., giving as data Ok (r) and Ok (r). A 
physical criterium, which has often been suggested, is Ham­
iltonian diagonalization, which coincides with Hamiltonian 
minimization between alternative normal modes.17.18.27-3o 
The vacuum state 10) T' which makes the Hamiltonian a min­
imum at t = r, leads, through Eq. (3), to a propagator 
G ~T) (x,x') which is not a Hadamard-type solution. 17

•30,31 
However, it leads to the same divergences in the energy­
momentum tensor as any Hadamard solution for conformal 
coupling (and only for this kind of coupling).31 We shall 
verify this fact explicitly. (In Ref. 17 it is shown that the 
G1 (x,x') from Hamiltonian diagonalization is not a Hada­
mard kernel, and the term that originates the difference is 
singled out [Eq. (2.34)]. The authors conclude that the re­
normalized VEV of the energy-momentum tensor in the 
vacuum of Hamiltonian diagonalization will be divergent. 
However, as can be seen from Eq. (78) of Ref. 9, the term 
that originates the difference does not contribute with diver­
gences to the energy-momentum tensor. Thus, the author's 
conclusion is not proved, In fact, to have a Hadamard struc­
ture is a sufficient condition for a propagator to yield a finite 
energy-momentum tensor when renormalized by subtrac­
tion of G ?S, but it is not a necessary one, as the example of 
this section shows.) Thus, we shall restrict ourselves from 
now on to conformally coupled particles. The Hamiltonian 

H(t) = Jd 3xj=g(Too (t,X», 

is minimized with respect to alternative Cauchy data Ok (r) 
and Ok (r) in Eq. (23) if 

Castagnino, Harari, and Nunez 188 



                                                                                                                                    

0dr) =CUk(r), Ok (r)/Ok(r) = -H(r) (5=f,)· 
(24) 

In the massless conformally coupled case these conditions 
are satisfied, at any t, by Ok = k / a, which is a solution of 
Eq. (22). The corresponding normal modes are the natural 
generalization of the positive frequencies of flat space, writ­
ten in terms of the conformal time. Positive and negative 
frequencies so defined do not mix during the universe evolu­
tion, and then particle creation does not occur.5 Massive 
particle creation does occur. We can evaluate the contribu­
tion of the created particles to the energy-momentum tensor 
by writing the normal modes which define the vacuum of 
minimum energy at t = r as 

with 

exp{ifcuk (t' )dt'} fkT
) (t) = a k (r,t) -------

~2cuk 
exp{iS'CUk (t' )dt'} 

+ /3k (r,t) , 
~2CUk 

. (T) . [ exp{iS'cuk (t' )dt'} f k (t) = lCUk ak (r,t) -------
~2cuk 

+ /3k (r,t) -------
exp{ -is'CUk(t')dt'}] 

~2cuk 

ak (r,r) = 1, /3 k (r,r) = o. 

(25) 

These boundary conditions on a k and /3 k are adequate to 
make the boundary conditions (24) hold. The Wronskian 
condition implies 

lak (r,tW - I /3k (r,t) 12 = 1, 

and the Klein-Gordon equation ( 1) is satisfied if a k and /3 k 

obey the following coupled first-order equations23: 

ilk = (m2H /2cu~)/3k exp( - 2iJ'CUk(t')dt) 

ilk = (m2H /2cuDakexp( 2iJ'CUk (t ')dt '). 

Let us introduce (25) in Eq. (23) for (T!-'v) 

J d3k 1 2 
T(Too(t»T = --3-CUk{1 + 21/3k(r,t) I }, 

(21m) 2 

T(Tij(t»T =+gij J (:::)3 ~ CUk{(I- :;) 
X (1 + 21/3d r,t) 12) 

- !:t U/3k(r,t)1
2
)}. (26) 

This expression leads, after integration, to an infinite result. 
We can get finite answers by adiabatic regularization,25 
which means to fix, as the (time-dependent) zero-energy 
point, the energy of the vacuum state defined by an adiabatic 
expansion of the normal modes, i.e., by the normal modes 
given by the solution of Eq. (22) for Ok obtained by an 
iterative procedure. Moreover, it has been shown that the 
adiabatic expansion of normal modes leads through (3) to a 
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propagator that, up to fourth order in the metric derivatives, 
coincides with the de Witt-Schwinger representation 
GPS.32.33 Then adiabatic regularization must coincide with 
the subtraction prescription (8). In this case we cannot use 
Eq. (8) to renormalize (T!-'v) because the GI(x,x') of the 
Hamiltonian diagonalization is not a Hadamard structure. 
The adiabatic solution ofEq. (22) neglecting derivatives of 
the metric higher than the fourth is 

°k(t) =CUk(t){ 1 + ~d ~ (65-1)a2] 

- _1_[m2(al + a 2) + ~(65 - 1)2/32 4cut 2 

5 1] + 165- 1)(/32+/33+ 2 /34+ 2 /35) 

+ m
2 
[~m2al + ~ {95/32 - (2 - 395)/33 

cu~ 8 4 

+ ( 155 + ~)/34 + ~/35}] _ 1 m
4 

4 4 4 cu! 
(27) 

X [ I; (/31 +/32) + + (755 + 39)/33 + ~ /34] 

m 4 9 15 m 6 

+--H(al +a2) ---Hal' 
cu~ 4 4 cu! 

Inserting (27) in Eq. (23) and computing all the integrals 
that give finite results, we obtain the "adiabatic vacuum ex­
pectation value" of T!-'v' up to fourth order (and for 5 = f,) 

( T. )(4) -J~~cu -p 
00 Ad - (21Ta)3 2 k 00' 

( T")A(4d) =~g .. J~~CUk(l- m2) _p .. 
lJ 3 lJ (21Ta)3 2 cu~ 'l' 

where 

288D1rPoo = - 30m2a l + 3/31 - 3/32 + 6/33 + 6f34' 

288D1rPij =! gij [ - 30m2(a l - 2a2) + 15/31 (28) 

- 3/32 - 6f33 - 12/34 - 6/35]' 
Now the renormalization T (T!-,v )~en = T (T!-'v) T - (T!-'v) i4J 
is made: 

T(Too(t»~en=poo(t) +J d
3

k 31/3k(r,t)1 2cuk, 
(21Ta) 

T(Tij(t»~en = Pij(t) + +gij J (:::)3 CUk {(I - :;) 
X l/3k (r,t) 12 - ~ .!{1/3k (r,t) 12}. (29) 

H dt 
Here two different contributions are clearly identified. A 
vacuum-polarization term, P!-'v' which depends only upon 
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the local geometry at the instant t, and the particle creation 
term C!-'v [the remainder of Eq. (29)], which depends upon 
boundary conditions at t = 'T, and also upon the evolution of 
the radius of the universe between 'T and t, 

It can be easily verified that both contributions, P!-'v and C!-'v, 
are covariantly conserved, i.e., P!-'v v = C!-'v; v = O. 

Here P!-'v is the vacuum polarization in the sense that if 
we take t = 'Tin Eq. (29) we obtain P!-'v = T (01 T!-'v (7) lo)~en. 
Note that the vacuum-polarization term obtained through 
adiabatic regularization of the normal modes which pro­
duces an instantaneous minimization of the energy is the 
same as the one arrived at through the point-splitting meth­
od applied to the most general Hadamard geometric kernel 
in the conformally-flat case [compare Eqs. (28), (16), and 
(19)]. That is to say, 

P!-'v = (T!-,V)~~d' 
The massive term at (16), originated from Hadamard ker­
nels, is not univocally determined, and the coincidence of 
(16) with (28) is obtained taking A = - -is. In other words, 
the polarization term of the vacuum states of minimum in­
stantaneous energy coincide with the local term obtained 
from the Hadamard kernel having [wo] = wt; - R 118. In 
Ref. 15 we have shown that the conformal kernel for mass­
less particles (the one which originated as a conformal trans­
form of the flat-space kernel) is precisely characterized by 
[wo] = - R 118 (wt; = 0 for massless fields). 

V. SCHWARZSCHILD BACKGROUND 

Now consider a Schwarzschild background geometry, 
where the arc length reads 

dS 2 = _ (1 _ 2M\ dt 2 + dr 
-;:-) 1 - 2M Ir 

+ r(de 2 + sin2 e d¢/). 

No polarization term exists for the energy-momentum ten­
sor of a massless conformally coupled field that can be ob­
tained from Hadamard kernels determined by the back­
ground geometry exclusively. Indeed, taking into account 
that the Schwarzschild solution is a vacuum solution of Ein­
stein equations (R = R!-'v = 0), the unique fourth-order 
purely geometric quantity to be included in [wo;!-'v] is 
R R !-'0pT - ICC Opn H t t' !-,OpT - 4 g!-'v OpTE . owever, erms propor lon-
al to g!-'v are irrelevant. So [wo] = [wo;!-'v] = 0 is the most 
general purely geometric construction, but it does not verify 
the symmetry condition (9) because 

360[vd = COPTECOPTE=C2 = 48(M 2Ir6
), 

and then [VI ].r =1=0. Another kind of construction of the Ha­
damard kernels must be done in order to obtain possible 
polarization terms for the energy-momentum tensor. We 
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shall show that symmetric Hadamard kernels exist in a 
Schwarz schild background if the purely geometric restric­
tion is given up. We shall construct them in a particular 
reference frame, i.e., (t,r,e,cp). Any two-point function, 
sharing the symmetries of the Schwarzschild geometry, sat­
isfies 

[CUO;I '] = T(r), [cuo,/] = R (r), 

[cuo./] = [cuo;/] =A(r). 
(30) 

The renormalized energy-momentum tensor computed as 

(Tllv ) ~~d = (T!-'v) W - (T!-,v) ~s 

= (~'v) W + !gllv (C 2/2880r) 

is then given by 

1 1 c2 

P,'= (T,')~~d = - 32r(l +J) +4 2880r' 

1 1 c2 

Pc' = (T/)~~d = - 32r(l- J) + 4 2880r' 

P/=P/= (TOO)~~d 

_ (T ~)ren __ 1_1 +..!.._c_2 _ 

- ~ Had - 32r 4 2880r' 

where 

1=1 (R + T) -A, J= T-R. 

The symmetry condition (9) is equivalent to the following 
differential condition on 1 and J: 

..!..(j-j)+~(1-..!..J)- M J 
2 r 2 r(1 - 2M Ir) 

= - ~ ~2 C = :,) . 

A possible solution (which gives P, t = Pr r) is 

1 = (2M 2/5r6
) (1 - alr4) , J = 0, 

with a an arbitrary constant. 
There are many possible polarization terms constructed 

from Hadamard kernels with Schwarzschild symmetries 
(30) in a Schwarzschild background. It is possible that some 
of them can be written in a geometrized way, using perhaps 
some other geometric quantities of the Schwarzschild geom­
etry, such as Killing vectors, in the construction of CUo. For 
the moment, we have just proved the possibility of construct­
ing symmetric Hadamard kernels for massless fields in 
Schwarzschild geometry. We can also mention that one 
member of the family (the one with a = -~) is such that 
PI'" evaluated at the horizon (r = 2M) coincides with the 
value of HH (01 Tllv 10) HH at the horizon computed in Ref. 35, 
where 10)HH denotes the Hartle-Hawking vacuum state. 
The Hartle-Hawking state can be considered a good vacu­
um definition at the horizon (but not necessarily at any oth­
er region), so its value at r = 2M can be trusted as the vacu­
um polarization there. 

VI. CONCLUSIONS 

We have made an explicit construction at some particu­
lar backgrounds of the polarization term of the quantum 
expectation values of the stress-energy tensor, which origin-

Castagnino, Harari, and Nunez 190 



                                                                                                                                    

ates in the application of the point-splitting method to Hada­
mard-type kernels. Nonlocal contributions, such as those 
appearing when particle creation occurs, are not included in 
this kind of calculation. 

When a normal-mode decomposition of the field is 
made, the vacuum state is generally defined through bound­
ary conditions for the modes (for example, requiring Hamil­
tonian diagonalization over certain hypersurfaces, or requir­
ing the modes to be of "positive-frequency type" with 
respect to a particular timelike direction). We have consid­
ered an example: the quantum states for scalar conformally 
coupled fields in Robertson-Walker universes defined 
through instantaneous Hamiltonian diagonalization. Equa­
tion (29) suggests the separation of T (Tp.v ) ~en into two clear­
ly different contributions. One is defined in terms of purely 
geometric quantities: the polarization Pp.v = (01 Tp.v (r) 10). 
The other one, Cp.v' is nonlocal and depends on the particu­
lar time chosen to diagonalize the Hamiltonian. The inter­
esting result is that Pp.v can also be computed as a polariza­
tion term originated from symmetric and geometric 
Hadamard kernels in conformally flat metrics, which is a 
completely different approach to P than the normal modes 
identification of the quantum states. As another example we 
have studied the polarization tensor at the horizon in a 
Schwarzschild background. We have shown that it is possi­
ble to construct Hadamard kernels in that geometry. How­
ever, there is a difference in the prescription used to con­
struct the functions [wo] and [WO;p.v] in the Robertson­
Walker and Schwarzschild metrics. In the former case we 
used functionals of the metric and its derivatives, whereas in 
the latter we considered general functions, sharing only the 
symmetries with the metric. Although we realize that it 
would be interesting to have a unique prescription, we be­
lieve we have somehow clarified the nature of the polariza­
tion term. In fact, until now this term defined only as a "lo­
cal" term had no precise meaning. We have constructed 
reasonable polarization terms that coincide with the ones 
obtained by other techniques. We have proved that these 
terms can also be computed with our Hadamard ansatz us­
ing local objects related to a particular coordinate system or 
a particular property of the metric. We believe that these 
reference systems have a privileged role because they could 
be considered as the observers' system. We begin to study 
this approach in Refs. 35 and 36 for the vacuum definition. 
The study of the polarization terms, under this view, will be 
the subject of forthcoming papers. 
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APPENDIX: SOME GEOMETRIC RELATIONS 

Our conventions are signature ( - ,+ + + ), 
RP.vlJp =r~p,1J -r~IJ,p +r~Tr:p -r~pr:IJ' 

Rp.v = R 1Jp.lJv' 
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- i R (glJEgpT - gIJTgpE)' 

Gauss-Bonnet theorem: In four dimensions the Gauss­
Bonnet density G is a topological invariant29 

G=Jd 4
X ~g(R R IJPTE+R 2 -4R R IJp) ,,-g IJpTE IJp' 

Then a metric functional variation of G vanishes, which im­
plies 

(3)H = 4(2)H _ (I)H 
pv pv pv' (Al) 

where 

(l)H - 1 8 Jd4 ~R 2 
v ------ x" -g 

p. ..J-i 8g p.v 

= 2R;p.v - 2RRp.v + !gp.v(R 2 - 40R), 

(2)H =--I-~Jd4x~ -gR RlJp 
p.v ..J-i 8gp.v IJp 

= R; p.v - ORp.v - 2R IJp Rp.lJvp 

+ !gp.v(RlJpR IJp - OR), 

(3)H =--I-~fd4x~ -gR RIJPTE 
p.v ~ $: IJpTE 

" - g ugp.v 

= 4Rp.IJR IJv - 2R;p.v - 4R IJpRp.lJvp 

- 40Rp.v - 2Rp.IJPT RV IJpT +! gP.VRIJPTERIJPTE. 

In conformally flat metrics, where the Weyl tensor vanishes, 
one has 

R R IJPTE=2R RlJp_IR2 IJpTE IJp ~, 

and then a variation of G leads to 

(I)Hp.v = 3(2)Hp.v if CIJPTE = O. (A2) 

Fifth-order geometric variables: All the terms appearing 
when the symmetry condition (9) is imposed on the expres­
sion (14) can be reduced, in conformally flat metrics, to the 
following fifth-order independent geometric variables: 

XI = Rp.vR, v, X 2 = R;IJ 1Jp.' (A3) 
X3 = RR,p.' X4 = (RlJpR IJp),w 

They are independent in the sense that it is impossible to find 
a relation between them that is valid for any possible confor­
mally flat geometry, although particular relations exist at 
particular background geometries. 

Robertson- Walker geometric quantities: Following is a 
list of the spatial and temporal components of the geometric 
quantities appearing through this paper when evaluated at 
the comoving coordinate system: 

R;OO = 6/35' R;ij = - 6/3~ij' 

RRoo = 18( - /32 + /33)' RRij = 6( /32 + /33)gij' 

ORoo = - 3(4/31 + 2/32 - 6/33 -/34 -/35)' 

where/3I"'" /35 are defined in Eq. (18) in the main text. 

IFor a recent review on the subject see N. D. Birrell and P. C. W. Davies, 
Quantum Fields in Curved Space (Cambridge U. P., London, 1982). 
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The central issue addressed in this paper is the following: Is the conventional procedure the 
only one for extending the canonical quantization method for local field theories or does 
another way exist? Here an unconventional extension of the canonical quantization method is 
presented for a classical local field theory consisting of N real scalar fields. This approach is 
essentially a reconsideration of the conventional procedure in an alternative way offered by a 
recent new approach of classical local field theories. The proposed canonical commutation 
relations have a solution in theA-valued Hilbert space%A =%®A, unique up to A-unitary 
equivalence, where A is the algebra of the bounded operators of the Hilbert space L 2 (R3). The 
canonical equations as operator equations are equivalent in form to the classical field 
equations, and are a priori well-defined for interacting systems, too. This model of quantized 
fields lacks some of the difficulties of the conventional approach, e.g., the rigorous application 
of the interaction picture is not stemmed by Haag's theorem and the ultraviolet catastrophe 
(there are no ultraviolet divergences in the S matrices of the model). Examples of the model 
satisfying the asymptotic condition provide examples for the axioms of Haag-Kastler while 
they satisfy the axioms of Wightman only partially. The consistent interpretation ofthe model 
requires a new concept of space-time, a quantum space-time. The "local" state space %A of 
the model is constructed over this quantum space-time. 

I. INTRODUCTION 

If quantum mechanics is considered as a standard for a 
sound theory then, from this point of view, quantum field 
theory lies not entirely in this standard. The experimentally 
most successful conventional quantum field theory append­
ed by the renormalization prescription has serious internal 
inconsistencies. 1-3 In fact, the detailed examinations had re­
vealed the following difficulties of this theory. 

Problem 1: The canonical commutation relations have 
infinitely many unitarily inequivalent representations (un­
like the quantum mechanical case). 3,4 

Problem 2: If the basic hypotheses of the theory hold 
true then the interaction picture is not applicable to describe 
nontrivial interactions. 3 This is stemmed by two difficulties: 
(a) in the framework of the theory, by means of the interac­
tion picture, one can derive only the trivial S matrix (Haag's 
theorem) ,3,4 and (b) the interaction Hamiltonian consisting 
of higher powers than quadratic of the field does not possess 
a definite mathematical meaning in the Fock space of the 
free field (ultraviolet catastrophe).4 

Problem 3: The quantum fields defined at the points of 
Minkowski space 004 do not exist as operators in a Hilbert 
space.2 

The renormalization theory resolves only Problem 2 (b) 
in such a way that it formally defines, in the basic dynamical 
equation, the term describing the interaction and which is a 
priori not defined.5,6 

There are many approaches (see Ref. 6 for a brief over­
view) to remedy the problems of the conventional theory. 

a) This paper is a revised version of the author's work, "The Canonical 
quantization of local scalar fields over quantum space-time," report 
KFKI-J983-S1. 

Thus, e.g., the axiomatic approach of Streater and Wight­
man 7 and of Haag and Kastler8 and others.6 But none of 
these approaches is complete in the sense that one could 
apply them to quantize an arbitrary classical field theory to 
obtain numerical predictions for comparison with experi­
mental results. Therefore, considering this situation, one 
may ask if the conventional procedure is the only one for 
extending the canonical quantization method of quantum 
mechanics to the cases of local field theories or does there 
exist another way? 

The physical origin of the difficulties ofthe convention­
al theory was already pointed out by Schwinger in the 1950's 
when he had shown by physical arguments that a well-de­
fined and convergent theory could not be imagined in the 
present (classical) space-time conceptions.9 Together with 
many others (e.g., cf. Refs. 10 and 11), the present author 
also shares this opinion (cf. Ref. 12). In Ref. 13 the quantum 
logical approach of quantum mechanics was generalized to 
the cases of local field theories. This approach offers (a) a 
new class of representation spaces for representing the kine­
matical properties of quantum local field theories 14 and (b) 
an axiomatic approach to general space-time models. 15 In 
the latter approach the resulted quantum space-time models 
can be formulated, in the framework of a quantum relativity 
theory, 16 in terms of Davis' quantum relativity principle. 17 A 
specific quantum relativistic model of space-time (the quan­
tum relativistic substitute of the Minkowski space-time) can 
be consistently defined 16 by exploiting the results of the clas­
sically relativistic quantum theory ofPrugovecki. 10 The cen­
tral problem of quantum mechanics of a quantum relativistic 
particle living in this quantum space-time is a mass eigenval­
ue problem 16 that predicts in the first approximation phe­
nomenologically well-established classically relativistic 
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quantum particle ("elementary particle") spectra. 18 
Here, answering the above question in the affirma­

tive,19.12 we formulate a canonical quantization method in 
the "local state space" Jr'A constructed over quantum 
space-time of event space L 2 (R3

), 15,16 for the illustrative 
case of N real classically relativistic scalar fields of Lagran­
gian density, 

.2"(t,x) = [..!.. i (a" CPa a "CPa - m~ cp~) 
2 a~ I 

- V( CPI"'" CPN) ] (t,x), (t,X)E004
• (1.1) 

Our guiding principle is the locality: all information obtaina­
ble by the system can be obtained by measuring the system at 
the points of the pertinent space-time model. In classical 
local field theory this principle is formulated in a natural 
way, i.e., the classical system is described by local fields and 
local observables, and the global observables are generated 
by local ones usually by integrating up local observables over 
spacelike hypersurfaces in classical space-time 004

• Quantum 
local field theory should have a similar structure. Namely, 
the system should be described by local observables and local 
states. The global observables and global states should be 
generated by local ones in such a way that they are integrated 
up on a "spacelike hypersurface" of the space-time model 
corresponding to the system [on a maximal set of the causal­
ly disconnected points (events) of the space-time mod­
el].15,16 

From the quantization algorithm itself the following is 
expected. Classical local field theory is built up from an infi­
nite collection of identical classical mechanical systems of 
finitely many degrees of freedom, connected in space. The 
quantization should preserve this structure in such a way 
that it inserts in the place of the classical mechanical systems 
their quantum mechanical refinements obtained by canoni­
cal quantization. Consequently the quantized system should 
also be built up from an infinite collection of identical quan­
tum mechanical systems connected in space. 

For example, the classical local field theory of Lagran­
gian (1.1) consists of an infinite collection of identical classi­
cal anharmonic oscillators of N degrees offreedom connect­
ed in space. Then the corresponding quantum local field 
theory should consist of an infinite collection of identical 
quantum anharmonic oscillators of N degrees of freedom 
connected in space. 

In our approach the Hilbert realization of the system of 
local propositions 13 of the studied quantum local field theory 
will be determined by means of a (trivial) Hilbert A module 
(or A-valued Hilbert space20 ) JY'A' where A is the algebra of 
bounded operators of the Hilbert space L 2 (R3

). Thus all 
information obtained by local measurements of the quantum 
system are contained by JY'A : the local states can be repre­
sented by the rays of the JY'A and the local bounded observa­
bles13 by self-adjoint bounded operators (A-module homo­
morphisms) in JY'A' The expectation value of a local 
bounded observable F in the local state '11 in JY'A can be 
given by the formula 

F=EpF= ('I'IFI'I')AEA (1.2) 

using the A-valued Hermitian inner product of JY/A .12.14.16 
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(Of course, here the locality means the locality in quantum 
space-time. 12.16) 

In this way we construct a model of quantized fields 
which applies a new (quantum) conception of space-time 
and, in accordance with Schwinger'S observation,9 it lacks 
the main difficulties (Problems 1, 2, and 3 above) of the 
conventional theory. 12 Of course, the correct theory of quan­
tized fields must reproduce the main physical result of the 
conventional theory, the renormalizedS-matrix elements re­
ferring to scattering processes. Our model is very "close" in a 
certain sense 12 to the conventional theory because it is only a 
reconsideration, in an alternative way, of the extension of the 
canonical quantization method to local field theories (cf. 
Fig. 1). However, the question of whether the model repro­
duces the renormalized S-matrix elements of the conven­
tional theory has not yet been answered. Nevertheless, an 
intuitive line of thought referring to an answer of the ques­
tion in the affirmative can be found in Sec. IX. 

Finally to this point we note that the formalism we pres­
ent in this paper is an extension of the conventional Hilbert 
space formulation of quantum mechanics, thus this formula­
tion is consistent as far as the former is consistent. To achieve 
this unconventional extension the relatively new methods, 
Boolean-valued models,21 quantum set theory of Takeuti,22 
and HilbertA modules,20 of extension theory in mathematics 
is applied. 14 Another point is that we call our model quan­
tum local field theory to distinguish it from the conventional 
theory usually named as local quantum field theory. 

This paper is presented as follows. Section II deals with 
the physical and mathematical preliminaries. Here we sum­
marize the physical motivations of our model and the ap­
plied mathematical tools. Section III is devoted to the for­
mulation of the canonical quantization, and the 
representation of the canonical commutation relations in 
terms of the A -valued Hilbert space JY'A . After formulating 
the kinematical description of the quantized system in the 
local state space JY'A in Sec. III, we treat the global descrip­
tion of the quantum system in Sec. IV. The dynamical de­
scription of the quantized system is formulated in Sec. V. 
These three sections (Secs. III-V) contain the unconven­
tional extension of the canonical quantization method of 
quantum mechanics to local field theories consisting of real 
scalar fields, thus they carry the main contribution of this 
paper. Section VI is devoted to the extension of the interac­
tion picture method of quantum mechanical perturbation 
theory, in this new framework, to quantum local field theor­
ies considered. The Lorentz invariance and the classical lim­
it of our model of quantized fields are discussed in Sec. VII. 
The discussion of the axioms of Wightman and Haag­
Kastler can be found in Sec. VIII. In Sec. IX some conclud­
ing remarks close this paper. In Appendices A and B, the 
basic notions of Hilbert A modules and of the Boolean-val­
ued models of set theory and of quantum set theory will be 
briefly summarized, and in Appendix C Feynman's graph 
rules will also be briefly summarized. 

Finally we collect the abbreviations we use in what fol­
lows: 

c = classical, 

q = quantum, 
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KG = Klein-Gordon, 
CM = classical mechanics, 
QM = quantum mechanics, 

guantization 

CCR = canonical commutation relation, 
CLFT = classical local field theory, 

,.. 

CQFT = conventional quantum field theory, 
QLFT = quantum local field theory, 
IDPS = incomplete direct product space. 
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P 1'--+-----+-:( , ' FIG. 1. An illustration of the basic idea of 
the unconventional extension of the quanti­
zation to CLFT. The column corresponding 
to the conventional extension knocks 
against the difficulties of the analysis in 
function space.6 The column corresponding 
to the unconventional extension suggests a 
"passable road." 
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bundle TJ: p ...... R Here P is a fiber bundle with fiber TJ -) (t) 
= P, at time t. In our example P, = ]R2N. The canonical 

quantization substitutes P with a Hilbert bundle ifJ: H ...... ]R 

over the time line. H is a fiber bundle with fiber ifJ -\ (t) = H, 
at time t. By von Neumann's uniqueness theorem one can 
identify the state space H, with the Hilbert space L 2 (Q, ) up 
to unitary equivalence. In our example, H, = L 2(Q"df..l) 
= L 2 (]RN,d Nq ). 

II. PHYSICAL AND MATHEMATICAL PRELIMINARIES 

A. Physical motivations 

The conventional approach extends this scheme in the 
following way. Now one can also attach to CLFT a configu­
ration bundle 5: Q ...... ]R over the time line. 23 Q is a fiber bundle 
with fiber 5 -) (t) = Q, at time t. Here Q, is the function 
space of the Dirichlet data of CLFT at time t, and Q, is 
infinite dimensional. For example, if the field ifJ (t,x) of 
CLFT consisting of a single real scalar field is square integra­
ble in x then one can identify Q, with the real Hilbert space 
12, so Q, =]ROO = 12, A phase bundle 0: p ...... ]R also corre­
sponds to the system. The fiber 0 -\ (t) = P, is the phase 
space consisting of the Cauchy data of the system at time t. 
In our example we can write P, = ]R 00 ® ]R 00 = 12 ® 12, The 

(a) The basic idea of our unconventional extension of 
the canonical quantization method of CLFT under consider­
ation is illustrated in Fig. 1, by comparing it with the conven­
tional extension. According to the approach in Ref. 23, the 
fundamental geometrical space of CM is the configuration 
bundle 5: Q ...... ]R over the time line. Here Q is a fiber bundle 
with fiber 5 -\ (t) = Q, at time t. For example, for a system 
consisting of N one-dimensional anharmonic oscillators, Q, 
= ]RN. The other fundamental object of CM is the phase 
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conventional quantization should also like to substitute P 
with a Hilbert bundle <1>: H -- R of fiber <I> - I (t) = H, at time 
t. But now, from Problem 1, one cannot identify HI' up to 
unitary equivalence, with a Hilbert space L 2 (Qt ,dp) be­
cause there are infinitely many unitarily inequivalent mea­
sures p (corresponding to the representations of the CCR's) 
in the infinite dimensional function space Qt. 24 In this direc­
tion the quantized system cannot be formulated, in terms of 
Hilbert spaces, in the same unique way as QM is formulated. 

The recent formulation23 ofCLFT in terms of fiber bun­
dles over c space-time M[4 offers a new possibility to approach 
the quantization of CLFT over M[4. According to this sym­
plectic approach the fundamental geometrical space of 
CLFT is a configuration bundle 5: Q __ M[4 over the four­
dimensional space-time manifold. Q is a fiber bundle with 
fiber 5 -1(t,X) = Q"x at the space-time point (t,x). In the 
case of CLFT of Lagrangian (1.1) we have Qt,x = RN. The 
other fundamental object of CLFT is the phase bundle a: 
p __ M[4. Here P is also a fiber bundle with fiber a-I(t,x) 

= Pt,x at the space-time point (t,x). In our example Pt,x 
= R2N X R3N. The factor R 3N is provided by the spatial "gen­

eralized velocities" p~ (t) = V x </J a (t,x) in the Lagrangian of 
( 1.1 ).23 Then the quantization should substitute this geo­
metrical picture with the following picture. P is substituted 
with a Hilbert bundle /3: dY -- R4. Here dY is a fiber bundle 
with fiber /3 - I ( t,x) = Ht,x, at the point (t,x), and Ht,x is a 
complex separable Hilbert space. Because at the point x 
there is a mechanical system of finitely many degrees of 
freedom and of configuration space Qt,x, von Neumann's 
theorem holds true locally. Therefore we can identify Ht,x 
with the Hilbert space L 2(Qt,x) up to unitary equivalence. 
In our example H"x = L 2 (Qt,x ,dp) = L 2 (RN,d N q). 

This approach grasps the fact that local field theory 
(both c and q) consists of an infinite collection of mechani­
cal systems offinitely many degrees of freedom (sitting at the 
points of space R3 at a given instance t), more naturally than 
the conventional approach. 

(b) We can establish a canonical formalism for CLFT in 
accordance with our guiding principle, the locality, i.e., we 
establish this formalism for the local fields and local observa­
bles. 19

,12 For simplicity considering now the N = 1 case 
in our example of Lagrangian (1.1), Poisson brackets of 
the local physical quantities of the form F(t,x) 
= F( </J,1T,V</J,V1T) (t,x) can be defined as follows: 

{F F} = DFI DF2 _ DF2 DFI (2.1) 
I' 2 D</J D1T D</J D1T' 

where 1T=a.se/a;P and DF/D</J=aF/a</J-V(aF/aV</J) 
or DF /D1T = aF /a1T - V(aF /2V 1T). Poisson's brackets of 
the basic local variables </J and 1T and their gradients V </J and 
V1T are 

{1T,1T} = {</J, </J} = 0, {1T, </J} = - 1 , 

{V1T,1T} = {V</J, </J} = 0, 

{V1T, </J} = {1T,V</J} = ( - V)( - 1) , 

{V1T,V1T} = {V</J,V</J} = 0, 

{V1T, V</J} = ( - V)2( - 1) . 

(2,2a) 

(2.2b) 

(2.2c) 

Then the canonical quantization of the c theory means that 
we replace the local quantities ( </J, V </J, 1T, V 1T) with local ob-
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servables (¢,V/'o,</J,;",V~), i.e., with self-adjoint elements ofa 
noncommutative algebra, and Poisson's brackets (2.2a)­
(2.2c) are replaced by commutator brackets (cf. Ref. 12), 

[17',17'] = [¢, ¢] = 0, [17', ¢] = - iI, (2.3a) 

[V~,1T] = [V"</J, ¢] = 0, 

[V/'o,1T, ¢] = [1T,V"</J] = ( - iV)( - il) , 

[V~,V1T] = [V/'o,</J,V/'o,</J] = 0, 

[V/'o,1T,V"</J] = ( - iV)2( - il) 

(2.3b) 

(2.3c) 

(we use the units fl = c = 1 in this paper). A solution of 
these CCR's with linear self-adjoint operators is 

¢'I'= </J''I'(</J,x), 17''1'= _iJ'I'(</J,x), (2.4a) 
a</J 

V"</J'I' = - iVx( </J''I'( </J,x»), 

V~ 'I' = _ iV (_ i a'l'( </J, X») 
x a</J' 

(2.4b) 

where </J does not depend explicitly on x, i.e., [ - iVx' ¢] 
= 0, and 'I' is an (appropriate) element of the space of L 2 

sections of the Hilbert bundle /3 t: dYt - R, where dYt 
=L 2 (R)XR3 is a subbundle of /3: dY_R4 [i.e., 

'l'EI, 2(RXR3 )]. By von Neumann's theorem the represen­
tation (2.4a) of the CCR's (2.3a) is unique at each point 
xER3

, up to unitary equivalence. Thus, as we expected, this 
quantization substitutes the trivial phase bundle P = R2 
X R3 X (R3 X R) with the trivial Hilbert bundle 
dY = L 2(R) X (R3XR); the fiber Ptx = R2XR3 is replaced 
by the fiber H t.x = L 2(Qt.x) = L 2('R). The fiber Ht,x car­
ries an irreducible solution of the CCR's (2.3a). In this way 
this quantization algorithm satisfies our expectation in point 
(a) above. 12

•
19 

From the irreducibility requirement for the system 
( ¢,1T) at each point x and with the notation p = - iV x we 
have the general relations l2 

(2.5 ) 

Thus V/'o,</J has the same role as the spatial generalized velocity 
px (t) = Vx </J(t,x) in the c theory. Namely it connects the 
"neighboring" anharmonic oscillators in space. 

Then, the commutators of (2.3b) and (2.3c) follow 
from (2.3a) and (2.5) and conversely, the CCR's (2.3a)­
(2.3c) with the irreducibility requirement for ( ¢,1T) at each 
point xER3 imply the relations of (2.5). 

The task is to determine the general abstract Hilbert 
representations of the CCR's (2.3). By considering the com­
mutators in (2.3b) and (2.3c) one can think of 17', ¢, V"¢ 

= ¢p, and V/'o,1T = 1TP such that they act as operators in such 
a space dYA in which the product among the elements of the 
space and the elements of an operator algebra A containing p 
is defined and dYA is equipped with anA-valued scalar prod­

uct, i.e., dYA is a Hilbert A module and 17', ¢, V"</J, and V"1T are 

A-module homomorphisms in dYA . 

(c) In CQFT one encounters the following types of for­
mal equations I (considering again the N = 1 case in our ex­
ample): 

[1T(t,X),</J(t,x/)] = -iD3(X-X/), (2.6) 

[Vx1T(t,X), </J(t,x/)] = - iVxD3(X - x') , (2.7) 

and for the free field 
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(2.9) 

(2.10) 

(2.11) 

etc. The singular "functions" on the right-hand side of these 
types of equations make sense mathematically as the integral 
kernel representations of the corresponding linear operators 
in the rigged Hilbert space S(JR3) CL 2(JR3) CS*(JR3).2 
Thus 0 3(X - x') is the "integral kernel" ofthe unit operator 
[restricting its domain to S (JR3) ], - iV x 0 3 (x - x') is the 
integral kernel of the three-momentum operator 

p = r kdP(k) 
JR' 

(2.12 ) 

(P(k) is the spectral decomposition of p and its integral 
kernel is P(k,x,x/) = (21T) -3 exp[ - ik(x - X') ])25 and 
a(tl - t2, XI - x 2) and aF (tl - t2, Xl - X2) are the integral 
kernels of the following functions of p: 

a(tl - t2) = J(tl - t2, p) = dP(k) -A A 1 t 1 
R' C 21T 

(2.13 ) 

~F(tl - t2) = JF(t1 - t2, p) 

= r dP(k) lim _1_ 
JR' 77-0 21T 

f 
+ 00 eiko(t, - t,) 

X dko , 
- 00 m 2 

- k ~ + k 2 
- h7 

(2.14 ) 

respectively. Thus the so-called "e-numbers" of CQFT, 
o 3(X - x'), a(tl - t2, XI - x2), aF(t1 - t2, XI - x2) ,etc., 
are in fact (commuting) elements of an operator algebra A in 
L 2(JR3) which contains p and its functions. Therefore the 
equations of the types (2.6)-(2.8) are meaningful if 1T, t/J, 
V1T, and Vt/J act in such a space JY'A in which the product 
among the elements of the space and the elements of A is 
defined and, because of (2.10), it is equipped with an A­
valued scalar product, i.e., JY'A is again a Hilbert A module. 

B. Mathematical tools 

We apply the relatively new methods (Boolean-valued 
models of set theory, 21 q set theory of Takeu ti, 22 Hilbert mo­
dules over operator algebras20.26.27) of modern extension 
theory of mathematics to establish the unconventional ex­
tension of the canonical quantization method to CLFT un­
der consideration. We had presented these methods in Ref. 
14 and a brief summary of them can be found in Appendices 
A and B. 
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Let us introduce the following notations. Let JY' be a 
separable Hilbert space and (p,q) denote an irreducible sys­
tem of self-adjoint operators in JY'. Let 9 (JY') be the lattice 
of orthogonal projectors of JY' and let &J denote a complete 
Boolean sublattice of 9 (JY'). B(JY') denotes the algebra of 
bounded operators of JY', B is the Abelian von Neumann 
algebra generated by &J, and iJ denotes the unbounded ex­
tension of B, i.e., iJ is the *-algebra of operators having spec­
tral projectors exclusively from &J (cf. Refs. 28 and 14). Let 
B(JY') be the operator *-algebra generated by the identity of 
JY' and by the members of (p,q). If JY' = L 2(JRN) then the 
domain of B(JY') is the function space S(JRN).2.29 We call 

B(JY') the unbounded extension of B(JY'). Especially let 
9 = 9(L 2(JR3»), A = B(L 2(JR3»), and A = B (L 2(JR3»). 
LetJY'A (JY'B) denote the trivial Hilbert A (B) module [or 
A (B)-valued Hilbert space] JY'®A (JY'®B).20 B(JY'A) 
(B (JY' B ») denotes the algebra of the bounded operators 
[A (B)-module homomorphisms ]27 of JY'A (JY' B)' 

Lemma 2.1: B(JY'A) = B(JY') ®A. 
Proof From a theorem ofKasparov (cf. Ref. 20, p. 137) 

we have B(JY'A) =B(JY'®A) =M(K®A), where K 
= K(JY') is the set of compact operators in JY', and 
M(K®A) denotes the multiplier algebra of K®A.20 For a 
C*-algebra sf, M(sf) is defined as follows: 
M(sf): = {XIXEsfdd,xsf~sfdsfx}, wheresfddisthebi­
dual of sf. In our case sf = K ®A and sfdd = (K ®A)dd 
=B(JY') ®A (cf. Ref. 3, p. 111). The compact operators 

have the following property (see Ref. 30, Theorem 8.1 on p. 
369): If aEK and bER (JY') then abEK and baEK. Then this 
implies that 
M(K®A) 

= {xlxER(JY') ®A ,x(K ®A) ~K®A d (K ®A)x} 

= B(JY') ®A . Q.E.D. 

Furthermore we have B(JY'B) = B(JY') ®B.26 
V denotes the ordinary universe of set theory, while 

V(.'i1J) is the universe of the &J-valued model of set theory21 
and V(&') is the universe of the 9-valued model of Ta­
keuti. 22 Then the *-algebra of complex numbers C<.'i1J) in 
V ( .'i1J) can be identified with B, i.e., c< .'i1J) = B.31 The bound­
ed part of c< .'i1J) is equal to B.32 We identify the *-algebra of 
complexJ1umbersC(&') in V(&') withA. The bounded part of 
C&') = A is A. A complex Hilbert space JY'( .'i1J) in V ( .'i1J) can 
be identified with JY'li = JY'® B,28 while we identify a com­
plex Hilbert space JY'(&') in V(&') with JY'A = JY'®A, i.e., 

(.'i1J A &' A 
JY' ) = JY'® B, JY'( U ) = JY' 181 A. The bounded part of 
JY'( .'i1J) (JY'( 9') is JY'® B (JY' 181 A). 32 Furthermore we can 
write: 

B(JY'( .'i1J) = B(JY'li) = B(JY' B) = B(JY') 181 B 

(see Ref. 28) , 

B(JY'( .'i1J) = B(JY') ®B, B(JY'(&') = B(JY') ®A . 

If otherwise is not stated, in what follows &J will denote the 
maximal Boolean s~lattice of 9 generated by the spectral 
projections of p in A. We call JY'A (JY'li) the unbounded 
extension of JY'A (JY'B) and the operator *-algebraB(JY'A) 
=B(JY') ®A [B(JY'li) =B(JY') ®B] with domain 
f/fl = S(JRN) 181 S(JR3) [if JY' = L 2(JRN)] are called the un­
bounded extension of B(JY'A) [B(JY' B) ]. 
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FIG. 2. An illustration of the geometrical structure of the local state space 
JYA • One might think of this structure as a trivial, "noncommutative" Hil­
bert bundle over q space-time of event space L 2( JR3). The points of q space­
time are represented by the rays fof L 2(JR3) or by the corresponding projec­
torsp(j) = If) (j1,JEf. 

Notes: (1) dY(:3) is complete in the B-valued norm 
II ¢II ( :3) = ( ¢I ¢ )jt, ¢E7t"( :3),28 and dY(.9) is complete in 
theA-valued norm II¢W."?) = (¢I¢)~I2, ¢EdY(:Y'). 

(2) dY B = dY ® B is isomorphic to the B module of 
sections of the trivial Hilbert bundle dYx r where 
r = Sp [/g (the spectrum space of [/g ).33 In this sense one 
might think of dY A = dY ® A as the A module of sections 'I' 
of the trivial "noncommutative" Hilbert bundle 1]: dYA 

-L 2(R3 ) over q space-time of event space L 2(R3
) (Ref. 

15) with fiber dYp at the pointp (Fig. 2).16 
(3) (9 (dY ® A), 9, V) is an irreducible CROC-valued 

propositional system (representing in this way a pure 
QLFT),13 where 9 (dY ®A) is the set of closed sub-Hilbert 
A modules of dY ® A. 14 

( 4) dY B is a closed subspace of dY A and dY 11 is a sub­
space of dY A . 

(5) Mathematics ([/g -valued analysis) in V ( :3) has al­
ready partly been developed (cf. Refs. 28, 31, and 32) but the 
development of mathematics (9 -valued analysis) in V (:7) 

(in q set theory) is essentially still waiting for further re­
search (cf. Ref. 22). It belongs to the aims of the present 
paper to call attention on this new branch of mathematics by 
applying its methods to solve physical problems. 

III. THE CANONICAL QUANTIZATION IN TERMS OF AN 
A-VALUED HILBERT SPACE FA =F®A 

Now we formulate the canonical quantization of CLFT 
of Lagrangian (1.1) in terms of dYA and its unbounded ex­
tension dYA. One postulates that the variables ¢u' 1T a = ¢a, 
V¢a' V1Ta , a = 1, ... ,N, of CLFT are local observables and 
thus represented by self-adjoint operators in B(dYA ) such 
that the local fields ¢a and momentums 1Ta satisfy the equal 
time C~R) 

[¢a'¢.BJ = [1Ta,1T.BJ =0, a,{3= 1, ... ,N, (3.1) 

[1T a' ¢.B J = - ioa.B 1·1 , 

where 1 = IJY' ® 1, lEA, and equalities are of course under­
stood on the common domain of both sides. An example for 
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operators satisfying (3.1) is the following. Let { q?n}: =, be 
a basis in L 2(R3

), then 

¢a = L qa ® c~ Iq?n) ( q?n I , 
n 

1Ta = LPa ® ~ Iq?n) ( q?n I ' 
n Cn 

( 3.2a) 

where 
[Pa'P.BJ = [qa,q.BJ =0, [Pa,q.BJ = -iOa.B 1y 

(3.2b) 

and c~ER'Pa' q.BEB(dY), and a, (3 = 1, ... ,N. 
From the relations (2.5) and 

[PI ® ai' P2 ® a2] 
= PIP2® [a l ,a2] + [PI,P2] ®a2a, 
= pzp, ® [a l,a2] + [PI,P2] ®a la2, 

a l>azE1, p" P2E11 (dY) , 

we obtain the general form of ¢ a and 1T a' They are 

¢a =¢a( p) =qa ®ca, 
(3.3 ) 

where ca's are invertible elements of B (CA) and (p,q) 
= (PI"",PN,ql, .. .,qN) is an irreducible system of self-ad­

joint operators in dY satisfying the CCR's (3.2b). A well­
known solution for ( p,q) is 

dY=L 2(RN), qa =qa', 

Pa = - i.....!!....., a = 1, ... , N. 
Jqa 

(3.4 ) 

Let us cast the CCR's (3.1) into Weyl's form. We define 
the unitary operators 

U(a) = exp {i nt, an ¢n}, V(a) = exp{i nt, an 1Tn} 

indYA , where a = (al, ... ,aN)ERN. We assume that Uand V 
are continuous with respect to the parameters a and satisfy 
the relations 

U(a)U(fJ) = U(a+ (3), V(a)V({3) = V(a+ fJ)' 

U(a) V( fJ) = exp {i ntl an {3n} V( (3)U(a) . (3.5) 

Definition 3.1: A system (U, V) of bounded operators in 
the A-valued Hilbert space dYA is called a [/g -irreducible 
system if the set of bounded operators in dYA commuting 
with all the members of the system (U, V) is equal to the 
Abelian von Neumann algebra B. 

Note that this irreducibility notion is the natural exten­
sion of the irreducibility notion formulated in the [/g -valued 
universe V ( J,iJ) to the 9 -valued universe V ( Y'). The exten­
sion of the irreducibility notion in the ordinary universe V to 
the irreducibility notion in V ( :3) is as follows: A system of 
bounded operators in the Hilbert space dY( . .JrJ) in V ( :dJ) is 
irreducible if its center is equal to the bounded part of the 
complex numbers c< d4) in V( . .JrJ), i.e., equal to B (cf. Ref. 
28). 

Then we have the following extension of von Neu­
mann's theorem. 

Proposition 3.2: A [/g -irreducible set of unitary opera­
tors U(a) and V(a) in theA-valued Hilbert spacedYA satis­
fying the CCR's (3.5) is uniquely determined up to A-uni-
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tary equivalence, i.e., if (U/(a),V/(a») is another set of 
&J -irreducible unitary operators in cW'~ also satisfying 
(3.5), then anA-unitary operator S: cW'~ --->cW'A exists such 
that U(a) = SU/(a)S -I and V(a) = SV/(a)S -I. 

Proof We apply the methods of &J - and 9 -valued mod­
els for the proof of the proposition. Here cW'A = cW' ®A is 
the bounded part of the Hilbert space cW'( .9') = cW' ® A in 
V ( &') and cW'~ = cW'/ ® A is the bounded part of the Hilbert 
space cW'/(,o/) = cW'/ ®A in VU"'). Furthermore, it follows 
from the &J -irreducibility property of the two sets 
(U(a),V(a») and (U/(a),V/(a») that U(a), V(a) 
ElJ(cW'B) = B(cW'( ,'$» CB(cW'A ) and U/ (a), V/ (a) 
ElJ(cW'~) = B(cW"( pg» CB(cW'~) [U(a) and V(a) map 
the subspace cW' B = cW' ® B of cW' A onto itself and U / (a) 

and V/(a) map the subspace cW'~ = cW'/ ®B of cW'~ onto 
itself]. In this way the system (U(a), V(a») is an irreducible 
system of unitary operators in the Hilbert space cW'( 3iJ) in 
V( pg) and the system (U/(a),V/(a») is an irreducible sys­
tem in the Hilbert space cW'/ ( 3iJ) in V ( 3iJ). Now, because 
V( pg) satisfies the axioms ZFC (Zermelo-Fraenkel plus the 
axiom of choice) 14,21 we can apply theorem 30 in Ref. 21 
(pp. 55-57) to von Neumann's theorem in the ordinary uni­
verse V which yields that von Neumann's theorem also holds 
true in V( pg) [i.e., (U(a),V(a») in cW'(:JiI) and 
(U / (a), V/ (a») in cW'/( 3iJ) are unitarily equivalent in V ( pg)]. 

Then the canonical extension of the corresponding unitary 
operator in between cW'( pg) and cW'/( 3iJ) provides the A-uni­
tary operator S in between cW'A and cW'~ . Q.E.D. 

This extension of von Neumann's theorem offers the 
possibility that we formulate QLFT in terms of the A-valued 
Hilbert spaces in the same unique way, up to A-unitary 
equivalence (avoiding Problem 1 of CQFT in this way) as 
QM is formulated in terms of complex Hilbert spaces up to 
unitary equivalence. As we pointed out in Ref. 16 one can 
consider the representation space cW'A as the local state 
space of QLFT constructed over q space-time of event space 
L 2(R3) (cf. Note 2 in Sec. II B) ("local" here means the 
locality in qspace-timeI5,16). We can straightforwardly 
adapt the "rules" of the Hilbert space formulation of QM25 

toQLFT. 
(At) The local state space of QLFT is an A -valued sep­

arable Hilbert space cW'A = cW' ®A; the local states are rep­
resented by rays \fI, ('1'1'1') A = 1, 'l'E\fI, of cW' A' where ( I) A is 
the A-valued scalar product of cW'A' 

(A2) The local bounded observables l3 are represented 
by self-adjoint bounded operators in cW'A (the spectral val­
ues of these operators are self-adjoint elements of the opera­
tor algebra A ) . 

(A3) The expectation value of a local bounded observ­
able F in the local state \fI is 

F= ('I'IFI'I')AEA., 'l'E\fI, (*) 

whereA. denotes the set of the self-adjoint elements of A. If 
we deal with unbounded quantities then we use the un­
bounded extension cW'A = cW' ®A of cW'A instead of cW'A' 

Generally we can say that cW'A carries all the informa­
tion one gets by local measurements in q space-time. 13.16 

Furthermore, in QLFT the q local fields ¢a' at a given in­
stant t, is operationally defined at the points of q space-time, 
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i.e., the q lpcal fields ,.are operator-valued functions f --->¢a (f) 
= p(j)CPa p(j)ElJ(cW''A), a = 1, ... , N, where fis a ray of 

L 2(R3) representing a point (event) of q space-time and 
p (j) = I f) (j I is the one-dimensional projector corre­
sponding to f.16 

Notes: (1) Two elements of a ray \fI differ from each 
other by a unitary operator, i.e., '1'1 = 'l'2U, '1'1 ,'I'2E\fI. For 
('I'II'I'I)A = 1, ('I'21'1'2)A = 1, and ('I'2ul'l'2U)A 
= u*('I'21'1'2)AU = u*u = 1. The ray \fI can be identified 

with a "one-dimensional" projector P('I') = I'I')A ('1'1 pro­
jecting on the one-dimensional A-valued subspace 
{c'l'al CEC, aEA} (theA-valued subspace is itself an A mod­
ule over A in cW'A' too). 

(2) If p is an atom in 9 [i.e., an event (point) in q 
space-time], then the ray of the form <I> ® p, (<I> I <1» = 1, in 
cW' ® A corresponds to a pure local state of the q system (ac­
cording to Ref. 13) and conversely, every pure local state is 
represented in this way in cW'A' Ifwe prepare the q system on 
a spacelike hypersurface in q space-time generated by a max­
imal set of causally disconnected events, IS 

n = {Pa I aEN, Pa = P(CPa)' CPaEL 2(R3
) , 

( CPa I cP (3) = Oa{3' 'La I CPa ) ( CPa I = 1} , 

then this means the specification of a set of pure local states, 
{ cI» a ® Pal P a En, <I> a EcW'}. Generally, one can think of a 
local state '11 as a section of norm 1 in the noncommutative 
Hilbert bundle 7]: cW'A --->L 2(R3) over q space-time of event 
space L 2 (R3) (according to the sense ofN ote 2 in Sec. II B). 

(3) The L 2-sections <1>( CPI"'" CPN,X,t) of the Hilbert 
bundle ~ = L 2(RN) XR4 over R4 can be generated by the 
elements 'I' of cW'A = L 2(RN) ®A as follows: 

<1>( CPI"'" CPN,X,t) = '1'( CPI, ... ,CPN,P,X,t)X(x) , 

where X(x)EL 2(R3).19 TheA-valued scalar product in cW'A 
in this case is of the form 

(3.6) 

We might say that a unique (in the mentioned sense) repre­
sentation space for describing QLFT is obtained, by means 
of canonical quantization, in the way that one constructs the 
A-valued Hilbert space cW'A = cW' ®A over the sub-Hilbert 
bundlePt:cW't--->R3 [cW', =L2(RN)XR3] at the given in­
stant t. 

(4) Let {1>n} be a complete orthonormal system in 
cW'A' i.e., 

= 
L l<I>n)A(<I>n I = 1, (3.7) 

n=l 

such that every <l>n is in cW'n (CcW'A ). If cW' = L 2(RN) and 
{<I>n} = {<I>n (CPI"'" CPN)} is a complete orthonormal sys­
tem in L 2 (RN), then the form of <I> n is as follows: 

<l>n = <l>n{ CPI(P),,,,, CPN( p») 

= f dP(k)<I>n{CPI(k), .. ·,CPN(k») , 

where P(k) is the spectral decomposition of p. Then the 
precise meaning of (3.7) is as follows: 
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(<Pnl<Pm):4 = J dN¢(p)<I>~(¢I(P)'''''¢N(P») 
X<l>m( ¢I(P)'''''¢N(P») 

= r dP(k) r d N¢(k)<I>~( ¢I (k), ... , ¢N (k») 
JR3 JRN 

and 

X<I>m( ¢I(k), ... , ¢N(k») 

= r dP(k)c5nm = c5nm I , 
JR' 

ntl l<Pn):4(<Pnl = ntll,dP(k)I<I>n(k»(<I>n(k)1 

(3.8) 

= ntl 1, dP(k)<I>~( ¢; (k), ... , ¢~(k») 
X <l>n( ¢I(k), ... , ¢N(k») 

= r dP(k)c5N( ¢'(k) - ¢(k») 
JR' 

(3.9) 

where ¢ = ( ¢I"'" ¢N) and c5 N ( ¢' - ¢) is the integral ker­
nel of the unity of L 2(HN).2 By the aid of this orthonormal 
system we can write the elements of,w"A = L 2(HN) ®A in 
the following form: 

= i Cn <Pnon 
n = 1 

00 

= I Cn <l>n( ¢I (p), ... , ¢N(p»)'an (p,i) , (3.10) 
n=1 

where CnEC, oneA. The A-valued scalar product of two ele-
'" '" ments <1>1' <l>2~:4 is as follows: 

A A 00 .... A 

(<1>11<1>2):4 = I c!c~orn (<I>n l<I>m ):4 02m 
n.m= 1 

( 3.11) 

Let the local observable Fbe the function of (¢,ir,V"'¢,V"'1T), 
i.e., F=F(¢,ir,V"'¢,V"'1T). [In what follows we will use the 
abbreviations ¢=(¢I"",¢N)' ir=(irl, ... ,irN ), V"'¢ 

= (V"'¢I"'" V"'¢N)' and V"'1T = (V"'1T1, ... ,V"'1TN), too.] Then, 
because of (2.5), we have 

'" A '" F = F( ¢( p), ir(p),p)EB(,w"i1) 

= B(,w") ® BCB(,w":4) . 

Since in the universe V ( !JB) the spectral theorem holds 
'" '" true,21.14 we can easily derive the spectral form ofF. LetF be 

of discrete (nondegenerate) spectrum, i.e., 

F<i>n = <Pn In' (<Pn 1 <Pm ):4 = c5nm '1 , 

i l<Pn>A (<Pn 1 = 1 , (3.12) 
n=l 

A A A A 

wherelnEB. (B. is the set of self-adjoint elements of B, the 
set of real numbers H(!JB) in V( !JB». Then the spectral form 

A 

ofFis 
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F= i En In = i l<Pn):4(<PnlJ;. 
n=l n=l 

(3.13 ) 

If F is of continuous spectrum then its spectral form is 

F= J dE(A)I(A) = 1, dP(k) L+oooo dE(k')')/(k,).), 

(3.14 ) 

where E(A) = E(p,).) is the spectral family in ,w"(!JB) 

= ,w"i1 C,w":4, belonging to F, andl(A) = I(p,). )eB •. IfF 
has discrete as well as continuous spectra then its spectral 
form from (3.13) and (3.14) is 

F= ~Enln + J dE(A)I(A) 

= ~ 1, dP(k)En (k) In (k) 

+ 1, dP(k) L+oo 00 dE(k,).) I(k,).) . (3.15 ) 

Since ,w" i1 is isomorphic to the B-module of sections of the 
trivial Hilbert bundle,w"X r, where r = Sp :!!J (cf. Note 2 
in Sec. II B), thus we can write the maps n (p) : r -+ N instead 
of the natural numbers nEN in the above formulas, i.e., the 
natural numbers in V( !JB), n(p)EN(!JB). The map 
n(p) = f R,dP(k)n (k) associates natural numbers with the 
spectrum points kEr (cf. Sec. VI A). 

(5) In contrast with the irreducibility hypothesis of 
CQFf, the system (¢,ir) = ( ¢I"",¢N, irl, ... ,irN )of self-ad­
joint operators is only a :!!J -irreducible system [in a straight­
forward sense according to Definition 3.1, i.e., the set of op­
erators inB(,w":4) commuting with all the numbers of (¢,ir) 
equals B] in QLFT. This irreducibility notion is clearly 
weaker than the usual irreducibility notion and this is the 
main difference between CQFT and our model named 
QLFf. However, the C *-algebraB(,w"A) = B(,w") ®A as­
sociated with the local bounded observables of QLFf is a 
factor, thus the local state space,w"A describes the quantized 
system coherently; the unbounded extension B(,w":4) 

= B(,w") ®A of B(,w"A ) is generated not only by the local 
observables (¢(p),ir(p),V"'¢(p),V"tr(p») but by the three­
position operator i, too. The physical meaning of i is to 
measure the positions in three-space of the q mechanical sys­
tems constituting QLFT, at the instant t of the preparation of 
the q system. This is in accordance with the C theory, where, 
in the canonical formalism, the three-position vector x also 
occurs explicitly in the local observables of the system (e.g., 
in the angular momentum density vi( pvp = Tppxv - Tpvxp, 

where Tpv is the energy-momentum density) and x is not a 
function of the basic local dynamical variables ( ¢,1T). 

IV. THE GLOBAL DESCRIPTION OF THE QUANTUM 
LOCAL SYSTEM 

In keeping with our strategy (cf. Sec. I and Refs. 12 and 
16) the q system globally is described via integrations over 
the sets of information obtained by local measurements in q 
space-time, i.e., over the local state space,w"A over q space-
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time. Measures in q space-time are determined by Gleason's 
theorem. 15.34 We consider those measures on q; that corre­
spond to positive semidefinite self-adjoint operators pEA of 
the form 

00 

P =1 orp=" C P O<c <1 £.. n n' n' 
n=l 

n 

00 

dimpn = 1, I Pn = 1 . (4.1 ) 
n=l 

In the second case the p's are probability measures on q;. 
The global state spaces are obtained by averaging, with the 
aid of the above measures, over the local state space Jr"'A as 
follows: 

H P = TrpJr"'A: = {c,hIc,h&W'®A, Trp( c,hl c,h)A < oo} 

(4.2) 

and by equipping them with the I(:>valued scalar product 

(4.3 ) 

where cLc~EC,fL/~&W', and ak I ,ak2 EA. 
Proposition 4.1: H P with the scalar product ('1') P is a 

complex separable Hilbert space. Furthermore, if poll then 

the map U: H P-.H I; c,h-. c,h..JP is a unitary map. 
Proof" (1) Let TrA:={alaEA, Tra*a<oo}. Then 

Tr A with the scalar product (a Ila2) I: = Tr afa2 is the sep­
arable Hilbert space of the Hilbert-Schmidt operators in 
A.35 

(2) Let TrpA: = {alaEA, Trpa*a< oo} and (a l la2)p: 

= Tr pafa2. Then, aETr pA iff a,jpETr A. For, if aETr pA 
then Tr pa*a = Tr(a,jp) * (a,jp) < 00 then a,jp ETr A and 

if a,jp ETrA then Tr(a,jp)*(a,jp) = Trpa*a< 00 then 
aETr pA. Taking this into account, it can easily be checked 
that Tr pA is a complex vector space and (I) P is a complex 

I 

scalar product on it. To this latter we only note that 

{alaETr pA, Tr pa*a = O}={O}. For, Tr pa*a = 0 iff a,jp 
= O. Beside the form of p's in (4.1) this equation has the 

only solution a = 0, which can be seen from the equation 

(c,hl (a,jp) * (a,jp) Ic,h) 

= I Cn (aPn c,hlapn c,h) = 0, Vc,hEL 2(lR3) . 
n 

Finally Tr pA is complete in the norm lIallp = (Tr pa*a) 1/2. 
For, let (a;) be a Cauchy sequence in Tr A. Then 

lim Ila; - aj lip = 0 iff lim Ila;,jp - aj,jp III = 0 
I,}- 00 l,j- 00 

then 

3a' = a,jpETr A, lim Ila;,jp - a,jp III = 0 
i_ 00 

iff lim Ila; - all = 0 , . p 
.- 00 

then aETr pA. 
(3) Let us take the tensor product of Jr'" and Tr pA, then 

from (4.2) and (4.3) we have Jr'" ® Tr pA = Tr p(Jr'" ®A) 
= H p. The second part of the proposition is clear from 
(4.3). Q.E.D. 

We observe the following. (a) H p is an invariant struc­
ture over q space-time because ( c,hll c,h2) P is invariant under 
symmetry transformations p' = upu- I

, (c,hll c,h2)~ 
= u ( c,h II c,h2) AU - I in q space-time, where u is a unitary oper­
atorinA. 15.16 

(b) For the bounded linear operators in H P we have 
B(H P) = B(Jr"') ® B(Tr pA) ~B(Jr"') ®A. Then a bound­
ed global observable (represented by a bounded self-adjoint 
operator in H P) corresponds to every local bounded observ­
able and conversely. For the unbounded extension of 
B(H P) we have 

B(H P) = B(Jr"') ®B(Tr pA) ~B(Jr"') ®A 

with the domain g; = S(RN) ® d, where 

d:={ c,h1c,hETrpA, c,h=~ckllk)(gkl, CkEC, Ik,gk ES(R3
)} 

[ the summation for k means a finite sum and the closure is 
understood in the product topology of S(R3

) ® S(R3)2] (cf. 
Note 1 below). 

(c) Let 

Tr Jr"'B: = {c,hIc,h&W' ®B, Tr( c,hlc,h) A < oo} . 

Then, by Ref. 28, 

Tr Jr"'B ~ L Gl Jr"'(k)d 3k = H , 

where r = Sp f!JJ ( = R3
). Furthermore 

B(H) = B(Tr Jr"'B) = B(Jr"') ® B 
and 

B(H) ~B(Tr Jr"'B) ~B(Jr"') ®B. 

It is clear that Tr Jr'" B is a closed subspace of Tr Jr'" A . 

In the sense of Proposition 4.1 the global state space of 
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~I---------------------------------

QLFT of local state space Jr"'A can generally be identified 
with the separable Hilbert space H 1= Tr Jr"'A' However, if 
we know that the joint distribution in three-position and 
three-momentum space of the infinite collection of the con­
nected q mechanical systems constituting the whole system 
is characterized by the statistical operator p of the type ( 4.1 ) 
during our study of the system, then the appropriate global 
state space is the separable Hilbert space H P = Tr PJr"'A' 
We can apply such an H P when the apparatuses measuring 
the system are all in the q statistical state characterized by p 
(these apparatuses measure the system locally in q space­
time 13, 15). This means that the collections oflocal measuring 
apparatuses (sitting at the points of q space-timeI5 ) defining 
the measuring apparatuses 13 are prepared in such a way that 
they be in the state described by p concerning their data in 
three-space and three-momentum space. These apparatuses 
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measure the q local fields and the local observables generated 
by them, in a given instant, and not the operators i and p 
(see Ref. 16 and Note 5 below). 

We see, by defining the global states by the rays of H P, 
that a local state el» in eW'A generates a global state in H P if 
p#1. For, (IPIIP)A = 1, IPEel» and Trp(IPIIP)A 
=Trp'l = 1, i.e., IPEHP and (IPIIP)p = 1. But, ifp= 1 
then the local state el» does not generate a global state in H I 

since in that case (IPI IP) I = Tr(IPIIP) A = Tr I = 00. In the 
formation of the local state each q mechanical system (the 
collection of them forms the whole system) participates with 
unit statistical weight, the "norm" oflP is the unity, 1, inA.16 
However, in the formation of the global state of the q system 
these q mechanical systems participate with a statistical 
weight lying in between 0 and I and this is described by a 
statistical operator p of the type (4.1). Then we obtain the 
global state of the q system from the local one in such a way 
that we "renormalize" el» with p in the following way. Let 
p = a*a, aETr A, and Tr a*a = 1. Then 'I' = IPa, IPEel», 
already generates a global state in H I since ('1'1'1') I 
= Tr('I'I'I')A = Tra*(IPIIP)A a = Tra*a = 1. Thus we 

can write for the global state \fI that \fI = el»a, i.e., two ele­
ments of\fl differ also from each other by a unitary operator 
uEA. The decompositionp = a*a is also unique only up to a 
unitary operator, i.e., ua provides the same p as a since 
(ua)*(ua) = a*u-Iua = a*a =p. We can melt this ambi­
guity into el» and for the sake of unambiguity we can choose 

/p for a, i.e., a = /p. Consequently, a local state el» deter­
mines a global state of the q system together with the specifi­
cation of a statistical operator p. Here p = p(i,p) can be 
considered as the q mechanical distribution function of the q 
mechanical systems forming the q system, in the phase space 
R6; P describes the joint distribution of these q mechanical 
systems in three-space and three-momentum space. 

Thus, in conclusion, as to the interpretation of the global 
state space H P we note again that QLFT consists of a "tri­
vial noncommutative bundle" of infinitely many q mechani­
cal systems of state space eW'. So, whenp = ~ Cn Pn' we can 
say that these infinitely many q mechanical systems are de­
scribed globally by H P by the aid of q statistical mechanics. 
Here p describes the q statistical state of measuring appara­
tuses (measuring the system locally in q space_time),13,16 
i.e., a common preparation of these aparatuses on a spacelike 
hypersurface r, the set of atoms of which is fi = {Pn' 
nER}.15 The statistical weight of the q mechanical system at 
the point PnEfi is Cn' Thus a global state describes the q 
system when the system is measured in the q statistical state 
p. In this case every local state el» in eW'A generates a global 
state in H p. Finally let us collect the rules of the global de­
scription ofQLFT (cf. Ref. 12). 

(al) The global state space ofQLFT oflocal state space 
eW'A in the measuring procedures characterized by the statis­
tical operator pEA of the type (4.1) is the complex separable 
Hilbert space H P = Tr peW' A ; its global states are described 
by the rays of H p. 

(a2) The global observables are represented by self-ad­
joint operators in H p. 

(a3) The expectation lJ....alue of the global observable) 
generated by the local one, F, in the global state cf> generated 
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by the local one, el», is 

],,=(¢lfl¢)p=Trp(IPIFIIP)A' IPEel». (**) 

As we said, H P carries all the information on the infinite 
collection of connected q mechanical systems constituting 
QLFT, which are obtained in the common q statistical state 
p of the local measuring apparatuses 13 jn q space-time. 15,16 

Notes: ( 1) The elements of A and A define, in a natural 
~ay, linear operators in Tr A with ,the correspondence 
1(0) = fa, whereaETr A and/EA or/EA.ltisclearfrom the 
dt;.fin~tion of Tr A that the system of self-adjoint operators, 
( lx, /p) = (i', p' ), corresponding to the system (i, p), is 
irreducible in Tr A. 

(2) Let {IP n} be a complete orthonormal system in 
eW'A' i.e., this determines a complete orthogonal family of 
local states in eW'A' Now, if we specify the same p to every 
member of this family then the appropriate global state space 
of the q system is provided by the Hilbert space H P 

= Tr PeW'A; on the other hand, if we specify apn to each IPn 
then the appropriate global state space is H I = Tr eW'A' In 

this case the family {'I'n} = {IPn.JP:) gives a complete or­
thonormal system in HI, i.e., 

('I'nl'l'm)1 = Tr.JP:(IPnl<l>m)A/P: =onm' 

L l'I'n)('I'nl = I (4.4) 
n 

[of course, the completeness is only satisfied if every p n is of 
the form (4.1)]. Thus {I{I n} provides a complete orthogonal 
family of global states inH I. Then we can write a vector I{I of 
unit norm in H I in the following form: 

n 

where 

(4.6) 

is the complex amplitude of the transition probability from 
the global state \fI to the global state \fin (cf. below). 

(3) Let \fI1 = el» Iff); and \fI2 = IPz[fi; be two rays in 
H I. We obtain the transition amplitude from \fI1 to \fIz in the 
following way: 

(1{IIII{Iz) I = Tr(l{Illl{Iz) A = Tr ff); (IPIIIP2) A [fi; 

=Tr~pZPI'(IPIIIP2)A . 

But this expression is not unambiguous. Let IP; = IPIUIEel»1 
and IP~ = IPzuzEel»z, then 

(I{I; II{I~) I = Trff);·u 1- I ( IP II<I>2) A u2[fi; 

=Truz~pzPI Ul-
I( IPII <l>2)A' 

and this is only equal to the former expression if ~ P2PI 
= uz~ PZPIU I- I. This problem occurs in (4.6) in such a way 
that, if we choose the element I{I' = IP u-Ip from \fI then 
we obtain (I{I~ ICn I{I n) I = Cn T; Pn U ~nd T; Pn u in ~:neral 
does not equal I or e - i'P, <pER, and ICn Tr Pn U IZ # ICn 12. This 
phenomenon follows from the fact that the transition prob­
ability in between two vectors of the global state \fI = el»..jp 

is not 1 as in QMbut 1(l{Illl{Iz)11 2 = ITrpul 2, I{Iz = IPlu..jp, 
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and that gives, in general, nontrivial transition probability 
from '1'1 to '1'2' 

( 4) Let us denote the self-adjoint operator in H P gener­
ated by the local observable F in the following way: 

');,: = Tr pF, f =/1 = Tr F, (4.7) 

the meaning of which is as follows: 

(<I>dt;. 1<1>2) P = Tr p(<I>IIF 1<1>2) A' <l>1,<I>2ElI P 

(of course <1>2 is in th~.domain ofF). With this notation an');, 
corresponding to an F of the form (3.15) is of the following 
form: 

');, = Tr pF = L Tr p f dP(k)En (k) fn (k) + Tr p 
n JR3 

X I, dP(k) L+",'" dE(k,l1.)f(k,l1.). (4.8) 

We can write these operators, in the casep = 1, in the sub­
space H = f R' Ef) JY(k)d 3k of HI = Tr JYA in the follow­
ing form36: 

I=/IIH = TrH F = f"' F(k)d 3k 
JR' 

= L f"' En (k) fn (k)d 3k 
n JR3 

+ l~ L+",'" dE(k,l1.) f(A,k)d 3k . 

(4.9) 

( 5) As we said in Sec. III (and in Ref. 16), the q local 
fields are operator-valued functions f-+lpa (f) = p(f) 
xlpa p(f) of the points f of q space-time. By the relations 
(3.3) one can write 

lpa (f) = qa ® p(f)ca p(f) = qa ®cf p(f), 

where cf = (fica If)EC. 

[Clearly 

lpa (f) = lpa (p)EB( 1J-I(p( f»)) = B(JY) ® p(f) , 

where 1J-I(p(f») =JYp =JY® p(f) is the fiber at the 
point p = p (f) of the "noncommutative Hilbert bundle 1J: 
JYA -+L 2(R3

)" over q space-time (see Note 2 in Sec. II).] 
Thus a member of an apparatus 13 measuring the q local field 
lpa, which sits at theq space-time pointp = p( f), measures 
the operator qa' 

V. THE LOCAL DESCRIPTION OF THE DYNAMICS 

We have given the local and global kinematical descrip­
tion ofQLFT in the foregoing two sections. Now we turn to 
the question of the dynamics. To specify the dynamics of the 
q local system in accordance with our guiding principle, the 
locality (cf. Sec. 1), we use the following motivation from 
CLFT. 

Let us implement a Legendre transformation on the La­
grangian density .Y by applying the c field equations. We get 
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where V = Vx , hence we obtain the canonical equations l6 

_ ir = aJY _ V aJY ;,. aJY 
a a<Pa JV<Pa' 'I'a = a1Ta' a = 1, ... ,N, 

(5.2) 

whereJY = JY( <p,1T,V<p) = l:~= I 1Ta ¢a - .Y is the Ham­
iltonian density [cf. these equations with Eqs. (17.7) on p. 
118 in Ref. 23]. Equations (5.2) are equivalent to the c field 
equations. By applying a Poisson bracket of the form (2.1) 
we can write (5.2) as follows: 

ira = {JY,1Ta}, ¢a = {JY,<Pa}' a= 1, ... ,N, (5.3) 

and, in general, the equation of motion of a local quantity 
F = F( <p,1T,V<p,V1T,t) can be expressed as 

dF = aF {JY FL 
dt at + ,.J, (5.4 ) 

which, of course, gives back (5.3) for 1T and <p. Then the 
condition that Fbe a constant of motion (a conserved local 
observable) is 

(5.5) 

If F does not depend explicitly on t then F is conserved if 
{JY, F} = O. For example, JY itself is such a conserved local 
observable, but the momentum density Tok = l:a 1Ta ak <Pa' 
k = 1,2,3, belonging to the total three-momentum P is local­
ly not conserved since {JY, Tok } # O. 

By taking into account this canonical formulation l9 of 
the dynamics ofCLFT we define the local Schrodinger time 
evolution in the local state space JYA by the one-parameter 
unitarygroupt ..... exp( - i~t) inJYA (cf. Note 2 below) as 
follows: 

<I>(t) = exp( - i~t)<I>(O), <l>EJYA , (5.6) 

where ~ is the local Hamiltonian obtained from the c Ham­
iltonian density by applying the quantization algorithm: 

~ = JY( lp,fr,VA<p) 

~ [~fr: +~(VA.J. )2+~m2 12] 
a~1 2 a 2 'I'a 2 a'l'a 

+ V( ;PI"'" lpN) 

1 N !>..2 A 2 A2 2 A 2 A A 
= - L [1Ta + <Pa P + ma <Pa] + V( <PI"'" <PN) , 

2 a=1 

(5.7) 

where Eq. (2.5) has been used. In differential form this pre­
scription provides the local Schrodinger equation 

i a<l>(t) = ~<I>(t), <l>EJYA , 
at 

i a<l>(t) = {~ f [~+ lp~ p2 + m~ lp~ ] 
at 2 a= I 

+ V( ;PI"'" lpN) } <I>(t) . 

(5.8a) 

(5.8b) 

This specification of the dynamics is confirmed by the fol­
lowing facts 19: Eq. (5.8b) implies (1) a continuity equation 
for the (appropriate) L 2-sections of the trivial Hilbert bun­
dle JY over R4 (cf. Fig. 1), (2) an Ehrenfest theorem (cf. 
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Sec. VII), and (3) the c limit of (5.8b) can be derived in an 
analogous way as the c limit of the q mechanical Schrodinger 
equation (cf. Note 3 in Sec. III). 

A A A A 

The formula F(t) = exp( - i~t)F(O) exp(i~t) pro-
vides the time evolution of the local observables 
F= F(~,fr,V¢,VA1T,t). In differential form it has the form 

dF _ aF '[~FAl ---+1 c?l, • 

dt at 
(5.9) 

A 

The condition that Fbe a conserved local observable is 

aF . A A 

-+z[~,Fl =0. 
at 

(5.10) 

If F does not depend explicitly on t then it is conserved when 
[~,Fl = O. A 

The local Heisenberg equation of motion (5.9), for ¢ 
and fr, gives 

A • A A a~ 
¢a =/[~'¢a] =-aA ' 

1Ta 

- fr = i [ fr a ,~] = a~ _ iV ( a~ ) 
a¢a av ¢a ' 

(5.11 ) 

takingintoaccountEqs. (2.5) and (3.1). These equations as 
operator equations have the same form as tJIe c canonical 
equations (5.2). Using the specific form of ~ in (5.7) and 
Eqs. (2.5) and (3.1) we get 

a= 1, ... ,N, (5.12) 

or 

By taking into account that in position representation 
p2 = _ t::., we have obtained that the c field equations be­
longing to the Lagrangian (1.1) recover in the quantized 
theory as operator equations [cf. Sec. VII and Eqs. (7.12) l. 
In contrast with the corresponding dynamical equations in 
CQFT5

•
6 these equations are well-defined operator equa­

tions. In fact, not only the left-hand side of Eqs. (5.12) is 
well defined as in CQFT but their right-hand side, too. For, if 
V is an analytical function of ¢ a then a V 1. a¢ a,. is, too, and 
thus by the relation (2.5) we see that av /a¢a is a well­
defined element of the operator *-algebra B(~) ® B, which 
is a subalgebra ofB(~A) = B(~) ®A. 

In order to know completely the dynamics of the quan­
tized system, one should solve the local Schrodinger equa­
tion (5.8) or, equivalently, the local Heisenberg equations 
(5.11) or concretely Eqs. (5.12). Forlocal states of the form 
'I'(t) = <I> exp( - iet) we get the local eigenvalue equation 

~<I> = <l>e, ?!EBCA, <l>E2 iJ; C~A , 

[J.. f (~+~~P6a) + V(~I""'~N)]<I>=<I>e, (5.13) 
2 a~ 1 

where P6a = p2 + m~. This eigenvalue equation formulated 
in terms of ~A is the natural extension of the q mechanical 
eigenvalue equation 
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(5.13') 

formulated in terms of a complex Hilbert space. Thus we can 
adapt, in a straightforward way, the well-developed methods 
for solving Eq. (5.13') to Eq. (5.13). One can think ofEq. 
(5.13) as the natural extension of the q mechanical eigenval­
ue [Eq. (5.13') 1 given in terms of the universe V into the 
universe V( 9') of q set theory?2 

Notes: (1) Equations (5.7) and (3.3) show that the lo­
cal Schrodinger evolution operator U(t) = exp( - i~t) 
maps cW'( 8IJ) = cW' ~ in cW'( 9') = cW' ~ onto itself hence all 

B A A ......... 'A 

the spectral values e of cW' in Eq. (5.13) lie in B CA. 
(2) In the sense of the basic theorem of !!lJ -valued analy­

SiS31
•
14 (see Theorem Bl in Appendix B), Stone's theorem37 

holds true in the subuni verse V ( 8IJ) of the universe V ( 9'). 

Thus the local Hamiltonian ~ in (5.7) (~Eil(cW') 
®BCB(cW'A») and the one-parameter unitary group t-+ 
U(t) = exp( - i~t) mutually determine each other in the 
subspace cW' B of cW' A • 

VI. PERTURBATION THEORY USING THE 
INTERACTION PICTURE 

One of the best developed methods for solving the 
Schrodinger equation corresponding to (5.13') is the pertur­
bation theory in the interaction picture. We now extend this 
method formulated in V to the local Schrodinger equation 
(5.8) formulated in V(V). 

The interaction picture is appropriate to use it for the 
solution of the dynamical problem when the local Hamilto-

nian is of the form ~ = ~o + ~I' where ko leads to ex­
actly solvable problem ("free fields") while cW'1 (the inter­
action term) is "appropriately small" with respect to ~o 
(cf. Refs. 4 and 38). In our example 

~o = J.. f (~+ ~~ p2 + m~ ~~), 
2 a ~ 1 (6.1) 

£'1 = V(~I""'~N) . 
Denoting the quantities in the Heisenberg picture by the pre­
fix H, we have the following basic relations. The Heisenberg 
picture and the interaction picture is connected by the uni­
tary map U(t,to) in cW'A and contracted at the instant t = to 
as follows: 

'I'(t) = U(t,to)'I'H, 'l'HE2A, 'I'(to) = 'l'H, 
A A. H -1 A A H 
F(t) = U(t,to)F (to) U (t,to)' F(to) = F (to). 

( 6.2) 
The local states 'I'(t) satisfy the Tomonaga-Schwinger 
equation 

(6.3 ) 

while the local observables F(t) are governed by the equa­
tion 

aF(t) . A A 

--= 1 [cW'o(t),F(t) 1 . 
at 

The evolution operator U(t,to) satisfies the equation 

. aU(t,to) ~ ( ) U( ) 
1 = c?l 1 t t,to , 

at 

Mikl6s Banai 

(6.4 ) 

( 6.5) 

204 



                                                                                                                                    

Then we observe that first, from (6.4), the local fields ¢ a (t) 
satisfy free field dynamical equations and second, from (6.1 ) 
and (2.5), V(t,to) lies in B(7t"B) [=B(7t")®B 
C B (7t" A )] and maps 7t" B onto itself in 7t" A' The formal 
solution ofEq. (6.5) is given by the von Neumann-Liouville 
senes 

00 1 [ it A ]n = T L I" - i 7t"[(t')dt' , 
n =0 n. to 

(6.6) 

where T is Dyson's T product. However, this V(t,to) is not 
well-defined, in the same way as its q mechanical counter­
part, on account of the formal definition of Dyson's T prod­
uct (cf. Ref. 4, pp. 271-273). 

A. Free fields 

By Eqs. (5.12), (6.1), and (6.4) we have the operator 
KG equations 

" ""2 2 A ¢a (t) + ¢a (t)p + ma¢a (t) = 0, a = 1, ... ,N, (6.7) 

for the fields ¢a' The solution of these equations is 

¢a (t) = ¢a- (t) + ¢a+ (t) = aa ® ca (t) + aa+ ® c: (t) , 
(6.8) 

where 

ca(t) = (2pg)-1/2e - iPgt= r _1_e-ikgtdP(k), 
JR' ~2kg 

(6.9) 

wherepg = (p2 + m! )-1/2, kg = ~k2 + m!, and 

[aa,ap ] = [aa+,a/] =0, [aa,ap+] =8ap l (6.10) 

(aa+ denotes the adjoint of aa ). The operators (a,o+) 
= (al, ... ,aN,al+ , ... ,aJ) of course constitute a a7-irreduci­

ble system in 7t"A and thus they are functions of p, i.e., 

aa = aa (p)eB(7t") ®B, a = 1, ... ,N (cf. Note 5 jn Sec. III 
and see Note 1 below). By a formal calculation 7t" 0 gets the 
form 

(6.11 ) 

In the Fock representation of (6.10), 7t" A is spanned by the 
Fock basis, 

ct>n, •...• nN = (ltl!...ltN!) -1/2 [at (p) ],"'''' [aJ (p)] nNct>o(p) 

= r dP(k) [nl(k)!" 'nN(k)!] -1/2 
JR' 
x [at (k) r,(k) ... [aJ (k) fN(k)ct>o(k), (6.12) 

where Ita is a non-negative integer-valued function ofp [i.e., 
Ita: r -+NU{O}, r = Sp a7 (see Note 4 in Sec. III)] and 
ct>o(p) is the unique element of 7t"A with the property 

aa (p)ct>o(p) = r dP(k)aa (k)ct>o(k) = 0, Va. 
JR' 
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Here aa, ad , and Na act on this basis in the usual manner.2 
A A 

Since Na is diagonal on this basis, thus 7t"0 is, too, i.e., the 
A 

eigenvectors of 7t"0 are the vectors of the form (6.12) in 
7t" A' The complete orthogonal system (6.12) in 7t" A deter­
mines a complete orthogonal family of local states of the q 
system. One can say that the KG equations (6.7) describe a 
"trivial fiber bundle" of harmonic oscillators of species N 
over q space-time, i.e., there are None-dimensional harmon-

ic oscillators offrequencies k g = ~k2 + m! , a = 1, ... ,N, at 
each point k of r = Sp a7 (of the "spacelike hypersurface" 
r in q space-timeI5

). Here ct>o(k) is the lowest energy state 
(vacuum) of the q mechanical system consisting of N one­
dimensional harmonic oscillators and sitting at the spectrum 

A 

point k of p, and Na (k) counts the quanta of energy 

~k2 + m! of the harmonic oscillator characterized by the 

frequency lUa = 'k2 + m!, thus Na is the local quantum V A A 

number operator and N = ~~ = I Na is the total local quan-
tum number operator. One can say that in the state 
ct>n,(k)"'nN(k) (k) there are n l (k), ... ,nN (k) pieces of quanta 
of energy (k2 + mi) 1/2, ... ,(k2 + m~) 1/2, respectively (plus 

the zero-point energy of magnitude ~~ = I !~k2 + m! ). 
Now let us introduce the local observable 

A N (A 1) A f7l = L Na + - p. 
a=1 2 

(6.13) 

It is clear that [~0,.9] = 0, i.e., .9 is a conserved local 
observable in the sense of (5.10) . We identify the self-adjoint 
operator .9 with the local three-momentum observable of 
the q system. The local states Abelonging to the vectors in 
(6.12) are also eigenstates of f7l. By calling the ray <1»0 the 
local vacuum state of the free q fields ¢ a' we can give another 
way of interpretation (beside the above) for the system of 
free q fields. According to this, the creation operator aa+ 
creates a KG particle offour-momentum observable (pg,p) 
from the local vacuum <1»0' Thus in the local state <l»n, •...• nN 

there are n I, ... ,n N KG particles offour-momentum observa-
bles ( p~,p) , ... and (p~,p), respectively. So the "quanta" of 
the free q fields ¢ a are free KG particles. In this sense the free 
field description in QLFT is physically equivalent with the 
free field theory of CQFT (cf. still Note 2 below). 

With Eqs. (6.8 )-( 6.10) we obtain the following non­
equal time commutators: 

[¢a+ (t1)'¢P+ (t2)] = [¢; (t1),¢P- (t2)] = 0, 
A A A 

[¢a+(tI)'¢P-(t2)] = -iaa+(tI-t2)8ap l 

= {Aa- (t2 - t l )8ap l, 

[¢; (tl ),¢p+ (t2)] = - i;i; (tl - t2)8ap I 

= i;ia+ (t2 - tl )8ap I, 

[¢a(tI),¢p(t2)] = -i;ia(tl-t2)8ap l, 

(6.14 ) 
A A 

where aa (tl - t2) is given by (2.13) with mass ma and a; 
and ;ia+ are the negative and positive frequency parts of;ia , 
respectively. The integral kernel representation of the opera­
tor;ia (tl - t2 ) (eB) in L 2(R3) is provided by the formula 
(2.9) with mass ma' For the normal and ordinary product 
we have the relation 

Mikl6s Banai 205 



                                                                                                                                    

N(¢a (tl) ¢p (t2») = ¢a (tl )¢p (t2) - i'3.a (tl - t2)Da{3I. 

(6.15 ) 

The relation between the T and ordinary product is 

T(¢a (II )¢p (12») = ¢a (II )¢p (12) 

+ ie(l2 - t l )'3.a (tl - t2)Dap l. 

( 6.16) 

The local vacuum expectation values of the ordinary, nor­
mal, and T product in the local vacuum <1>0 are 

(<I>ol¢a (tl )¢p (t2) 1<1>0):4 = - i'3.a- (II - t2)Dap 

= i'3.a+ (12 - tl)Dap , ( 6.17) 

(<I>oIN(¢a (t1)¢p(l2))I<I>o>A = 0, 

(<I>oIT(¢a (tJ¢P (12))1<1>0):4 = i'3.';(t, - t2)Dap , (6.18 ) 

respectively, where the propagator of the free field ¢a' 
'3.,; (I, - t2), is given by Eq. (2.14) with mass rna' Th~int~­
gral kernel representation, in L 2(JR3), of the operator ll.';EB 
is provided by the formula (2.11) with mass rna' For the 
pairing of ¢a (t,) and ¢p (12) we have 

¢a (I, )¢p (12) == T(¢a (t, )¢p (12») - N (¢a (t, )¢p (t2») 
~ A A 

= (<I>oIT(tPa (t,)tPp(t2»)I<I>o):4' 1 

= i'3.';(t, - t2)Dap l. (6.19) 

We see, as we have expected in Sec. II C, that these relations 
recover in QLFT as mathematically well-defined equations 
(up to the ambiguity in the definition of the T product) in 
contrast with their counterparts in CQFT' (some of them are 
listed in Sec. II C [Eqs. (2.8) and (2.10)]). In the present 
aPRI"oach, the linear operators '3.a (I, - t2) and '3.';(t, - t2) 
in B occur instead of the "e numbers" ll.a (t, - t2, X, - x2) 
and ll.';(t, - t2, X, - x 2) ofCQFT [the latters are the inte­
gral kernels in L 2(JR3) of the formers]. 

Notes: (1) The relation between the operator families 
(0,0+) and (¢,fr) is as follows: 

oa =J(pg!2)[¢a +i(pg)-'fra ], 

oa+ =J(pg!2)[¢a -i(pg)-'fra ]· (6.20) 

Furthermore, if:J't" = L 2 (JR N ) in:J't":4 =:J't" ® A then the ba­
sis (6.12) is represented by the vectors 

<l>n, ..... nN (tP,,···,tPN) = Hn, .... nN (.JP[; tP" ... ,.ffJf tPN) 

Xexp{ - (p6tPi + ... + p~tP~)}, 
(6.21) 

in L 2(JRN) ®A, where Hn, ..... nN denote the Hermite polyno­
mials in L 2(JRN ).2 We obtain this basis directly if we solve 
the Schrodinger equation (5.8) of the q system instead of the 
operator equations (6.7). 

(2) On the basis of Sec. IV the complete orthonormal 
system (6.12) [or (6.21)] provides a complete orthogonal 

family {'i' n} = {CI» n jp;} of global states in the global state 
spaceH' = Tr:J't"A' where n = (n" ... ,nN ). Letpn be of the 
form l:me~ Pm where Pm = ItPm )(tPm 1 and {tPm} is a com­
plete orthonormal family in L 2 (JR3) such that the support of 
tPm is a cube Vm in JR3 (and these cubes have the properties 
that V m n V m' = 0, rn ¥= rn', and U m V m = JR3). Let the edge 
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of the cube V m be Em and xm denote the center of the cube in 
JR3. Then we can choose tPm in such a way that 
(tPm IxltPm ) = xm and the dispersion25 ll.m x = ~(tPm ,x) 
take the value Em' Furthermore, if (tPm IPltPm ) = km then 
the dispersions ll.m x and ll.m p do satisfy the relation 
ll.m pll.m x ;:di, i.e., ll.m p;::dilEm . Then, by (6.11) and (6.13), 
we can write 

Tr Pm (<I>n 19 1' l<I>n ):4Pm 

= Trpm Ltl (na(p) + ~)P:] 

where 90=~0 and k':" = (kg.m,km), kg.m 
= Jk~ + rn~ . Consequen~ly, in the g!obal state Cl»njp; in 

the cube Vm there are (n, (km ), ... ,nN (km ») pieces of quanta 
("KG particles") of four-momentum (k ~.m , ... ,k:'m), re­
spectively, with statistical weight e~ (plus the zero-point 
contribution ~ l:: ~ 1 k :.m ). In such a global Astate the ~pec­
tation value of the global four-momentum PJ.l = Tr 91' of 
the system is 

PI' = Tr(lJIn191'1IJIn):4 = Trpn[atl(na (p) + ~p:] 

"" n ~ (k- )k- a +"" n ~ 1 k- a ;::::::~Cm ~ na m /-L.m ~Cm L.J - J.l,m· 
m a~' m a~,2 

(6.23 ) 

[In this brief consideration the domain question in Eqs. 
(6.22) and (6.23) is slightly put away.] Since 91' is of dis­
crete spectrum, thus by (3.13) we can write 

91' = atl n~o En [na(p) ++]P: 

= r dP(k) I f En(k) (k) rna (k) + ..!..]k: ' 
JR' a~lna(k)~O 2 

(6.24) 

where ~ = lci>n):4 (ci>n I· For the global observable genera­
ted by 91' we get, by (4.8), 

PI' = P ~ = Tr i, dP(k) at, na(~ ~ 0 En(k) (k) 

X[na(k) + ~]k:. (6.25 ) 

This, by (4.9), gets the form 

P~ IH = i~ d 3
k atl [Na (k) + +]k: 

l '" N 00 [ 1 ] = d 3k L L En(k) (k) na (k) + - k: 
R' a~ 1 na(k) ~o 2 

(6.26) 

in the subspaceH = S:,:J't"(k)d 3k. This expression shows a 
complete formal coincidence with its counterpart in CQFT. 1 

However, in the present approach it is not required to intro-
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duce the normal ordering on account of the presence of the 
statistical weights c! in (6.23). 

B. Interacting fields,S matrix 

In the interaction picture the local states are governed 
by the evolution operator U(t,to) given by the formal expan­
sion (6.6) and where ¢a (t) is inserted from (6.8) using 
(6.1). For describing a local scattering problem we obtain 
the local S matrix from UU,to), along the usual line of 
thoughts, by the adiabatic hypothesis, 

S=I+I(-W~ 
n~ I n! 

(6.27) 

Clearly, S maps cW'ii in cW'A into itself (cf. Notes 1 and 2 
below). The relevant matrix element of S referring to a tran­
sition between specified initial and final local states cI>j and 
cI>j in cW'A are given as 

(6.28 ) 

when <Pj ~nd <Pj are eigenvectors of ~o then <Pj><PjEcW'ii 
and SjjEB. The transition amplitude between the global 

states'llj = cI>jfji; and \fJ> = cI>j,fp; in H I = Tr cW'A' be­
longing to the local ones, cI>j and cI>j' is provided by the 
expression 

Sjj = ('IIjISII'II j) 1= Tr ~ pj pj(<1>jIS l<1>j) A' (6.29) 

Assume that the interaction local Hamiltonian ~I 
= V(¢) is a polynomial of the fields ¢a, i.e., 

~ ~ M ~ ~ 

V(CPI,···,CPN) = L gnCP~""CP;:, n = (nl,···,nN), gn ElR. 
n=O 

( 6.30) 

[Of course, the "smallness" condition for ~I with respect 
to ~o-which is necessary that UU,to) in (6.6) be applica­
ble, i.e., the interaction picture be applicable-imposes re­
strictions for V(¢) in (6.30).38 Intuitively this means that 
the coupling constants gn should be small dimensionless 
numbers. For examples, in the case of a single scalar field 
(N = 1) this implies that M <4.] Then the terms of the local 
Smatrix in (6.27) can be expanded as a sum of normal prod­
ucts, using the pairings defined in (6.19), by Wick's first 
theorem and the corresponding terms can be represented by 
Feynman's graph techniques I (see Appendix C). 

Proposition 6.1: Let V(¢) be as given in (6.30), then the 
terms of the series (6.27) are well defined, up to the ambigu­
ity following from the T product, i.e., they do not contain 
infinite factors (ultraviolet divergences) when the matrix 
elements of them are taken between any two local states from 
the domain of them in cW'A' Consequently, the matrix ele­
ments computed in between the corresponding global states 
also do not contain such divergences. 

Proof In fact, when we expandS(n) in (6.27) by the first 
Wick theorem then by the expressions (6.8), (6.9), (6.20), 
(2.13), (6.15), (2.14), and (6.19) we take products and 
sums of well-defined elements of the operator *-algebras 
B(cW') I8iB andB-up to the ambiguity given in the Tprod­
uct by the "function" 8(t - t ')-which manipulations are 
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legitimate in between the elements of the algebraB(cW') I8iB 
and B since B(cW') I8i B is a module over B. The scalar prod­
uct (<1>llS'n) I <1>2)A , <1>1' <1>2Ei:0(s(n) H:;;;cW'A [i:0(s(n» is 
the domain of s(n) in cW'A ], yields also a well-defined ele­
ment of A, up to the mentioned ambiguity. The same can be 
said about the complex amplitude 

too, where 

Q.E.D. 

In CQFT the total interaction Hamiltonian 

for a nontrivial interaction does not exist as a well-defined 
operator in the Fock space of the free fields [Problem 2(b) 
in Sec. I] and this leads to ultraviolet divergences.5 Now in 
QLFT the local interaction Hamiltonian ~I (t) is well-de­
fined in the local state space cW' A of the free fields ¢ a (t) [and 
the term - av /a¢ in Eq. (5.12) describing the interaction 
now is a priori defined in contrast with CQFT5•

6
]: by (6.8) 

an<l ( 6.9) kI (t) given by (6.30) is a well-defined element 
of B(cW') I8i B. Consequently, the global interaction Hamil-

tonian if} (t) = Tr ~I (t) generated by ~I (t) is also a 
well-defined operator in the global statespaceH 1 = Tr cW'A' 
Thus the ultraviolet catastrophe of CQFT does not occur in 
QLFT. (Physically we can say that the local Hamiltonian 
does not contain contributions of far away fluctuations. 19) 
The Haag theorem is also avoided in this approach because 
the system of operators (fr,¢) constitutes only a f!}J -irreduci­
ble system in cW'A (cf. Note 5 in Sec. III). In summary, 
Problem 2 ofCQFT (see Sec. I) is avoided in QLFT and so 
nontrivial interactions can be described by the aid of the 
interaction picture in this model of quantized fields. 

Notes: (1) The rigorous proof of the unitarity of the S 
matrix (6.27) formally derived from U(t,to) in (6.6) would 
require a proof of the asymptotic completeness. However, 
such a proof lacks even in the q mechanical N-body scatter­
ing theory for the general case when N>4. New results along 
this line of research have been obtained by Sigal and Soffer39 

who prove the asymptotic completeness for short-range q 
mechanical systems consisting of arbitrary number of part i­
des. Short range means that the pair potentials vanish at 00 

faster than r- I. 

(2) As to the convergence of the S matrix in (6.27) we 
mention that it is convergent as much as its q mechanical 
counterpart [belonging to the Schrodinger equation, the 
eigenvalue equation of which is given by Eq. (5.13')] is. For 
the former is the extension of the latter formulated in the 
universe V, via the universe V (.3iJ) to the universe V (9'). Our 
general example is the extension of a q mechanical anhar­
monic oscillator system of state space cW' to an infinite col­
lection of such systems, the members of which are connected 
in space. Consequently the S matrix (6.27) is convergent in 
cW' A = cW' I8i A if the corresponding q mechanical S matrix is 
convergent in cW'. 
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VII. THE LORENTZ INVARIANCE AND THE CLASSICAL 
LIMIT 

Let us see first the local quantities TI-'v and vi( I-'VP be­
longing to the generators (PI-',Mvp ) of the proper Poincare 
group P f+ in CLFT, where 

and 

N ae? 
TI-'v = I --avl/Ja - e?gl-'V 

a=laa,AJa 

vi( I-'VP = TI-'pxv - Tl-'vXp' 

Since TI-'v = Tl-'v(l/J,1I',Vl/J) and vl(I-'VP = vl(I-'VP(l/J,1I',Vl/J,x), 
i.e., they are functions of the local observables (l/J,1I',Vl/J) and 
the space-time points x = (t,x), thus, applying the canonical 
quantization algorithm, we can associate operators in JVA A A A 

~th them by tJ1e s~bstitution TI-'v = TI-'v (l/J, iT, V l/J) and 
Jil-'VP = vi( I-'vp (l/J,iT,V l/J,t,x). However, by formal computa­
tion with the aid of the CCR's of the form (2.3) we can check 
that [Tol-',¢a] = - ial-' Al/Ja bu) [Tol-',iTa] # A- ial-' A1I'a for 
J-l=k (k= 1,2,3), because [TOk,iTa ] =iak 1I'a' Further-

more [TOk'xj ] # -iDjkl and [TOk,Too] #0. Thus TOk is 
not a conserved local observable and does not generate trans­
lations in lR3 in the k direction and consequently the opera­
tors (T 01-' ,10vp ) do not satisfy the commutation rules of the 
generators of P f+ and so do not generate a representation of 
P f+ in JVA • We have to look for another way. 

First we discuss the question of Poincare covariance and 
invariance in the case of free q fields. In this case we identi­
fied the local three-momentum observable of the system 
with the self-adjoint operator f) in ( 6.13 ) . Then by means of 
this operator we can generate the three-space translations of 
the system and the four space-time translations (or evolu­
tion) of the system can be described by the four-parameter 
unitary group U(a) = exp( - i9 I-'al-') in JVA where 
f) = (~o,f) and [f) I-',f) v] = 0 and a = (x - xo) 
= (t - to, X - xo). Then the local states and local observa-

bles evolve in four space-time as follows: 

<l>x = U(x) <1>0 = exp( - if) I-'xl-' )<1>0' 

F(x) = exp( - if) I-'xl-') Fo exp(if) I-'xl-') 

(with the choice Xo = 0) or in differential form 

. a<l>x A 

1--= 91-'<I>x, 
ax I-' 

(7.1 ) 

(7.2) 

Then for the field ¢a in the decomposition (6.8) we have, 
with the aid of ( 6.10), (6.11), and (6.13), 

¢a (x) = e - i9 "x"¢a (p)ei9 
"xi' 

_ (2Aa)-1/2[A+(A) ip~x" - Po aa P e 

+ aa (p)e - iP~X"] 

= r dP(k) _1_ 
JR3 ~2kg 
X [aa+ (k)eik ~x" + aa (k)e - ik~X"] , (7.3) 

where pa = (pg, p) and ka = (kg,k). If we take into ac-
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count the integral kernel representation of P(k) then we see 
that this expression is very similar to the form of the free field 
operator in CQFT. 1 However, the latter operator is not well­
defined in the Fock space of CQFT, according to the Prob­
lem 3 ofCQFT (see Sec. I). Now ¢a (x) in (7.3) is a well­
defined operator in JVA for any value of the parameter x. 
Among the hypotheses of the negative results leading to 
Problem 3 (see Theorems 10.6 and 10.7 on p. 283 in Ref. 2) 
that one does not satisfy, in the present aI;?proach, which 
requires the irreducibility of the system (iT,l/J) of operators. 
Now this system (iT,¢) is only a f!jJ -irreducible system in 
JVA (cf. Note 5 in Sec. III). 

Equation (7.2) for ¢a (x) and f..l = 0 gives 
¢a (x) = i[~o,¢a (x)] = iTa (x), while for J-l = 1,2,3 it 
yields 

Vx¢a(t,x) =i[f),¢a(t,x)] 

_ 'A(2Aa)-1/2[A + (A) ip~x" A (A) -iP~X"] - Ip Po aa P e - aa p e . 

(7.4 ) 

For the derivative V x (V x ¢a (x») = ax ¢a (x) we obtain 

4 x l/Ja (x) = i[ f) ,i[ f) ,¢a (x)]] = _ p2(2pg) -1/2 

X [aa+(p)eiP~X" +aa(p)e-iP~X"] 

= -p2¢a(x). (7.5) 

Comparing this equation with Eq. (6.7) we see that ¢a (x) 

satisfies the relativistically invariant KG equation 

(Ox + m~ )¢a (x) = 0, a = 1, ... ,N, (7.6) 

where Ox = a; - ax acts on the parameters x = (t,x) ElR4. 
Because ¢a (x) is a well-defined operator at every parameter 
pointxElR4, thus (7.6) is a well-defined operator equation in 
contrast with its conventional counterpart, 1 which is only of 
formal content because of Problem 3. 2 

Now let us see the Lorentz rotations. By the aid of the 
operators f) I-' the generators of these rotations can be easily 
identified as follows: 

1I-'v=xv(};l-'-xl-'(};v' (7.7) 

For on the set 9! the local states satisfying Eq. (7.1) we 
formally have [ 91-' ,xv] <l>x = igl-'v <l>XA Fro)? this we formal­
ly get that the family of operators (91-"vI( pv) satisfies the 
commutation relations of the Lie algebra of P f+ . Thus the 
ten-parameter unitary group 

U(a,A) = exp [i(al-' (}; I-' + ~ Al-'v1I-'V)] 

in JVA realizes formally a unitary representation of P f+ in 
JVA • The action of U(a,A) for the local states is 
U(a,A)<I>x (l/J,p,x) = <l>A-'(x_a) (l/J',p,x) where l/J' denotes 

the action on <I> of the operators (in (}; I-' and 1 vp ) acting on 
l/J. The action of U(a,A) for the local observables F is 

F' = U(a,A )FU -I (a,A). The differentialform of this rela­
tion is partly in Eq. (7.2) and is the following: 

(xval-' -xl-'av)F(x) =i[1I-'v,F(x)) (7.8) 

(cf. Note 4 below). 
Let us consider the Poincare covariance and invariance 

in the case of the interacting fields. Let us integrate the oper­
ator equations (5.12) with the boundary condition that 
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fields ¢~(t) and ¢~ut(t) exist in such a way that they satisfy 
the KG equations (6.7) (i.e., free q fields) and 

lim (¢a (t) - ¢~ut/in(t») = 0, a = 1, ... ,N. (7.9) 
t_ ± 00 

Then we obtain the following Yang-Feldman equations: 

¢a(t)=¢~(t)+ J_+oooo~~(t-t') :l (t')dt', 

(7.lOa) 

A. (t) =A.out(t) +J+oo ~a(t_t') at (t')dt' 
'Ya 'fJa _ 00 A at/>a ' 

(7.lOb) 

a= 1, ... ,N, 

~here ~~ (t) = - ()(t)~a (t) and ~~ (t) = ()(t)~a (t) and 
fia (t) is given by (2.13) with mass ma .40 By inserting Eqs. 
(7.10) into Eqs. (5.12) we can see that the asymptotic fields 
¢~ut/in (t) indeed satisfy the KG equations (6.7); further­
more (7.10) fulfills formally the asymptotic condition 
(7.9), too. Since ¢~ (t) and ¢~ut (t) are free q fields, they are 
connected by a unitary operator S in the local state space 
Jit"A of the free q fields in the way ¢~ut(t) = S -)¢~(t)S, and 
this S is formally identical with the local S matrix in (6.27) 
when one can apply perturbation theory using the interac­
tion picture (cf. Ref. 40). 

The local Hamiltonian ~ of the interacting q fields in 
(7.10) (from its time independence) equals the local Hamil­
tonian ~n/out of the free q fields ¢~/out (t) (cf. Ref. 41 ), i.e., 
formally we have 

t2i~J ~ a~) [¢a(t) + (pg)2¢~(t)] + V(¢(t»)} 

=~i [(¢~(tW+(pg)2(¢~(t)f]. (7.11) 
2a~) 

Because for the free q fields we have found the generators of 
p t+ , thus for the interacting q fields in (7.10) satisfying 
(7.9) the ~ener~tors of P t+ ~re pr5?vided by the op~rator 
familv (gt'm 1 m ) or (gt'out 1out) where gt'in/out 

:J..... Il;"'" pv J.L' vp' 

= (~;/out, gt'in/out) [the f~rm of .9in/o~.is given by ~6.13) 
(cf Note 2 below)] and 1 m/out = X gt'm/out - X gt'm/out 

• p,v v JL J-l v 

according to (7.7). Consequently the ten-parameter unitary 
group U(a,A) = exp[i(a IL .9;:,/out + !AILv1;:,:out)] in Jit"A 
gives formally a unitary representation of P t+ in Jit"A' 

Since, in the case of the solutions of Eqs. (5.12) satisfy­
ing (7.9), the translations of the q system in three-space are 
generated by a local three-momentum observable of the 
form (6.13) (cf. Notes 2 and 3 below), thus the operator 

¢a (t,x) = exp(i.9x)¢a (t)exp( - i.9x) 

satisfies, by Eqs. (7.5) and (5.12), the operator equation 

A 2 A av 
DAa (x) + ma¢a (X) = - ---.r-(X), a = 1, ... ,N. 

a¢a 

(7.12) 

These equations, relativistically invariant in form, are well­
defined at every parameter point xER4 as a consequence of 
the well-definedness of ¢a (x), in contrast with their conven­
tional counterparts in CQFT. Consequently the field equa-
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tions of the c theory recover in the quantized theory as well­
defined operator equations of the same form if the 
asymptotic condition (7.9) is fulfilled. In this model of 
quantized fields Problem 3 of CQFT is avoided. 

In this way for the free q fields and the interacting q 
fields satisfying the asymptotic condition (7.9) (for the 
most important practical cases) we have cleared up the ques­
tion of Lorentz invariance (see still Note 3 below). 

Now let us see the c limit of the model. By taking the 
expectation value of Eqs. (7.12) in any local or global state 
(from their domains) we get the Ehrenfest theorem (cf. Ref. 
19) 

(7.13) 

where, e.g., 

~a (x) = (<I>I¢a (x) I<I»A' <l>EJit"A' 

or 

~a(x) = Trp(<I>I¢a(x)I<I»A, <l>EHP, 

and similarly for (aV /a¢a) (x), too. The field equations of 
CLFT hold true in expectation value in the quantized the­
ory. Ifwe remind that ¢a (x) and 1Ta (x) are functions of the 
operator i) then it easily follows from Heisenberg's uncer­
tainty principle that theclimit (11- 0) ofQLFT is provided 
by such (global) states in which the dispersions fi1Ta and 
fi¢a referring to the canonical pair (1T,¢) and the disper­
sions fip and fix referring to the canonical pair (i),i) are 
simultaneously small. In these states the basic measuring 
hypothesis referring to both thec fields ¢a (x) and the points 
(events) of c Minkowski space-time are essentially satisfied. 
The points x = (t,x)ER4 in the arguments of the q fields 
¢a (x) are only parameters in QLFT, they do not have the 
operational meaning of the points (events) of the c Minkow­
ski space-time (cf. Ref. 10). In QLFT we cannot retain the 
physical (operational) meaning of classical space-time, we 
need the quantum space-time for the consistent interpreta­
tion of QLFT [the local state space Jit"A of QLFT carrying 
all the physical information obtained oftheq system by local 
measurements is constructed over q space-time (cf. Secs. III 
and V)])6 (cf. still Refs. 9 and 10). 

Notes: (1) By Eqs. (7.2)-(7.4) and the substitution 
t = 0 we get the operator 

(7.14) 

The c counterpart of this operator is the three-momentum 
"'-

density TOk = ~;;~ )1Ta ak¢a, but neither TOk norP(x) isa 
conserved local quantity in the sense of Eqs. (5.5) and 
(5.10) ([~o,P] #0) (cf. the following Notes 2 and 3). 

(2) By the aid of the relations (6.20) the local three­
momentum .9 introduced in (6.13) can be expressed by 
(¢,1T) in the following "nondiagonal" form: 
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N 

& = '" [./,Z pA,na + iT: pA ( pAa) -I] £.J 'f'a erO a 0 
a=l 

N A A A 

= 2: [cp~ V cP~ + iT~ V 1T~] , 
a=l 

where ¢~ = ¢ a..[Pf and iT~ = iTa (..[Pf ) --,. I and inA the sense 
of Proposition 3.2 the transformation (cp,iT) ..... (cp',iT') is a 
canonical transformation. The c local quantity 9 = ~: _ I 
[CPa Vcpa + 1Ta V1Ta] corresponding to the above & is locally 
conserved. For 

since 

and 

09 
-= (VA. -VA. ) =0 
oCPa 'f'a 'f'a 

09 -- = (V1Ta - V1Ta) = 0. 
01Ta 

(3) In CLFT, when derivative coupling does not occur 
in the Lagrangian, the total three-momentum is identical 
with the three-momentum belonging to the free fields. I Es­
sentially this fact survives after the quantization, too. For the 
global three-momentum belonging to the local one in (6.13), 
by (6.25) and (6.26), respectively, formally coincides with 
the three-momentum given in CQFT by the expression 

&k = i, d 3
xTok (x) = i, d3xatl (1Tg(x)ak ¢a (x»), 

where ~ = aX' oIa¢a is the momentum density obtained 
from the free Lagrangian X' o. "Integrating up" the operator 
in (7.14) in the parameter x [i.e., forming its trace appropri­
ately in an orthonor~al function system from ~ Z (JR3) ], t~e 
term differing from 9 vanishes, consequently P(x) and 9 
provide essentially the same global (total) three-momen­
tum. 

( 4) In the present approach the three-position param­
eter x is treated on an equal footing with the time parameter 
t. This physically reflects essentially the fact that, in the ab­
sence of explicit four-position dependence in the Lagrangian 
( 1.1), the system in four space-time is homogeneous and 
isotropic. 

VIII. DISCUSSION OF THE AXIOMS OF WIGHTMAN AND 
HAAG-KASTLER 

Now we discuss the axioms of Wightman and Haag­
Kastler in the specific models ofQLFT satisfying the asymp­
totic condition (7.9). We use the form of these axioms that 
can be found in Ref. 5, pp. 96-9S. First we see Wightman's 
axioms. 

WI: The Hilbert space of the q theoretical states is pro­
vided by the global state spaceH I = Tr jy'A, which, in Fock 

representation, is spanned by the basis {qt ,J = {ct> Ii-r;;;;} 
corresponding to the Fock basis in (6.12). The continuous 
unitary group 

U(a,A) = exp[ - i(a 11: 9:;:' + !AIlV:1:;:',,)] 

injy'A generates a continuous unitary representation of P 1+ 
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in HI, where: : denotes that the generators 9; are renor­
malized in such a way that the ground state of: 9 :~n be 0, i.e., 
: 9:~ = ~: = I N,J~. (One can achieve this, e.~, by !-he nor­
mal product in jy'o). Then the generators (:9:~n,:9:in) of 
the translation subgroup have spectrum only in the forward 
cone. For 

and 

.:77J .in2 .~.in2 "'" (Ez pZ)'" (.cr o· -.cr. )'Vn = Ii - Ii 'Vii' 

where 

E~ - P~ = Ctlpgna r -Ctl na r pZ 

;;.Ctl na r (P6,min - pZ) 

= i, dP(k)Ctl na (k) r 
x (k6,min -kz);;.O, 'v'k, 

where PO,min = minma pg. The vacuum vector qt 0 = ct>offi 
is invariant under the action of U(a,A), because 

exp[ - i(a ll :9:;:' + !AIlV:1:;:'v) ]ct>o = ct>o. 

W2: Since we deal with canonical formalism, we consid­
er an appropriately modified version of this axiom. Namely 
we consider the canonical pairs {iT(/),¢(/); IES(JR3)} 
"smeared" only in JR3 instead of the operators ¢ (I), 

IES( JR4), "smeared" in JR4 (Ref. 2). We denote this modified 
axiom by W'2. We define (cf. Note 1 below) 

¢a (I): = P(/)¢a (p)P(/), 

iTa (I): = P(/)iTa (p)P(/), (S.1) 

P(/) = 1/)(/I,JES(JR3), a = 1, ... ,N. 

Then the operators {¢( 1),;( I );jES(JR3)} are densely de­
fined in HI = Tr jy'A = jy' ® Tr A. The vector n = qto 
= ct>Q.ffi is in the domain of any polynomial of the opera­

tors (cp( 1),iT( I») and the subspace!iJ spanned algebraical­
ly by the vectors 

{¢;, (II ) iT;, (/z)· . ·¢;2N-' (hn - I )iT;2N (/zn )ct>offi: 

n>O, ./jES(JR3), j = 1, ... ,2n, iEPer(1, ... ,2N)} 

is dense in H I. This follows from the facts that the family 
(¢,iT) is!!lJ irreducible in jy'A [see Sec. III and (3.3)] and 
the elements {I/;) (Ik I:/; ,Ik ES(JR3)} generate a dense sub­
space in Tr A.35 The field ¢a (I) is covariant under the ac­
tion of P f+ in H I since 

U(a,A)¢a (I) U -1(a,A) 

= U(a,A)P(/) U -1(a,A) U(a,A)¢a U-I (a,A) 

U(a,A)P(/) U -1(a,A) = P(a,A) 1)¢aP(a,A) I). 

However, ¢( I) and iT( I) are not linear in I because, e.g., 

¢a(/1 + Iz) =P(/I + IZ)¢aP(/1 + Iz) 

=lP(/I)¢aP(/I) + P(/z)¢aP(/z) 
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W3: If the supports of f and h are disjoint in JR3 then 

¢a(f)¢p(h) = ira (f)irp(h) = ira (f)¢p(h) =0 

because (flh ) = 0 and, e.g., 

¢a (f )¢p (h) = P( f )¢aP( f )P(h )¢pP(h) 

= P(f)¢a If)(flh) (h l¢pP(h). 

Consequently ¢a (f) and ira (f), respectively, commutes 
with (¢(h),ir(h»), but from the CCR's (3.1) and Eqs. (3.3) 

[ ira ( f) ,¢ p (f) ] 

and 

- i8apca-.} cp,/I, Ca,f = (fica If), 

Ca-.} = (flca-Ilf) 

W 4: The vector n = \{lois the unique vector in HI, up to 
the multiplication (from right) by an element aEA with the 
property Tr poOa* < 00, which is invariant under time trans­
lations. For 

exp( - i:9:~n)cf>o~a = cf>o~a 

and cf>o is unique in JY'A' Consequently, n is unique up to the 
operator aEA of the indicated property and not up to a com­
plex number. 

In summary we have the following. 
Proposition 8.1: The q fields 

{¢(f),ir(f): fES(JR3)} 

defined in (8.1) in the Hilbert space H I = Tr JY' A , with the 

vacuum vector n = \{Io = cf>o~, satisfy the axioms WI 
and W3, and the axiom W'2 except for the linearity in J, and 
the axiom W 4 in such a way that n is unique under time 
translations not only up to the multiplication by a complex 
number but up to the multiplication (from right) by an oper­
ator a of A with the property Tr poOa* < 00. 

Now let us consider the Haag-Kastler axioms. 
HK 1: Since we deal with canonical formalism we give 

the correspondence B -+.J?ff (B) with the aid of an arbitrarily 
chosen time instant t. Let B, be a bounded <wen set of the 
t = constant hyperplane, i.e., B, CJR3. Here B, denotes the 
causal shadow of B,.2 Let 

O"{a.A} (.J?ff (B,») = O"{a,A} (.J?ff (B,») = O"{a,A} (P(B, )B(JY'A )P(B,») 

B, -+.J?ff (B,) = PCB, )B(JY'A )P(B,), (8.2) 

where P(B,) is the characteristic function of B" i.e., 
PCB, )E9. Then, from Lemma 2.1, 

.J?ff (B,) = PCB, )(B(JY') ®A )P(Bt ) 

=B(JY') ®P(B,)AP(B,). 

Thus .J?ff (B, ) is a C *-algebra with identity and it contains all 
the local bounded observables of the system in B, as self­
adjoint elements in.J?ff (B,). For the open bounded regionB, 
of JR4 let the correspondence be 

'" '" B, -+.J?ff (B,): = .J?ff (B,) (8.3) 

(cf. Ref. 2). Because the sets of the form B, provide the open 
sets of the Alexandrov topology of the Minkowski space M4, 
in this topology we have given the correspondence 
B -+.J?ff (B) between the open bounded sets ofM4 and the C *­
algebras with identity. Let 

.J?ff = l).J?ff (B,) = U.J?ff (B t ) 
B t B t 

= UP(B t )B(JY'A )P(B,) = B(JY'A ). 
B, 

Since the B, 's at a fixed t cover M4, this .J?ff provides the C *­
algebra of the (quasilocal) bounded observables. [In fact, 
.J?ff = B(JY'A ) = B(JY') ®A, according to Lemma 2.1, is a 
C *-algebra with identity, moreover it is a factor of type I. 3] 
.J?ff = B(JY'A ) = B(JY') ®A has an irreducible faithful rep­
resentation because it is isomorphic to B(H) where 
H = L 2 (JY',JR3) = L 2(JRN X JR3). 

HK2: Let B :CB; then B :CB; and P(B:) CP(B;), 
so 

cr.?' 2 2 "'2 CB(cn ) ® PCB ,)AP(B ,) = .J?ff (B ,). 

HK3: Let B: be spacelike separated from B; then 
B : nB ; = 0 and PCB : )P(B ;) = 0, thus 

.J?ff (B :).J?ff (B ;) 
= B(JY') ® PCB : )AP(B : )P(B ;)AP(B;) = O. 

HK4: Let {a,A)EP 1+ then the map O"{a,A}F 
= U(a,A)FU-I(a,A) is a *-automorphism of.J?ff where 

FE.J?ffandU(a,A) =exp[ -i(aI"9::' + !Al"v..ff::,v)] .Fur­
thermore we have 

= U(a,A)P(B,) U -1(a,A) U(a,A)B(JY'A) U -1(a,A) U(a,A)P(B,) U -1(a,A) 

= P( {a,A}B, )B(JY'A )P( {a,A}B,) = .J?ff( {a,A}B,) = .J?ff ({a,A}B,) 

and the map {a,A} -+ O"{a,A} is a representation of P 1+ in 
.J?ff = B(JY'A ). 

The axioms HK2 and HK3 have been verified for a fixed 
t; now, by applying HK4, we can verify them for arbitrary 
spacelike hypersurfaces in M4. 

Finally, we have the following. 
Proposition 8.2: The quasilocal algebra .J?ff = B(JY'A ) 

corresponding to the bounded local observables of the mod­
els ofQLFT satisfyin~ the aSYJIlptotic condition (7.9), with 
the correspondence B, -+.J?ff (B,) given in (8.2) and (8.3), 
satisfies the axioms HK1-HK4. 
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In this way nontrivial models are constructed which sat­
isfy the axioms of Haag-Kastler, while Wightman's axioms 
hold true only partially for them. 

Notes: (1) It could seem natural, according to (3.3), to 
consider the operators ¢a (f) = qaca (f) and ira (f) 
= Paca-l(f),JES(JR3), as the operators ¢(f) and ir(f) 
appearing in the axiom W'2. But ca (f), c;; l(f)EL(JR3), 
thus ¢ a ( f) and ira (f) do not define operators that are 
everywhere dense in JY' ®A and also in H I; the common 
domain of qa ca (f) and Paca- I (f) is S(JRN), i.eA they de­
fine linear operators only in JY' and not in JY' ® A. Conse-
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quently this choice does not satisfy W'2. 
(21 It is clear that the collection Y = Let' (B,) I 

B, CR ,B, isa bounded open set ofR3} ofC· subalgebras of 
.Jd = B(7t"A ) is a net in the sense of Ref. 42. 

IX. DISCUSSION 

(a) It is clear that this canonical quantization method 
has a general status. Its application for more general CLFT 
including spin-~ and spin-l fields, too, will be discussed in a 
subsequent paper, where QED and its numerical results will 
be also studied. . 

(b) Let !!iJ be a maximal atomic Boolean sublattice in 
f!jJ, n be the dense set of isolated points of r = Sp !!iJ (n is 
the set of atoms of !!iJ). Then 7t" ® r is the trivial Hilbert 
bundle corresponding to 7t" ® B. We can select out, in infi­
nitely many different ways, from 7t" ® n an infinite sequence 
of copies of 7t", then construct from these sequences the cor­
responding IDPS.3 Every IDPS supports an irreducible rep­
resentation of the usual ("decomposed" [cf. Eqs. (3.1) and 
(3.2)]) form ofCCR's.3 In this set ofIDPS's there are infi­
nitely many which support unitarily inequivalent represen­
tations of the usual form of the CCR.3 In the present ap­
proach, thus unitarily inequivalent representations are 
"glued" together in a unique mathematical object 
7t" A = 7t" ® A, such that 7t" A supports a !!iJ -irreducible rep­
resentation of the CCR of the form (3.5), unique up to A­
unitary equivalence. 

(c) Intuitively it is clear that the q fields ~a (x) satisfy­
ing (7.2) and (7.9) should correspond to the renormalized q 
fields, the asymptotic counterparts, ~!;/out(X), of which cor­
respond to the physical (not bare) particles (the quanta of 
which are physical free q particles). I This is supported by the 
following intuitive line of thoughts (concerning a single sca­
lar field). Following from the CCR (3.1), the commutator 

of ~(x) Aand 1T(X) = ¢(x) at identical point x equals - il 
([1T(X),¢(x)] = - ill in contrast with the corresponding 
commutator ofthe bare field ¢o(x) of CQFT, for which 

lim [¢o(x'),¢o(x)] = lim -itP(x' -x) = 00. 
x'-x x'_x 

In contrast with the latter commutator, the renormalized 
fi~ld ¢(x) = z -1/2¢0(X) commutes as follows: 
[¢(x'),¢(x)] = -iZ-W(x'-x).1 Since Z is infinite 
(e.g., by applying a spatial lattice regularization and then 
letting the lattice spacing to vanish), thus Z normalizes 
83(x' - x), in an appropriate way, at x' = x, to the unity (in 
the mentioned regularization process), i.e., the renormal­
ized field ¢(x) also commutes at identical space points to 
- iI. Consequently ¢(x) satisfies the same commutation 

relation as ~(x) and its basic dynamical equation is of the 
sameJorm as Eq. (7.12).40 It follows from this, essentially, 
that ¢(x) and ¢(x) carry the same physical content, i.e., the 
elements of the S matrix belonging to ~ (x) should carry the 
same physical information as the (renormalized) S-matrix 
elements belonging to ¢ (x). [It is known that the renormal­
ization makes definite the nonlinear term of the basic dy­
namical equation of the bare field ¢o(x), which term is a 
priori not defined.5 Thus the dynamical equation of the re­
normalized field ¢(x) has already a (formally) defined non-
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linear term.40 Then we could say that our formalism refers 
essentially directly to the renormalized fields and it derives 
the basic dynamical equations (5.12) and (7.12), respec­
tively, for these fields without referring to the bare fields.] 
However, this intuitive line of thought requires a rigorous 
proof in the further research. 

(d) In conclusion, by applying Hilbert A -module tech­
niques and the !!iJ -valued and f!jJ -valued models of the math­
ematical extension theory, a nonconventional extension of 
the canonical quantization method of q mechanics to LFT is 
presented, which is a reconsideration of the conventional 
procedure in an alternative way offered by a recent new ap­
proach of CLFT.23 We have shown that in the present ap­
proach Problems 1, 2, and 3 of CQFT (see Sec. I) do not 
occur. Furthermore, we have seen that this formalism is very 
"close" to the conventional theory: many important equa­
tions of the latter theory which do not have exact mathemat­
ical meaning recover, in the present formulation, as math­
ematically well-defined equations. Thus the a priori not 
defined basic dynamical equation of the conventional theory 
occurs in the present approach as well-defined equations. 
Furthermore, in this approach, the interaction picture is 
well-defined for nontrivial scattering matrices, too. The lo­
cal S matrix is well defined, at least to the extent of the q 
mechanical S matrix. Feynman's graph technique can be ap­
plied with a straightforward modification because the S ma­
trix of the model has the same structure as its conventional 
counterpart. The local and global scattering amplitudes of 
the local states (and the corresponding global states) are 
determined by the products ofFeynman's propagators of the 
free q fields. However, that our model of quantized fields be 
physically realistic, one has still to show that the matrix ele­
ment (6.29) in between initial and final global states, 

'11; = <I>;[jJ; and '11[ = <l>rJP;, respectively, which corre­
spond to the many-particle states of the conventional theory, 
is, within an error bound, arbitrarily small, equal to the cor­
responding renormalized matrix element of the convention­
al theory. 

In this paper we have demonstrated on a model theory 
that, in accordance with Schwinger's observation,9 a theory 
of quantized fields based on a new, quantum conception of 
space-timel5

,16 reveals a much higher mathematical regular­
ity than the conventional theory based on the classical con­
ception of space-time. 
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APPENDIX A: HILBERT A MODULES 

The Hilbert A modules can be considered as the direct 
extension of complex Hilbert spaces in the following sense. 

Defin~tion Ai: 7t"A is a Hilbert A module if 7t"A is a 
complex hnear vector space and it is a right module over the 
C· algebra A and it is equipped with anA-valued inner prod-
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uct ( I ) A: JYA XJYA -+A which has the following proper­
ties: for all CEC, aEA, and tfJl,tfJ2,tfJEJYA' 

(1) (tfJltfJl + tfJ2) A = (tfJltfJ!) A + (tfJ I tfJ2) A' 

(tfJllctfJ2) A = c(tfJlltfJ2) A; 

(2) (tfJlltfJ2a)A = (tfJlltfJ2)Aa; 

(3) (tfJlltfJ2):: = (tfJ2ItfJl)A; 
(4) (tfJltfJ)A>O, if (tfJltfJ)A =0 then tfJ=O. 

Finally JYA is complete in the norm 11'11 where 
IItfJlI = 1I«tfJltfJ)A)I/211 and 1111 denotesthenormofA.2o,27 

Clearly, if A is commutative then this definition gives 
back the notion of Kaplansky's C* modules. 26 We see from 
the definition that the class of Hilbert A modules is wider 
than the class of complex Hilbert spaces, while this wider 
class belongs of course to the class of Banach spaces. 

Let us consider the following two examples of JYA • 

(1) JYA =A, A =B(H), (tfJlltfJ2)A =aTa2, ai' a2EA. 
We can easily verify Definition AI. (Note that (ala) A >0 iff 
(tfJla*altfJ) = (atfJlatfJ) >0 where tfJER!) 

(2) JYA = JY®AwhereJYisacomplexseparableHil­
bert space and ® denotes the algebraic tensor product, and 
the A -valued inner product is of the form 

(AI) 

where cLdEC, f i,f~EJY, and ak! ,ak2 EA. One can again 
check with direct verification that Definition A I holds true 
(JY ® A denotes the completion ofthe algebraic tensor prod­
uct in the norm II «tfJltfJ) A) 1/211)· 

We note that the countably infinite direct sum 
JY A = ~ l' Ell A of the Hilbert A module JY A = A of the first 
example is isomorphic to JY ® A and the Hilbert A modules 
of this type is called trivial HilbertA-modules43 (or simply 
this type of Hilbert A modules is called as Hilbert spaces over 
A 20). Another note is that one can define the unbounded 
extension JY A = JY ® A of JY ® A as follows. In the defini-

A 

tion of JYA we replace A by A and in the properties 1-4 we 
only require equalities on the set g; = S(R3

) everywhere 
dense in H = L 2(R3

), and the completeness is required in 

theA-valued norm IItfJllA =~(tfJltfJ)A' the equality is again 
restricted to the everywhere dense set g;. 

Let us consider the operators in Hilbert A modules. 
Definition A2: For Hilbert A modules JY~ and ~ we 

denote by B (JY~ ,~ ) the set of such maps T: JY~ --+ ~ 
that there exists T*: ~ --+JY~ satisfying the condition 
(TxIY)A = (xIT*Y)A' VxEJY~, Vy~. 

Lemma A3: Every map TEB(JY~,~) is a bounded 
linear A-module map. For TEB(JY~,~) the operator T* 
is uniquely defined and belongs to B(~,JY~). With the 
norm induced from the space of bounded linear operators on 
JYA, B(JYA ,JYA ) = B(JYA ) is a C * algebra. 27 

Theorem A4 (Kasparov20
): Let JYA be a Hilbert space 

over A. Then B(JYA ) ~M(K ®A) where K = K(JY), the 
C * algebra of compact operators in JY and M( d) denotes 
the multiplier algebra of the C * algebra d (cf. Sec. II B). 
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APPENDIX B: 36'-VALUED AND ,o/J-VALUED MODELS OF 
SET THEORY 

Let 9 be the lattice of the orthogonal projectors of a 
complex separable Hilbert space H. Here 36' denotes a com­
plete Boolean sublattice of 9. 

It is a well-known fact of set theory that all statements 
and theorems of modern mathematics can be derived from 
the system of axioms of Zermelo and Fraenkel plus the axi­
om of choice (denoted this system by ZFC). 21 If V denotes 
the ordinary universe of set theory then we know trivially 
that V satisfies ZFC, i.e., a model of ZFC. Cohen and later 
Scott and Solovay had shown that there are nontrivial mod­
els in set theory which also satisfy ZFC. These models are 
called Boolean-valued (or 36' -valued) models and their uni­
verses are denoted by V (!!lJ). These models differ from V in 
that while a sentence tfJ formulated in V takes its truth values 
[tfJ] in the two elements Boolean algebra {0,1}, a sentence tfJ 
formulated in V(!!lJ) takes its truth values [tfJJ in a complete 
Boolean algebra 36'. We say that tfJ is true if [tfJ] = 1 (1 is the 
maximal element of 36' ),Jalse if [tfJJ = 0 (0 is the minimal 
element of ~) and undecidable (or true-false) if [tfJ] = b 
(bE~, b =1-1,0) ("true as much as b" and "false as much as 
1 - b "). If the usual sets, the elements of V, are represented 
by the corresponding character functions, then one can 
think of the elements of V(!!lJ) as "generalized sets," the 
character functions of which can take their values in ~. 21 

The following theorem constitutes the basis of Takeuti's 
~-valued analysis (see Theorem 30 in Ref. 21 on pp. 55-
57). 

Theorem Bl: Let tfJ be a theorem logically derivable 
from the axioms ZFC. Then [t/JJ = 1 in V(!!lJ), too. 

This theorem provides us with a procedure to produce a 
new theorem in V (!!lJ) from an old theorem tfJ in V. 

Let us see an example of 36' -valued analysis. Since V (!!lJ) 

satisfies ZFC, thus we can construct real numbers in V(!!lJ) 

by Dedekind's cuts. Then the real numbers in V(!!lJ) can be 
interpreted as the self-adjoint operators in B where B con­
sists of the linear operators in H having spectral projections 
exclusively from ~ . In this case the procedure in Theorem 
B 1 provides us with a machinery to transform theorems on 
real numbers into theorems on self-adjoint operators in 
B.3!,17 

Now let us see the notion of Takeuti's q set theory.22 
Takeuti extended the ~ -valued models in such a way that he 
replaced the Boolean algebra ~ of c logic with the Hilbert 
lattice 9 of q logic.44 In this way he extended the c set theory 
based on c logic to a set theory based on q logic and called this 
set theory q set theory. In the universe V(9') of Take uti's 9-
valued models, a statement tfJ takes its truth values, [tfJ], in 9 
and the elements of V (!?7') can be thought of as generalized 
sets, the character functions of which take their values in 9. 
Takeuti had shown that a natural generalization of the ZFC 
axiom system holds true in V(9'), thus a reasonable math­
ematics can be developed based on q logic. 22 

As an example for a mathematical object in V (!?7') we 
can see again the real numbers in V(!?7') defined by Dede­
kind's cuts. These real numbers in V (9') correspond to self­
adjoint operators in H. Thus the theory of real numbers in 
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TABLE I. Feynman's graph rules. 

Mathematical Physical 
Name Graph element equivalent interpretation 

outgoing -+-- ¢+(t) 
(J line t (J emitted 

incoming -+- ¢-(t) (J absorbed 
(J line t 

Internal t I t 2 i:iF(t I _ t 2) virtual (J 
(J line 

Vertex gand f_+oooo dt interaction 

loop CD i6. + (0) self-interaction 
att 

v (£!l') corresponds to the theory of self-adjoint operators in 
H.22 

APPENDIX C: FEYNMAN'S GRAPH RULES 

Feynman's graph rules for a single self-interacting sca­
lar field 1> of mass m and of ~I = g1>n , n;;;. 3, are collected in 
Table I. The loop representing a "self-interaction" at !...he 
instant t appears because there is no normal ordering in:J't"I 
[in this approach there is no need for normal ordering of 
fields 1>a, the local observables are well-defined operators 
without normal ordering, too (see Sec. VI)]. Thus, accord­
ing to the first Wick theorem, pairing of the field 1> with itself 
at the instant tn also appears in the expansion of S( n) • This is, 
with Eqs. (6.15), (6.16), (6.19), and (2.13), the following: 

A A All ¢(t)¢(t) = il1 + (t - t) = - dP(k). 
R' 2ko 

(el ) 

As to the interpretation of the graph elements we note that 
1>(t) satisfies the operator KG equation, thus 1>(t) describes 
a field of KG particle pure states of mass m. Keeping in mind 
this we can say by the usual ~omenclature that ¢ emitted (or 
¢ absorbed) for ¢ + (t I) [or ¢ - (t 2) ] atthe time t t, and now 
this means that at time t I the field of KG particle pure states 
was emitted on the "spacelike hypersurface" Sp YJ in q 
space-timel5 [and, respectively, for ¢- (t 2)]. The internal ¢ 
line also means the exchange of the field of virtual particle 
pure states on Sp YJ. As a further note we mention that the 
integrals over the time variables in the integrand of s(n) can 
be trivially performed and one obtains that with every vertex 
an energy conservation factor will be associated. Every "ele­
mentary" local (i.e., at time t on a spacelike hypersurface 
Sp YJ) interaction respects energy conservation. The local 
three-momentum conservation holds true trivially because S 
lies in B (:J't") ® B and is a function of p. Thus S connects only 
such local states which have the same amount of three-mo­
mentum [more precisely, the spectral projections P(k) 
guarantee that the outgoing momenta will be equal to the 
incoming momenta, the local transition amplitude only for 
those parts of local states does not vanish which have the 
same amounts of momenta]. 

Feynman's graph rules can be obtained in the ko space 
for computing the A -valued S-matrix elements between spe­
cial initial and final local states of the form ~ n = (1/ 
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/iif) (a+ )n~o' in a straightforward way from the rules of 
Table I. 
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It is shown that there are two equivalent field potentials for massless spin-2 fields in (3,2)-de 
Sitter space; a symmetric two-tensor and a three-tensor of mixed symmetry. Each theory 
carries two inequivalent Gupta-Bleuler triplets, which correspond to the two helicities. They 
differ in their behavior at spatial infinity. All four fields appear when writing linear conformal 
gravity in de Sitter space. Two of them describe the unitary conformal gravitons, and two 
describe part of the conformal ghost. 

J. INTRODUCTION 

Einstein's theory of gravitation (with a nonzero cosmo­
logical constant) can be interpreted as a theory of a metric 
field; that is, a symmetric tensor field of rank 2, on a fixed de 
Sitter background. 

Four-dimensional conformal gravity I cannot be ex­
pressed entirely in terms of a metric field, even in the linear 
approximation. The only natural vehicle for such a theory 
includes a tensor field of rank 3 and mixed symmetry. There­
fore, to learn something from Einstein's theory of gravity 
one should begin by reformulating it in terms of a mixed 
symmetry tensor field. Here we study this problem in the 
linear approximation. 

When Einstein's theory is approximated by expanding 
the metric field about the fixed de Sitter background, and 
discarding all but the leading terms, then one obtains a linear 
field theory that will be referred to as the metric form of 
linear de Sitter gravity. 2 It turns out that linear de Sitter 
gravity has an alternative formulation, in terms of a tensor 
field of rank 3 and mixed symmetry. In this paper we study 
linear de Sitter gravity in both of its alternative formulations. 

The physical propagating states oflinear de Sitter gravi­
ty are described by two copies of the massless representation 
D( 3,2). This is the unitary irreducible representation that is 
defined up to equivalence as follows. The spectrum of the 
energy operator is bounded below by Eo = 3, and in the low­
est energy eigenspace the angular momentum is s = 2. In the 
limit to zero curvature these physical representations tum 
into the massless helicity ± 2 representations of the Poin­
care group. They can be extended to the massless helicity 
± 2 representations of the conformal group SO(4,2) with­

out enlarging the modules. The associated gauge fields trans­
form by the Weyl-equivalene representations D( 4,1), 
D(0,2), and D( - 1,1); see Fig. 1. 

We will, in Sec. II, get a first overview on the tensors that 
can describe massless spin-2 theories. In Sec. III we will 
show that the minimal tensors in linear de Sitter gravity are a 
symmetric two-tensor or a mixed three-tensor. We obtain a 
group-theoretical description of the solution spaces in the 
form of Gupta-Bleuler triplets, which exhibit the gauge free-

dom of the field potentials. A mapping between the two for­
mulations is given and their properties in the limit to spatial 
infinity are discussed. 

In Sec. IV we rewrite linear conformal gravity in de Sit­
ter fields and discuss it in Sec. V using the results of Secs. II 
and III. 

II. TENSOR STRUCTURE 

In R5
, coordinated by (uJl ), f.L = 0, 1,2, 3, 5, consider 

the set of rays 

u2 
= u~ - ui - u~ - u~ + u~ >0, uJl ';'AU,.., A #0. 

(2.1 ) 

In this paper, what is called de Sitter space is just this four­
dimensional manifold. A more conventional formulation is 
obtained by using coordinates 

- I( 2) 1/2 - 2 0 UJl = uJl pu , UR = u, p> . 

Then de Sitter space (2.1) becomes 

u~ - ui - u~ - u~ + u; = p - \ 

the auxiliary coordinate u R distinguishes points along the 
rays. Employing the homogeneous coordinates uJl here is 
mostly a matter of convenience. The limit to spatial infinity, 
uJl -+ 00, is the limit u2 

-+ O. Spatial infinity itself is the three­
dimensional manifold u2 = O. 

3 

o~ 
o X 

FIG. 1. The Gutpa-Bleuler triplets oflinear 
de Sitter gravity. Shown are the (absolute 
and relative> lowest weights and the leaks. 
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It will be assumed that the fields of linear de Sitter gravi­
ty are tensor fields; our first job is to find out what are the 
possible choices of rank and symmetry. A homogeneous ten­
sorfield of rank nand degreeN on R5 is a n-linearfunction of 
n vector variables, 

I/1(u,zt,· .. ,zn) = 1/11-'''''' (u)z'tz;"', 

NI/1 = NI/1, N=u·au ' 

(2.2) 

The degree of homogeneity N can be changed arbitrarily by 
multiplying with (U2)d, dER, on de Sitter space; but not on 
spatial infinity u2 = O. Fields I/1(ul-' ) in coordinates ul-' are 
obtained by 

1/1 ( ul-' ) = 1/1( (PUR) 1I2UI-') = (PUR) N 121/1 ( UI-' ). 

We consider in this section tensors of specific symmetry 
that are transverse, traceless, and divergenceless; that is, 

ul-' 1/11-'1"" = 0, 1/11-'1-'1"" = 0, al-' 1/11-'1'''' = O. (2.3) 

The action ofa basis LI-''' = -L"I-' of the Lie algebra so(3.2) 
on tensor fields is given by 

LI-'"I/1 = (MI-''' + SI-''' )1/1, MI-''' = i(ul-' av - u" al-')' 

SI-''' = <L (Z/q.t~ - Zkv~). k aZk a~ 

degree +1 o -1 

The second-order Casimir operator is 

Q= !LI-'"LI-'''' 
For tensors satisfying Eqs. (2.3), one finds 

Q = N(N + 3) - u2 a 2 + n t (n t + 1) + n2(n2 - 1), 

where nt >n2>0 are integers that label the symmetry type 
according to the lengths of the rows of the Young diagrams. 
We do not have to consider three or more rows, as such 
tensors can be transformed to two-row tensors by multiply­
ing with the fully antisymmetric E-tensor. 

For the positive energy representation D (Eo,s), Q takes 
the value Eo(Eo-3) +s(s+ 1); for gravitons D(3,2), 
Q = 6. We choose the degree of homogeneity N so that the 
wave equation (Q - 6)1/1 = 0 takes the simple form 

UZ a ZI/1 = O. (2.4) 

This is convenient, especially for the passage to the limit to 
spatial infinity, u2 

-+ O. Thus N should satisfy 

N(N + 3) + nt(n t + 1) + nZ(n2 - 1) = 6. 

Here is a list of the possible integer degrees and associated 
symmetry types (nt,nz): 

-2 -3 -4 

(1,0)----(2,0)--------0_(2,2)-0---(2,1)_0--(1,1) (2.5) 
symmetry 

(1,1)----(2,1)--_0 (2,2)-0..--------(2,0)-0--(1,0). 

The arrows will be explained next. 
Coboundary operator: The spaces of tensor fields defined 

by Eqs. (2.3), (2,4), and (2.5) are not irreducible. Certain 
invariant subspaces can be defined in terms of a coboundary 
operator d. This operator acts within a space defined by Eqs. 
(2.3)-(2.5). Each arrow in (2.5) represents an action ofd. 
It acts on tensor fields that satisfy (2.3) and (2.4) to give 
tensor fields that satisfy the same equations. To express the 
action of d we first introduce the operator 01-' defined by 

for degree (1/1) > - ~, 

for degree (1/1) '" - ~. 
(2.6) 

The degree must be an integer in de Sitter space (2.1); it 
could be real in the universal covering space. 

Now d is defined by 

(dt/J)I-'v = (2,0)01-'<1>1'=01-'<1>1' +01'<1>1-" (2.7) 

(dA)I-''';' = (2,1 )0;. AI-''' =20;.Al-'v - 0l-'A,,;. - o"A;.I-" (2.8) 

(dh)l-'v;'p = (2,2)0;.op hl-'v 

=ovoph!-lA - o;.ovhpl-' 

- op0l-'hv;. + 0l-'0;.hvp ' (2.9) 

(dl/1)l-'vAp = (2,2)opl/1l-'v;' 

=opl/1I-''';' -o;.I/1I-'VP +o"I/1;.pl-' -0I-'I/1;.pv' (2.10) 

As before (nt,nz) stands for the corresponding Young sym-
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metrizer; A is antisymmetric, h is symmetric, and 1/1 is of 
mixed symmetry, 

AI-''' = - A"I-" hl-'v = h"I-" (2.11) 
1/11-''';' = - I/1v!-lA' 1/11-'1';' + 1/1,,;.1-' + 1/1;.1-''' = o. 

One easily checks that 

01-'0" = 0,,01-" 

and that d·d = O. Furthermore, every sequence of the form 

is exact. 

III. FIELD EQUATIONS AND SOLUTION SPACES 

A. Tensor products 

Fixing the symmetry of our traceless tensors means that 
the constant tensor carries a finite representation 
Df = D( - nt,nz) of SO(3.2). Fixing the degree of homo­
geneity to N' means that the scalar field equation (2.4) has 
positive energy solution spaces that carry D( -N',O) and 
D(3 + N',O). The two solution spaces differ in their trans­
formations under Ru = - u: D(Eo,O) transforms like4 

1/1( - u) = ( - 1 )Eol/1(U). 

They also behave differently at spatial infinity: states in 
D( - N',O) are finite on UZ = 0, while those inD(3 + N',O) 
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are of the form (U 2 )3/2 - N' <1>, with <I> finite on u2 = 0. 
We have two options: either we use one field with degree 

N' (or 3-N'), which describes two positive energy Hilbert 
spaces carried by functions symmetric or antisymmetric un­
derR;orweusetwofieldswithN = N'andN = 3 - N',and 
fix the symmetry. We choose the second possibility with 

tP( - u) = ( - 1)NtP (U). (3.1) 

Then the scalar Eq. (2.4) carries D( - N,O) and all fields 
are finite at spatial infinity. 

The tensor field which satisfies (2.4) and (3.1) carries 
the tensor product 

(3.2) 

of a finite and an infinite representation. Comparing weight 
diagrams all the tensor products for the cases ofEq. (2.5) 
can be calculated5 up to the possibility of indecomposable 
representations with Weyl-equivalent subquotients. For our 
present purposes it is sufficient to consider only representa­
tions that are Weyl equivalent to the graviton D( 3,2), that is 
D( - 1,1), D(2,0), D(3,2), and D(4,1). 

In the cases of ( 1,0) - and (1,1) -symmetry we find that 
the tensor product (3.2) contains 

D( - 1,1) and D(0,2) for N = 1, 
(3.3 ) 

D( 4,1) for N = 2; 

in the cases of (2,0)- and (2,1 )-symmetry it contains 

D(3,2) and twotimesD(0,2) andD( - 1,1) for N = 0, 

D(3,2) and two timesD(4,1) for N = - 3. (3.4) 

Finally in the cases with (2,2) -symmetry it contains 

D(0,2) andD(4,1) and twotimesD(3,2) for both 

N=-I,-2. (3.5) 

The minimal tensors that describe gravitons have (2,0)- or 
(2,1) - symmetry with N = ° or N = - 3. The two possible 
degrees will replace in de Sitter space the two helicities; the 
two possible symmetries will become connected by a kind of 
€"-duality transformation. 

B. Field equations and Gupta-Bleuler triplets 

Field potentials describe massless particles not irreduci­
bly but they have gauge freedom. Here we will give field 
equations for the full theories, generalized Lorentz condi­
tions, and the form of pure gauge fields. It turned out that the 
states in the reduction (3.4) are precisely those necessary for 
Gupta-Bleuler triplets: The potentials hand tP with N = ° 
carry 

D(0,2) ..... (D(3,2) ffiD( - 1,1») ..... D(0,2), (3.6) 

with "scalar" and gauge modes D(0,2), physical modes 
D(3,2), and a ten-dimensional finite D( - 1,1). The poten­
tials with N = - 3 carry 

D(4,1) ..... D(3,2) ..... D(4,1). (3.7) 

We will give justification for these forms in the sequel. They 
can be rigorously proved by calculation of all absolute and 
relative ground states and leakages between them, as will be 
demonstrated for pure gauge fields in the next section. 
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C. Pure gauge fields: vectors and (1,1)-tensors 

The lowest weights of the vector ¢I' are for N = 1 

( - 1,1)0 = u+zi - uiz+' 

(0,2)0 = uizj + ujzi - 2u + l(UiUj - ~ukuk8ij )z+, 

and for N = - 4, 

(4,1)0=u+ 5(u+zj -ujz+), 

with U+ = Uo + iU5' z+ =Zo + iz5. 

Acting with an energy-lowering operator M i­
= M iO - iMj5 on the states (0,2) 0 reveals a leak to the states 
( - 1,1) o. So the solution space of (2.4) carries-among 
other things-a D(0,2) ..... D( -1,1). A direct calculation 
shows that these states and therefore the full representations 
fulfill additional field equations 

u'Jz ¢ = 0, 8u '8z ¢ = 0. 

These together with Eq. (2.4) fix the second-order Casimir 
operator to Q = 6. So they project out those terms in the 
tensor products (3.2) which are not Weyl equivalent to 
D(3.2). For the states ( - 1,1)0 only holds z'8u ¢ = 0, i.e., 
d¢ = ° projects on the invariant subspace D( - 1,1). The 
symmetric tensor d¢ carries D(0,2) [resp. D(4,1») only. 
Similarly we find for the (1,1 )-tensor Al'v that 

u'8z A = 0, 8u '8z A = ° 
project on D(0,2) ..... D( - 1,1) for n = 1 and D(4,1) for 
N = - 4. As before dA = ° projects on D( - 1,1); the 
mixed tensor dA carries D(0,2) [resp. D( 4,1)] only. 

D. The potentials: (2,0)- and (2,1)-tensors 

The "gradients" d¢ and dA are nonvanishing for 
D(0,2) andD( 4,1); they are pure gauge states ofthehl'v and 
tPl'Vp tensors. The expressions ul' hl'v and ul' tPl'[vp) for N = ° 
and U-2Ul'hI'V' u- 2 ul'tPl'[vp) for N = - 3 fulfill all equa­
tions of the ¢ and A gauge fields. So they too carry the repre­
sentations D(0,2) ..... D( - 1,1) [resp. D(4,I»). We get the 
following field equations for the potentials h: the full Gupta­
Bleuler-triplets (3.6) and (3.7) fulfill 

(u'J)h (0) = ° or (U'J)h (-3) = - 3h (-31, 

hl'V = hvl-" hl'l' = 0, (3.8) 

ul'uvhl'v = 0, 81'hl'v = 0, J~h = 0. 

The Lorentz conditions, which map on physical and gauge 
modes, are 

ul'hl'v = 0. (3.9) 

For N = 0, the finite modes satisfy d(u 'h) = 0. The pure 
gauge fields are of the form 

h=d¢. (3.10) 

The corresponding equations for the tP field are 

(u'J)tP(O) = 0, or (u'J)tP(-3) = - 3tP(-3), 

tPl'VP = - tPVI'P' tPl'VV = 0, 

tPl'Vp + tPvpl' + tPPI'V = 0, 

ul'tPl'(VP) = 0, 81' tPl-'VP = 0, 

for the full triplets. The Lorentz conditions are 
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uJ.Lt/JJ.L[Vp] =0, 
pure gauge fields have the form 

t/J = dA. 

( 3.12) 

(3.13 ) 

With these field equations, the physical and gauge modes 
fulfill (Q - 6)h = (Q - 6)t/J = 0, while for the scalar 
modes we have (Q - 6)h = gauge and (Q - 6)t/J = gauge. 

E. Field strengths: the (2,2)-tensors 

Finally we investigate the (2,2)-tensors C. Specifically 
we want to show that the proportionalities 

dh(0)rxdt/J(-3) and dh(-3)rxdt/J(0) (3.14) 

hold. We have to exclude the a priori possibility that the two 
copies of D(3,2) to each degree in the tensor products (3.5) 
correspond to the two different potentials t/J and h. 

The tensors dh and dt/J fulfill the field equations (2.4) 
and all subsidiary conditions of e, 

(3.15 ) 
uJ.L eVJ.LPU = 0, {jJ.L eJ.LVpU = O. 

A straightforward calculation shows that uJ.L e ~;;,;) fulfills 
all Eqs. (3.11) of the t/J-tensor and its Lorentz condition 
(3.12), if {je(-I) = 0 and uJ.L up e ~;;,;) = O. So it carries a 
D(3,2)-D(2,0). Similarly uJ.Lup e~;;,;) fulfills all Eqs. 
(3.8) and (3.9) of h (0) if {j·e(-2) = 0, and also carries a 
D(3,2) -D(2,0). 

Therefore one of the two copies of D(3,2) for each de­
greein the tensor products (3.5) is carried by U' e(-I) [resp. 
uu . e (-2)]. We conclude that the conditions u . e = {j. e = 0 
project on maximally one D( 3,2) to each degree. This 
strongly suggests Eqs. (3.14), that is, e(-I) has two poten­
tials t/J(O) and h (-3), e(-2) has two potentials t/J(-3) and h (0). 

It will be shown in Sec. V, that the conformal spin-2 field 
satisfies equations of the type (3.14). 

We have two field strength tensors e(-I) and e(-2) cor­
responding to the two helicities ± 2. The two formulations 
of spin-2 theories in de Sitter space, with hand t/J tensors, 
describe the same Gupta-Bleuler triplets, that is, equivalent 
free theories. There is a mapping between them. 

F. Isomorphy of the hand", tensor potentials 

Let us define two tensors 

tiJ.LV;' = !EJ.LVPUTUpJuhT;., liJ.LA. = !EJ.LVPUTUVJpt/JUT;'· 
(3.16 ) 

Explicit calculation shows that EJ.LVPUTliUT = ° if t/J satisfies 
the field equations (3.11) and the Lorentz condition (3.12). 
So liJ.LV is symmetric._Similarly EJ.LvpurtipuT = 0 if h satisfies 
(3.8) and (3.9). So t/J is antisymmetric in the first two in­
dices, but not fully antisymmetric: it has the same symmetry 
as t/J. Finally we can show under the same conditions that 
equating li = h gives ti = t/J and the reverse. So Eqs. (3.15) 
describe an isomorphy between the two potentials t/J and h, if 
they both satisfy their field equations and their Lorentz con­
ditions. 

The mapping of the scalar modes can be accomplished 
by adding gauge terms ofform E J(uJ.LhJ.Lv)' E J(uJ.L t/JJ.LVp)' 
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G. The de Sitter parity, helicity, and limit to spatial 
infinity 

The de Sitter parity transformation distinguishes 
between the two degrees of the h and the t/J fields: 

h (0)( - u) = + h (O)(u), t/J(O)( - u) = + t/J(O)(u), 

h (-3)( - u) = - h (-3)(U), t/J(-3)( - u) = - t/J(-3)(U). 

(3.17) 

This reflection replaces the concept of helicity in de Sitter 
space. Inbipolarcoordinatesu i =p-l sinh(r) ({),cp);i= 1, 
2,3, Uo + ius =p-l cosh(r) eir it reflects space coordinates 
at the origin and maps time 'T to 'T + 1T. Initial data given on 
'T = 0 completely determine the fields on 'T = 1T. No informa­
tion can come in from spatial infinity.6 

In the limit u2 _O or r- 00 to spatial infinity the two 
degrees behave differently: h (0) and t/J(O) approach 00 like 1, 
h (-3) and t/J(-3) like cosh- 3 (r). 

IV. CONFORMAL LINEAR GRAVITY ON DE SITTER 
SPACE 

Conformal linear gravityl was written down in Dirac's 
six-cone formalism, then translated to Minkowski notation. 
Here we interpret it as field theory on de Sitter space. 

Six-space coordinates (Ya) are related to de Sitter co­
ordinates by 

2 ( 2 ) 1/2 UJ.L =YJ.L' UB =Y, Y4= U -UB . 

The range of indices, once and for all, is 

p,v, ... = 0,1,2,3,5; a,/3, ... = 0,1,2,3,4,5; 

a,b, ... = 0,1,2,3,5,B. 

Six-tensors lp(Y) are related to complexes of five-tensors by 

lpap ... (y) = u~u%·· ·t/Jab" (u), u~ = uDIJya. 

This works out to 

lpJ.L(Y) =t/JJ.L(u) + 2UJ.Lt/JB(U), lp4(Y) =2Y4t/JB(U), 
(4.1 ) 

and similarly for tensors of higher rank. 
The intrinsic gradient operator, on tensor fields of de­

gree N, is 

grada = (N + l)Ja -!.va J 2
• 

It gives rise to a "covariant derivative" Va: 

gradalpp ... (y) = u~u%·"Vat/Jb, ... (u). 

After some calculation one finds that 

VJ.Lt/JV;. ... = (N + 1 ){JJ.L + nuJ.L lu2) t/Jv;''' . 

+ 2rJ.Lvt/JP;. .. · + ... }, 

(4.2) 

VBt/Jv;' = -HJ 2+n(2N+3-n)lu2}t/Jv;"" (4.3) 

- {Jv + (n - 1 - N)u"lu2}t/JB;''' 

- ... - 2rv;.t/JBB"· - .... 

Here J 2 = (J I JuJ.L ) 2, n is the number of B-indices, the con­
nection coefficients are 

rJ.LV = {jJ.LV - uJ.Luvlu
2, 

and every pair of Greek indices gives rise to a term like the 
last one. 
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The equations 

:;Papp = 0, Ya :;PaP = 0, grada :;PaP = 0, 

take the following form in terms of tP: 

tP""e'" + 2u" (tPB"e'" + tP"Be'" ) = 0, U" tP"b'" = 0, (4.4) 

V"tP"b'" +2U"(VBtP,,b'" + V"tPBb"') =0. (4.5) 

The tensor field qi of linear conformal gravity is a trace­
less tensor of rank 3, mixed symmetry (and antisymmetric in 
the first two indices), and degree zero. The corresponding 
complex (\II abc) contains the following four tensors: 

Y"VA = \II"vA' h"v = hv" = \II B"v + \II Bv,,' 

l"v = -Iv" =\II"vB' a" =\II"BB' 
Tracelessness, the first of Eqs. (3.4), is expressed by 

(4.6) 

Y""" + (31"v -h"v)uv =0, h"" -4u"a" =0. (4.7) 

The first subsidiary condition, the second of Eqs. (4.4), be-
comes 

U"Y"VA =u"h"v =uJ"v =u"a" =0. (4.S) 

The second subsidiary condition, Eq. (4.5), reads 

a"Y"vA +2hvA -4ivA =0, (4.9) 

a"h"v = 2aJ"v = Say, (4.10) 

if ( 4. S) holds. 
The main dynamical equation oflinear conformal gravi­

ty is 

(2,2) gradll qi aPr = S aPril' i.e. (2,2) V d \II abc = Sabed' 
( 4.11) 

The degrees of qi and S are ° and - 1; that is 

U"V" \II =0, (u"V" + l)S=O, 

Ny = (N + 1)h = (N + 1)1= (N + 2)a = 0. 
(4.12) 

The source S is traceless, transverse, and divergenceless: 

S"b"d = 0, U"S"bed = 0, 

a"S"bed + (4 - 2n)SBbed = 0. 

As before, n denotes the number of B-indices. 
Writing out Eq. (4.11) explicitly we find 

(4.13 ) 

S"VAP = (2,2)(apY"vA + r"phVA - rVph"A)' (4.14) 

S"vBp = la 2y"vp + (2,1)aJ"v + (uvh"p - u"hvp )/u2 

+4(rvp a" -r"pav )' (4.15) 

SBvBp = l(a 2 + 2/u2 )hvp - 2(ap + up/u2 )av 

- 2(av + u,,/u2 )ap. (4.16) 

It is a good check to use these equations to verify (4.13). 
Finally, the wave equation is 

(a 2)2ffi =J":, . 16v2 ,T. . 
't" I.e., B 't" abc = Jabe' (4.17) 

It follows that 

(2,2)y.s (a 2)2qi aPr 
2 - 2-= - 2a (d\ll)aPr.s = - 2 a SaPr.s; (4.1S) 

that is, 

(2,2)c5:.iabc = - 2 a 2 (d\ll)abed = - 2(a 2S)abcd' 
( 4.19) 

This determines j "VA and j B"v + j Bv,,' but not j "vB or j "BB' 
Hence we have further constraints on S, 

(a
2
S)"VAP = 0, 2(a 2S)BvAP =j.<pv' 

2(a 2S)BvBp =jBvp +jBpv' 

and additional equations for l"v and a" : 

(4.20) 

j"VB = (a 2 
- 2/u2 )(a 2 + 2/u2 )l"v + (S/u 2 )(aa)"v' 

j"BB = (a 2 
- 6/u2 )(a 2 + 2/u2 )a". (4.21) 

Free conformal gravity has a gauge freedom 

tP aPr - tP aPr + 2 gradr Aap - grada APr + gradp Aar' 
(4.22) 

which, in de Sitter space, gives a gauge freedom of the y and h 
fields and 

l"v -l"v + !a 2 A"v - 3u" (u 2
) -IABv + 3uv (u

2
) -lAB", 

a" -a" - i(a 2 + (4/u2»)AB'" (4.23) 

So it is possible to impose a de Sitter (not conformal) invar­
iant gauge fixingl/Lv = 0, a" = 0. Then the equations offree 
conformal gravity with "Lorentz condition" (4.4), (4.5), 
and (4.17) give, in de Sitter space, (4.7)-(4.10) and 

a 2a 2Y"vA +4a2avh~ -4a 2a"hvA =0. (4.24) 

The solution space of these equations carries the physical, 
the ghost, and part of the gauge modes of conformal gravity. 
Next we want to analyze which fields in de Sitter space de­
scribe the physical and the ghost modes. 

V. CONFORMAL SPIN-2 FIELDS DECOMPOSED INTO 
DE SITTER SPIN-2 FIELDS 

The Gupta-Bleuler triplets of conformal gravity give 

{ 

D(3,2) } 
D(O,2) EB D( 4, I)} _ EB D( 1,2) EB D(2,2) EB D(3,2) _ {D(0,2) EB D( 4, 1), 

EB more fi . EB more 
(5.1 ) 

EB mte 

when decomposed into de Sitter representations. The phys­
ical modes remain irreducible, while the ghost modes not 
only contain nonunitary representations D(1,2) EBD(2,2), 
but also the unitary massless D(3,2); "more" in the gauge 
and scalar sectors means representations that are not Weyl­
equivalent to D(3,2) and therefore cannot appear in the de 
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Sitter Gupta-Bleuler triplets. This structure (5.1) appears 
twice, one time from each helicity. 

We found fields that describe the ghost modes. The non­
unitary ghosts are carried by 

(5.2) 
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the unitary ghost by 
- 2 -1-

CI''').P = (2,2) [apYl'v). + (°I'P -ul'up(u) )hv). 

-(ovp -u"up(U2)-I)hl').]. (5.4) 

The physical modes satisfy C = 0, which implies r = ° and 
H=O. 

To show all this we employ Eq. (4.24), which gives 
( - u2a 2 + N(N + 3»)H = 0. In addition H is traceless, di­
vergenceless, and transverse due to Eqs. (4.7)-(4.10). So 
the second-order Casimir operator has eigenvalue 
QH = 4H; H can only describe nonunitary ghosts. If we put 
H = 0, the same is true for r. 

The remaining solutions of Eq. (4.24) have to satisfy 
H = ° and r = 0, i.e., 

a 2hl'v = 0, a 2yl'v). = 0, 

where 

(5.5) 

hI''' == (u2) 1/2h1'V' Yl'v). ==YI'''). - u2al'h,,). + U2a" hI'). . 
(5.6) 

The fields hand Y have degree of homogeneity ° and satisfy 
the subsidiary conditions (3.8), (3.9), (3.11), and (3.12); 
we decomposed the tensor y into a divergenceless tensor Y 
and the divergence ii. Now yand h have Q = 6 and therefore 
can only carry the D(3,2) representations and pure gauge. 

The field equation C = ° projects on physical and gauge 
modes only. So C carries theD(3,2) ghost. It has degree - 1 
and fulfills the equation a 2C = 0 and the subsidiary condi­
tions (3.15), and therefore also QC = 6C. It can be brought 
into the form 

C=dy-2(U2) 1/2dh. (5.7) 

To simplify comparison with Eq. (3.14) we decompose both 
fields hand y into parts which remain finite at u2 = 0: 
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h = h (0) + (u2)3/2h (-3), 

y = yO) + (U2)3/2Y-3). 
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(5.8) 

(5.9) 

Then the equation C = ° for the physical and gauge modes 
becomes 

dyO) = 2dh (-3), dy-3) = 2dh (0). (5.10) 

So the physical conformal gravitons satisfy equations of the 
form (3.14). 

Comparison of Eqs. (4.14)-(4.16) with Eqs. (5.2)­
(5.4) shows that our conformal coupling to an external cur­
rent S is simply 

SBI"Bv = - (4u 2
)- IHl'v. 

(5.11 ) 

All the ghost modes C, r, and H vanish in empty space 
s=o. 
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Feynman diagrams for electroweak reactions representing partial helicity amplitudes are 
considered. Substitutions connect all diagrams that differ only in the direction of fermion 
currents passing through the reaction and in the property of whether a particle is incoming or 
outgoing. The substitutions act on suitably introduced signatures of the particles and of the 
special currents. A special substitution that reverses the direction of a current is elaborated. It 
is used to construct a reversal of the sequence of the interactions in a current. The crossing 
symmetries, which are derived from the "substitution rule," are different from these. The 
application of all these substitutions helps to reduce considerably the number of Feynman 
diagrams that have to be calculated explicitly. The method is illustrated by a treatment of the 
reactions ee-eeyy and ey-eZo' Thereby calculational aids are given that refine the methods 
of an earlier paper for the evaluation of helicity amplitudes and cross sections for polarized 
particles in the standard model, including massive spin-l bosons. A replacement of Dirac 
factors like E.. = Pfl Y" by dyadic products off our-component helicity spinors helps to separate 
complicated fermion currents into sums of simple spinor scalars for which the optimal forms 
are given. 

I. INTRODUCTION 

The reaction ee-eeyZo (ee-eeyy) has 40 partial am­
plitudes or Feynman diagrams in the lowest order of the 
perturbation expansion. Most of them are connected by the 
exchange of the final electrons (or photons). Ten (four) 
pairs of the remaining 20 (ten) diagrams are connected by a 
crossing symmetry of the initial and final electron states. The 
remaining ten (six) diagrams can be red uced to four (three) 
diagrams which generate all others if a substitution can be 
constructed that reverses the order of the interactions in a 
current. 

VI and VII and Appendix D. This illustrates the general 
concepts of this paper. 

It is shown that such a reversal of a current can be con­
structed if the original Feynman diagrams are equipped with 
certain dummy sign factors or signatures on which the rever­
sal operation acts. 

We show that this substitution goes beyond the frame of 
the discrete spinor transformations. It also has different 
roots than the operations of crossing symmetry which are 
based on the "substitution rule."J 

If the original Feynman diagram represents a partial 
helicity amplitude, the crossing exchanges and the current 
reversals are formulated in such a way that they can be ap­
plied also if the amplitude is given in an explicit form in the 
sense of an earlier paper, 2 quoted here as I. 

We show in Sec. II that the polarized photons are treat­
ed very similarly to the polarized electrons or spin-! particles 
as explicitly shown in paper I. The massive spin-l particles 
are similarly treated but need a 3 X 3 matrix for spin-l den­
sity. 

Appendix A contains useful proposals showing how to 
shorten the evaluation of helicity amplitudes by the use of 
dyadic products of four-component helicity spinors. 

The symmetry relations and the explicit forms of the 
helicity amplitudes for the reactions ey-eZo and 
ee _ eeyy-including the Zo exchange-are shown in Secs. 

II. CROSS SECTIONS IN TERMS OF HELICITY 
AMPLITUDES 

The amplitude of a reaction involving spin-! and spin-l 
particles, for instance, of the inelastic scattering ee - eeyZo, 

on (-Q,( ~ )-Q,( ~)O Q2( ~) Q.( ~») 
::LIt = U PJ'S! U P3,S3 flVU pz,sz U P4,S4 

(2.1) 

contains normalized spinorsz 
U + for fermions and u - for 

antifermions 

uQuQ = Q, (2.2) 

describing the states of the incoming and outgoing spin-~ 
particles. 

The general four-component spinors may be expanded 
in terms of helicity spinorsz 

uQ(p,s) = L a~(ji,s)u~(p), 
N= ±! 

(2.3) 

uQ(p,s) = L a~P(p,s)u~(p). 
N= ±! 

Here s means the spin vector at rest and P the momentum. 
The helicity spinors 

u~(p) = _1_ ( TJM 
v1 Q7J-M 

IM,P») 
IM,p) , M=QN, (2.4 ) 

u~(p) = ~ (QTJ -M (M,pl,TJM (M,pi) , (2.5) 

consist of energy factors 

TJ± =TJ± (p) = [(E±P)/m]!/z, (2.6) 

and two-component spinors 
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(2.7) 

with 

C = cos(o 12), S = sin(O 12)eit/>. (2.8) 

They are connected with the direction of the momentum 

p = (sin ° cos t,b,sin ° sin t,b,cos 0), (2.9) 

by the relations 

(N,plol'IN,p) = (l,NjJ). (2.10) 

The states of massless left-handed neutrinos show 
Q = + 1, M = - 1, while right-handed neutrinos show 
Q = - 1, M = + 1. The energy E and the absolute value p 
of the momentum are equal. Only two components of the 
spinor (2.4) are not vanishing. In this case the quantity min 
the formula (2.6) is treated as a constant and arbitrary unit 
of the energy. 

The coefficients a~ (p,s) of the expansion (2.3) are giv­
en by 

a~(p,s) = (QN,pIQ,s) = Na"N-Q(p,s). (2.11) 

The amplitude (2.1) also contains a normalized polar­
ization vector E*Il(k,s) , which describes the state of an out­
going photon with momentum k and a polarization repre­
sented by the Stokes vector s. 1 An incoming photon would 
require the complex conjugate vector r!' (k,s). The general 
polarization vectors can be expanded in terms of two helicity 
vectors3 

r!'(k,s) = L aJ (k,s)~(k). (2.12) 
N~ ±I 

In this expansion of a photon state, the same coefficients 
as shown for a fermion state (with Q = + 1) can be used. 
This shows a formal analogy between the Stokes vector of a 
photon and the spin vector of a fermion. 4 However, the 
Stokes "vector" is not a vector-as is already known5 and 
demonstrated later. For instance, if the space rotates around 
the axis of the photon propagation with angle a, the Stokes 
"vector" rotates with 2a. More specifically, if the real polar­
ization vector for linearly polarized photons turns from the 
positive x axis to the positive y axis, the Stokes "vector" 
rotates from the negative to the positive x axis. 

The polarization vectors for incoming photons in heli­
city states are given in Coulomb gauge by 

r!'+ (k) = (1IY2)(0, -g(k»), r!'_ (k) = (l/Y2)(O,g*(k»). 

(2.13 ) 

This can also be written as 

r!'+ (k) = - (lIY2) ( - ,k lulll + ,k ), 
r!'_ (k) = (l/Y2) ( +,k lulll-,k), 

because g(k) is the complex vector 

g(k) = ( - ,k liTl + ,k), 
which has the following properties: 

gg = 0, gg* = 2, gk = 0. 

(2.14) 

(2.15 ) 

(2.16) 

The vector g has been given by components in Eq.(A27) of 
paper I. 

The amplitude (2.1) has further a normalized pol ariza-
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tion vector E*'V (p,!) describing the state of an outgoing mas­
sivespin-1 particle (aZo in our case), with momentump and 
five polarization parameters !. 

Generally the state S (1) (p,Ot,b ) of a massive spin-1 parti­
cle moving in the direction Ot,b can be expanded in terms of 
three helicity states, 

S (!)(p,Ot,b) = f3 +S (l) (p,Ot,b) + f3 -S (~) (p,Ot,b) 

+ f30s 61
) (p,Ot,b). (2.17) 

In the rest frame the helicity states S }J) are represented 
by columns of three complex numbers, the spin-1 spinors, 
which are given in the standard representation (Appendix 
C) by 

(2.18 ) 

or in the vector representation (Appendix C) by 

a· <J-l,t <2),t6 1
)] (0,0t,b) 

= [- (lIY2)g(Ot,b), (lIY2)g*(Ot,b), p(Ot,b)]. (2.19) 

Both representations are connected by a unitary transforma­
tion 

"t (I) _ 'T'£" (I) 
~N -.l':J N' 

T= [t<J-l,t<2),t61
)] (0,00) 

~ ~ C~: ~i ,:J 
(2.20) 

The polarization vectors of an incoming spin-1 particle 
with mass m are constructed with the components of the 
vector representations t (I) by a Lorentz boost Let/> in the di­
rection Ot,b, 

~(p,Ot,b) = Let/> (O,t }J). (2.21 ) 

Therefore the vectors ~ are identical with (2.13) but the 
third vector is given by 

¢J(p,Ot,b) = [plm,(Elm)t61)(0,0t,b)], E2_p2=m2. 

(2.22) 

The expansions in terms of helicity states (2.3), (2.12), 
and (2.17) convert the amplitude (2.1) to a sum of helicity 
amplitudes HA(Ni ): 

(2.23) 

The cross section of a reaction is proportional to the 
transition probability W. For reactions with incompletely 
polarized particles, the quantity Wis obtained from IWll 2 if 
the products a"NQa~, andf3 "Nf3N' are substituted by the com­
ponents of the spin density matrix.2

•
3

•
5 For spin-! particles 

and photons we have the replacements 

a~a"N~--->R ~N" 

with 
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(2.25) 

Here sil and S 1 represent the components of the spin vector of 
a spin -! particle or of the Stokes "vector" of a photon parallel 
and perpendicular to the momentum p, 

S=SlIp+Sl' lsi 2.;; 1. (2.26) 

The phase factor expUt/!) is defined by the relation 

ei1/1 = sg(p)[ 1 - (pS)2] -1/2. (2.27) 

The angle t/! is the azimuth of s with regard to the helicity 
frame of the particle as introduced in paper I. 

The dyadic matrix for the products of the coefficients 
I 

P N for massive spin-l states, 

(2.28) 

has to be replaced by the density matrix p for massive spin-l 
beams: 

B-+p=pt, tr[p] = 1. (2.29) 

The spin-density matrix is usually parametrized with 
Cartesian spin-l operators given in the standard representa­
tion and relative to the helicity frame,6 by 

1 1 1 
"3-6 (Pxx +Pyy ) +TPz 

1 i 
6(Pxx - Pyy) -"3 P"y 2~ (Px - ipy) + 3~ (p"z - ipyz) 

2~ (Px + ipy) - 3~ (pxz + ipyz ) 
1 i 

6 (Pxx -Pyy) + "3 P"y 
1 1 1 
"3-6 (p"" +Pyy ) -TPz p= 

p"" + Pyy + pzz = 0 

1 1 
"3+"3 (p"" +Pyy ) 

(2.30) 

(2.31) 

or with spherical spin-l operators given in the standard representation and for the helicity frame of the particle (the z axis is 
the direction ofmotion)/,8 by 

,j3t C:)2 

1 + (l/v1)t 62
) -.fit 61

) 

- .fi (t '!.\ - t C:\ ) 

- .fi (t '!.)I + t C:\ ») 
/3(t (I) _ t (2) ) 

"1/1 +1 +1 ' 

1 - v1t 62
) 

(2.32) 

The degree of polarization is defined by 

[ 
3 2 2 2 1 2 ] 112 

D = 4" (p" +Py +pz) + 6 ~Pik 

(2.34) 

A comparison of the general matrix p, (2.30) for the 
spin-l density and the special matrixR +, and (2.25) for the 
spin density of a photon moving in the z direction yields 

(2.35 ) 

and 

p"" +Pyy = -pzz = - 1, p"z =Pyz =p" =Py = O. 
(2.36) 

The result (2.35) shows that the transversal components of 
the Stokes "vector" are really tensor components that be­
have under rotations as described before. 

Now the transition probability W is given as the sum 
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(2.33 ) 

I 
This expression can easily be realized analytically or by a 
computer if the helicity amplitudes are known. 

III. HELICITY CURRENTS 

The amplitude of a reaction is represented by a sum of 
Feynman diagrams. Each Feynman diagram is composed of 
currents passing through the reaction. The helicity currents 
including products of even or odd numbers of Dirac y-matri­
ces can easily be elaborated according to the methods of pa­
per I. We obtain, with K = ± 1, 

= (Q.l2)1J -M.1JMs (Me,Pe 10'",0'''''''0' "
2n IMs'Ps) 

+ K(QsI2)1JM.1J -Ms (Me,Pe 10''''0'", •• '0'''2n IMs'Ps), 

(3.1 ) 

2n+ 1 
uQ• (P) II y"'y( 1 - K)/2UQ, (p ) 
~ e S ~ s 

;=1 

+ K(QeQ.l2)1J -Me1J -M, 

X (Me,Pe 10'",0'''''' '0'''2n+ 1IM s'Ps)' (3.2) 
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-
FIG. I. Visualization of the reversal 'II ofa current. 

The current operators of Feynman diagrams consist of 
vertex operators separated by propagators. The vertices 
have the most general form (a factor i omitted) 

v = Pu I VI' yl' + v4 1 + P5V5 Y5 
I' 

+ Pa P5 I V~V yI'YVY5 
I'<V 

+ Pa I VI'V Y'yV + Pu Pa P5 I VS/L Ys Y 1'. (3.3) 
I'<V I' 

The fermion propagators have the form (factor i omitted) 

S(Tp) = (TE. - m + iO)-I. (3.4) 

Here we connected the vertex and propagator with 
dummy sign factors Pa' Pu' P5' and T, which form sets be­
longing to specific currents of a partial amplitude. They are 
used as indices for the action of certain substitutions as ex­
plained later. The idea is that these signs are intended to be 
finally + 1, but a substitution can require a change of some 
of these signs. If a reversal of the sequence of the factors y I' 
in the vertex V is required, the sign Pais changed. A trans­
formation y I' -+ - yl' is equivalent to Pu -+ - Pu . A trans­
formation Y5 -+ - Y5 is described by P5 -+ - P5' 

We introduce for each (real or virtual) particle a run­
ning signature9 (in/out character) 

{
-I, for an incoming particle i, 

C - (3.5) 
i - + 1, for an outgoing particle i. 

The particle momenta with regard to a special current 

Pi = Ci Pi> K, = c,k, (3.6) 

constitute the energy momentum balance 
n 

Ps + Pe + I K, = O. (3.7) 
'=1 

We observe that the product of charge and running sig­
nature is - 1 for a particle state "s" starting the current, and 
+ 1 for a particle state "e" ending the current 

Ds =csQs = - 1, De =ceQe = + 1. (3.8) 

The "starting" states and the "ending" states of currents 
should be distinguished from the "initial" and "final" states, 
which indicate the order oftime. 

A current describing n interaction points of a fermion 
has the form 

J [ Qep 1 .. · Q,P] -Q'()r Q,( ) 
Ne e' n'Ns s = uNe Pe Pe.l···n,PsuNs Ps , (3.9) 

with the current operator 
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r P .. I" 'n,P, = VIS( TPe + TKI) V2 

.. 'S(TPe + TKI + ... + TKn_ l ) Vn 

= VIS( - TPs - TKn - ... - TK2 ) V2 

.. 'S( - TPs - TKn) Vn. (3.10) 

The current similar to the original one but with reversed 
direction is 

--Q( r -Q( ) = UN, , Ps) P"n"'I,PeUN, • Pe , (3.11) 

with the current operator 

r P"n" 'I,Pe = VnS( TPs + TKn) 

... V2S( TPs + TKn + ... + TK2 ) VI 

= VnS( - TPe - TKI - ... - TKn _ I ) 

... V2S( - TPe - TKI) VI' (3.12) 

The reversal of the direction of a current may be visu­
alized by reversing the arrow of a particle line in a Feynman 
diagram. This implies that the running signatures Cs and Ce 

are conserved, but the charges Qs and Qe are changed. As a 
consequence, the state "s" now ends the current and the state 
"e" now starts the reversed current. (See Fig. 1.) 

The comparison ofthe original current operator (3.10) 
and the operator for the reversed current (3.12) yields 

r P"n" 'I,P, (T,pa,pu,p5) = {r P"I" 'n,P, ( - T,pa,pu ,P5) }v,s-rev' 

(3.13) 

The current operator with reversed direction is the 
original one after reversing the sequence of all vertices Vi 
and propagators Seq) and a change of the signs for all mo­
menta in the arguments of the propagators, which is de­
scribed by the change of the dummy sign factor T. The rever­
sal of the factors Vi and S can be expressed by reversing the 
sequence of all Dirac y-matrices in r if first the sequence of 
the y's in Vi is reversed. The reversal of the y's in Vi is equiva­
lent to the change of the dummy sign factor Pa in the expres­
sion (3.3) 

r P"n" 'I,P, (T,pa 'Pu ,P5) 

= {r P.,I" 'n,P, ( - T, - Pa,pu ,p5)} y-rev' (3.14 ) 

At this place we should note that the scalar and pseudo­
scalar couplings in the general vertex (3.3) may also contain 
derivative couplings of the form 

P v'I'R (i) P P v"I'R (i)y (3.15) a J.l' a 5 J.l 5· 

Here R (i) means the sum of momenta to the right and to the 
left of the vertex i 

R (i) = 2 (Pe + :t: Kr) + Ki 

= -2(Ps + ± Kr) -Ki' 
r=l+ 1 

( 3.16) 

The comparison of (3.12) and (3.10) shows that the 
sign of R(i) must be changed in a current of reversed order. 
And this is the reason why the "Gordon vertex" (3.15) is 
multiplied with the sign factor Pa' In the succeeding sections 
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we construct representations of an operator :tI that reverses 
the direction of a current, and all these representations as 
given in Eqs.(5.3)-(5.6) changesPa into -Pa' 

IV. SYMMETRIES OF HELICITY CURRENTS 

We observe that the reversal of the sequence of y-matri­
ces in a current operator r can be realized with the help of 
some symmetry relations for helicity currents. 

We use the relations for "Pauli" currents I( 4.1) and 
I( 4.2) 10 

(M.,Pe lul"uv " 'u1"IMs'Ps)* 

= (Ms'ps lu1" .. ·uvuI"IM.,Pe)' 

(4.1 ) 

(Me,Pe lul"uv " 'u1"IMs'Ps) 

= MeMs ( - Ms'Ps IU1"" 'uvul" I - Me,Pe)' (4.2) 

The following symmetries for helicity currents includ­
ing products of Dirac y-matrices can be derived from the 
formulas (3.1) and (3.2) with (4.1) and (4.2): 

u~: (Pe) {ft yVi} u~ (Ps) 
y-rev 

= (U~:(Ps) {ft yVi} U~:(Pe)r (4.3) 

= (-1)n+lNeN su;,Q,(ps) {ftyvi
} u;;,Qe(Pe) (4.4) 

=NeNsu~N,(PS) {ft yVi} U~Ne(Pe). (4.5) 

Let r be a sum of products of Dirac y-matrices. We 
introduce some transformations of r: 

r(S) = Ysrys, 

r(*) = - Ysrr*rYs' 

r = yDr+yD. 

(4.6) 

(4.7) 

(4.8) 

The transformation (S) supplies each factor yl" in r with a 
negative sign. The transformation (*) modifies all coefficients 
of the products of yl" (11- = 0,1,2,3; not 5) into the complex 
conjugate values. 

The symmetry relations (4.3 )-( 4.5) can now be gener­
alized to currents including the more general operator r, 

u~: (Pe ){r} y-rev u~ (Ps) 

= -N N u-Q,(p )r(S)u-Qe(p ) 
e s Ns s Ne e 

= NeNsu~ N, (Ps) ru~ Ne (Pe)' 

(4.9) 

(4.10) 

(4.11 ) 

Equation (4.9) is equivalent to the well-known relation 

(uarub )* = ubrua , (4.12) 

because 

{r}y-rev = r(*). (4.13) 

Two of the relations (4.9)-(4.11) can be combined to 
new relations that show no reversal of the sequence of y­
matrices, 
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= - NeNs [u;;, Qe(Pe )r<··S)u;' Q,(ps) ] * 
= NeNs [u~ N. (Pe) r(*)u~ N, (Ps) ] * 
= - u =~: (Pe )r<S)u =~: (Ps). 

(4.14) 

(4.15 ) 

(4.16) 

These identities ll can also be derived with the help of the 
spinor operations12 

charge conjugation 
helicity change 

~=irl*l, £= \.*Iir, (4.17) 

t! = iYsrl*l, H = \. *lirYs, 

gamma 5 

The symbols 

Ys=9:!=9i· 

1*1, \. *1 and \. *1 = \. *11*1 

( 4.18) 
( 4.19) 

( 4.20) 

here mean complex conjugation to the right side, left side, 
and to both sides, i.e., to the whole expression 

1*/2=~2=H2=r; = 1, 

\. *12 = C2 = H2 = 1, - - (4.21 ) 

\.*I=CC=HH. ..... ~ ... 
These spinor operations act on helicity spinors and current 
operators r according to13 

r'uN
Q = NuN-

Q, uQC= -NU-Q crc=' */r<··5) 
~ N.... N , ............. '\, , 

(4.22) 

HrH = - \. * Ir<*), 

(4.23) 

ysu~ = U =~, u~Ys = - u =~, Ysrys = r(S). (4.24) 

The identity (4.14) now can be derived by inserting the 
unit matrices £2 and £.2, and by the use of (4.20) 

uQ'ruQ, =uQ'ccrccuQ, = -NN' *lu- Q'r<*·5)u- Q,. 
Ne Ns N e .......... .....-.. Ns e s' Ne Ns 

(4.25) 

In a similar way the proof of the identities ( 4.15) and ( 4.16) 
works with the insertion of !:I2, !f2, and r;. 

V. THE REVERSAL OF HELICITY CURRENTS 

We introduce a special symbol for the change of signa­
tures. This symbol includes also, if required, an overall com­
plex conjugation as defined in (4.20) 

\. 'T 1== {r -+ - 'T}, \. *1 == overall complex conjugation, 14 

\. r!\.J.1 == \. 'T ')'1, \. 'T,). I\. *1== \. 'T,)., * I, etc. (5.1 ) 

The operation :tI reverses the direction of a helicity cur­
rent, :tI transforms the current (3.9) into the reversed cur­
rent (3.11) 

"'J [Qep l"'n Q,p ] -J [-Q,p n ... 1 -Qep ] 
;.I,,) Ne e' 'Ns s = Ns s' 'Ne e· 

(5.2) 

In a Feynman diagram :tI may be visualized simply by re­
versing the arrow of a current line passing through the reac­
tion. (See Fig. 1.) 

The operator :tI can be realized by a change of some 
signatures. Eventually an additional multiplication with a 
phase factor is required. We use the symmetry relations 
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( 4. 9), (4.10), or (4.11) to realize the reversal of the se­
quence of y-matrices in the current operators r required by 
(3.14). The following four realizations ofstl are found: 

stlc = - NeNs "Pa,pj, (5.3) 

stlH = NeNs" 7,Pa,Ne,Ns,Qe,Qs/' 

stl. = "7,Pu,Ps,Qe,Qs'*/ (v real), 

(5.4 ) 

(5.5) 

stly, = - "Pa,pu,ps,Ne,Ns'*/ (v real). (5.6) 

According to (4.10), the y-reversal of a current opera­
tor between fermion states is equivalent to a charge conjuga­
tion ofthe interchanged "starting" and "ending" states and 
an additional transformation (S) as defined in (4.6). The 
charge conjugation requires the change of Qe and Qs and a 
multiplication with the phase factor - NeNs. 

The transformation (S) requires that the matrix Ys is 
shifted through the current operator r with factors defined 
in (3.3) and (3.4). The result is an additional change of pu 
and 7. The changes of Qe' Qs' and 7 due to (4.10) are can­
celed by the requirements of (3.14) and (5.2). Thus the 
realization stlc (5.3) is obtained. 

By similar arguments with the use of ( 4.11) the realiza­
tion stlH is found. 

The realization stl. uses the symmetry (4.9). The trans­
formation (*) is equivalent to the change of Ps if all coeffi­
cients v in the vertices (3.3) are real. 

The fourth realization stly, is simply the product of the 
realizations just mentioned, 

stly, = stlcstlHD*. (5.7) 

We notice that an identity substitution 

I J [~:Pe,I" 'n,~ps] = J [~:Pe,I" 'n,~ps]' (5.8) 

is obtained by products of two different realizations of stl. 
The identity operations 

Ic. =stlcstl* = -NeNs "7,pu,Ps,Qe,Qs'*/ (v real), 
(5.9) 

IH* =stlHstl. = NeNs "Ps,N",Ns'*/ (v real), (5.10) 

(5.11 ) 

allow to reproduce the identity relations (4.14), (4.15), and 
(4.16). The transformation (*)in (4.14) and (4.15) requires 
a change of Ps (if the coefficients v of the vertices are real). 
The transformation (S) in (4.14) and (4.16) requires a 
change of Pu and 7. 

We ask for spinor transformations that possibly could 
be equivalent to these operations. In Sec. IV we have derived 
the different realizations of I with the help of the spinor 
transformations like the change of charge and helicity. This 
is not so for stl. It is evident that a change of Pa and Pu , 
whereas 7 remains constant-and this is just required by 
stlc -cannot be canceled by a matrix shifted through the 
current operator r. Similar remarks hold for the other real­
izations of stl. We see that the realizations of stl cannot be 
formulated without the introduction of special dummy signs 
likepa 'Pu ,Ps, and 7 into the propagators and vertices of the 
currents. Therefore, they exceed the frame of the spinor 
operations. 

For the QED that shows only vector couplings and pos­
sibly additional anomalous magnetic moment couplings, the 
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reversal of a current in the realization stlc is a pure phase 
transformation. In this special case stlc requires only a multi­
plication with the sign - Ne Ns and with factors ( - 1) for 
each vertex. The fact that in this case stlc is different from the 
identity only by a sign factor may explain why this operation 
does not seem to have been considered so far explicitly in the 
literature. 

VI. PARTICLE STATE EXCHANGES, CROSSING 
OPERATIONS, AND REVERSAL OF INTERACTIONS 

Consider a reaction with several spin-~ particles of the 
same type. The exchange of two particle states i andj 

\l3ij={p;~Pj' Q;~Qj' N;~~, E;~t), (6.1) 

leads to another allowed physical reaction if the arrow indi­
catorsD; = E; Q; and Dj = Ej Qj ofthese states are equal, i.e., 
ifboth external particle lines are directed into or both away 
from the interaction region. On the other side, if D; = - Dj , 

the exchange of the two particle states has to be completed by 
a change of the charges Q; and Qj 

x .. = {xV) =\I3ij' for D; =Dj , (6.2) 

IJ xij -) = "Q;.Q/\I3ij' for D; = - Dj. 

The action of the crossing exchange xij on a Feynman 
diagram may be visualized simply by deflecting the external 
line of the state i into the line of the state j and vice versa 
without changing the arrows connected with these lines. 
(See Fig. 2.) The arrow indicators D; and Dj are conserved 
under xij' 

D ;=xijDj = Dj. (6.3) 

Let one of the states i or j belong to an incoming state 
(E; = - 1) and the other to an outgoing state (Ej = + 1). 
In this case xij corresponds essentially (apart from a possible 
helicity flip) to a double application of the "substitution 
rule," which tells us how to transform an incoming particle 
into an outgoing antiparticle. The "substitution rule" is 
usually formulated 1 by a change of spinors and particle mo­
menta 

u + (p) <=! u - (q'), p <=! - q', 

u-(q)<=!u+(p'), q<=! -p'. 
(6.4 ) 

The transformation of momenta on the positive mass 
shell to momenta on the negative mass shell as required by 
the "substitution law" can be realized by an analytical con­
tinuation of the amplitude. 15

•
16 It is difficult to make this 

procedure unique, moreover it can be avoided. 
The formulation of the "substitution rule" is more 

transparent with the help of the running signatures Ep of the 
particles as introduced in (3.5). Instead of (6.4) we have 

Q .... Q'= -Q, p .... p', E .... E'= -E. (6.5) 

FIG. 2. Visualization of the crossing I of two peripherical states. 
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-
FIG. 3. Visualization of the reversal 91 of the sequence of the interactions in 
a current. 

If an amplitude is calculated so that the arguments of all 
resulting functions (like logarithm, square root, or Spence 
function having cuts) show how they are put infinitesimally 
above or below the real axis, the substitutions as required by 
the "substitution law" or by Xu can be realized uniquely. 

We notice that an exchange xac oftwo particle states a 
and c, which both are outgoing (incoming), can be realized 
by two operations Xab and x bc ' which exchange an incoming 
state (for instance, b) and an outgoing state. The relation 

Xac = XabXbcXab 

can be written in more detail by 
x(DaDc) = x(D~b)x(D.Dc)x(DaDb) 

ac ab be ab . 

( 6.6a) 

(6.6b) 

This relation confirms that the crossing exchanges Xu of any 
particle states are finally based on the "substitution rule.,,17 

We point out that the crossing exchanges Xu and the 
current reversal C!) have quite different features: Xu acts on 
the external lines, whereas C!) changes also the interior of a 
Feynman diagram; Xu conserves the arrow indicators D of 
the states, whereas C!) changes them. 

Let the states e and s be connected by a current, so that 
De = - Ds· In this case the product of the crossing ex­
change Xes = x~s- ) and the current reversal causes a reversal 
of the sequence of the interactions this current meets. (See 
Fig. 3.) 

The operation 

91 = '\Qe,QJ$esC!) (6.7) 

has the following effect on a current (3.9): 

91 J[~:Pe,I"'n,~ps] =J[~:Pe,n-··l,~Ps]. (6.8) 

The realizations of 91 are 

mc = - NeNs '\ Pa,Pu,Qe,Qs/$es' 

mH = NeNs '\7,Pa,N.,Ns/$es' 

m. = '\7,Pa,p5,*/$es (v real), 

mys = - '\ Pa,pu,p5,Ne,Ns,Q.,Qs,*/$es 

(6.9) 

( 6.10) 

(6.11 ) 

(v real). 

( 6.12) 

For applications in pure QED, the reversal 91 was not 
unknown so far, 18 but has not been discussed in detail. In this 
special case C!) causes only a certain sign as mentioned before, 
and therefore, 91 is essentially equivalent to a crossing substi­
tution x~s-) as Eq. (6.7) shows. 

We notice that the realizations 

(6.13 ) 

are not very practical. They require in principle that all coef­
ficients v of the vertices should be real. Moreover, all these 

227 J. Math. Phys., Vol. 28, No.1, January 1987 

realizations imply the application of a complex conjugation 
to a special current. Mostly an amplitude contains several 
currents. The constituents of these currents are twisted if the 
helicity amplitude is worked out, contractions are done, and 
the explicit form is found according to the calculational aids 
given in Appendix A. Therefore it is not possible to formu­
late a complex conjugation of one specific current, whereas 
the other currents are unchanged. But at least overall com­
plex conjugation 14 may be obtained ifm. , ... is applied to one 
current and the identities Ic. or I H • to all other currents. 

As mentioned in Sec. II, the polarization vector for a 
helicity state of a spin-l particle depends upon whether the 
particle is incoming (E = - 1) or outgoing (E = + 1), 

e;,(p,E) = (-E)Nett(p), M=:. -EN. (6.14) 

Moreover, it is complex. The effect of a complex conjugation 
on this polarization vector is described according to Eq. 
(2.13) by 

(6.15 ) 

This is an unwanted effect of '\ * / in the realizations 
(6.13) of the substitutions C!), I, and 91. It can be avoided if 
the complex conjugations in these realizations are completed 
by a change of helicity Nj and a factor ( - 1) N j for each 
affected vertex of a real spin-l particle j: 

'\*/-+( _1)Nj +···,\*,N
j

, •• '/. (6.16) 

We observe that all the realizations of C!), I, and 91 keep 
the relation 

( 6.17) 

invariant. The meaning of this identification of 7 is that a 
change of 7 is included in '\Qe,QJ, or in $es. The relation 
(6.17) allows us to eliminate 7, especially in the following 
combinations appearing in the arguments of the propaga­
tors: 

7Ps = - QsPs' 7Pe = QePe' (6.18 ) 

As a simple example for the verification of the symme­
tries 91 and X, let us calculate the partial amplitudes 9JC 1 and 
9JC2 of the reaction eO) Y(3) ..... e (2) Z 0(4) in the lowest order of 
the perturbation expansion. The amplitudes are written and 
elaborated according to the methods of Appendix A: 

_ ~ (PaP5)CE3 ( - E4)N. 2 -1M.1/2 

K m(P1K 3 ) 2V2mzo 

X(M4+M~)(21-A4')( - 311) 

x [M3N I2PI;I2.A4'.4'II-KQ" ( - 4'11) (13) 

- 7E3; 1233.A 4'.4'11 _ KQ" ( - 4' 13) ] , 

_ "" (- PaP5)CE3 ( - E4 )N. 2 -IM.1/2 
9JC2 = U 

K m(P2K 3 ) 2v'2mzo 

( 6.19) 

X (M4 + M ~) ( - 11 - A 4') ( - 31 - 2) ( - N 1N2 ) 

X [M3N22p~ -1-2,A4'.4'II-KQ" < - 4'1- 2)( - 213) 

- 7E3; _ 1_ 233,A4',4'1I- KQ" ( - 4'1 3)]. (6.20) 

The second partial amplitude is related to the first one by a 
reversal of the two interactions included in the current. 
Therefore for all realizations of 91, the following relation 
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FIG. 4. The three generating Feynman diagrams for the reaction ee-eeyy. 
The indices A and B refer to the currents A: 2-1 and B: 4- 3. 

(6.21) 

VII. SUBSTITUTIONS APPLIED TO THE REACTION 
ee ... eerr 

Figure 4 shows three partial amplitudes contributing to 
the reaction ee -+ eerr. These amplitudes are given by 

!DCA"B = ul ( -£s)~~~S(-rA,PI +Ks)( -£6)~f/J~ 

XS( -rA'PI + Ks + K6)rf.'p~ (a + bp~ptrS)U2 
XU3rf.'p~(a + bp:pfrs)u4D(P3 + P4), (7.1) 

!DCA'B' =u l ( -£s)~~~S(-rA,PI +Ks) 

XY'p~(a + bp~ptrS)U2 
X u3( - £6)~f/J~S( ~,P3 + K6)rf.'p~ 
X (a + bp:pfrs )u4D(P3 + P4 + K 6), (7.2) 

!DC'A'B = ul ( - £s)~~~S(-rA,PI + Ks)Y'p~ (a + bp~ptrs) 
XS( -rA, - P2 - K 6) ( - £6)Ef/J~U2 

(7.3 ) 

The vertex coefficients and the propagator D(q) are for pho­
tons, 

a = e, b = 0, D(q) = q-2, 

and for Zo-bosons, 

(7.4) 

a=egv , b= -egA' D(q) = (q2_m;)-I. (7.5) 

The reversal of the interaction points of the current A: 
2 -+ 1 and B: 4 -+ 3 is defined according to (6.7) as 

~A == '\QI,Q2/\l3I2'J)A, 

~B == '\Q3,Q4/\l334'J)B. 

(7.6) 

(7.7) 

The substitution 'J)A acts on the signatures 
-rA,p~,p~ oPt ,QI,Q2,NI,N2 and 'J)B on ~ ,p:, . .. ,N3,N4. The po­
larization vectors E; ==EN , of the photons with defined heli­
city N; are complex valued. Therefore, we avoid the repre­
sentations 'J). (5.5) and 'J)y, (5.6), which are applicable 
only if all coefficients of the vertices are real or if the precau­
tions (6.16) are taken. 

The permutation of the currents A and B is defined by 

\l3AB =\l313\l324{-rA ,pA, ... ++~ ,pB, .. .}. (7.8) 

The amplitudes (7.1 )-(7.3) show internal symmetries 
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!DCA"B = ~B!DCA "B' 

!DCA 'B' = \l3s6\l3AB !DCA 'B" 

!DC'A'B = ~B!DC'A'B' 

(7.9) 

(7.10) 

(7.11) 

= \l356~A!DC'A'B' (7.12) 

Four partial amplitudes arise from !DCA"B by substitu­
tions, all having two succeeding external photons: 

(1 + \l3 AB ) (1 + ~ A ) !DC A • B . ( 7.13 ) 

Similarly,!DCA 'B' is the source offour amplitudes having 
two external photons at different currents: 

(7.14) 

Two partial amplitudes with two photons at the same 
current derived from 

(7.15) 

These ten amplitudes are completed to 40 by the addi­
tion of all contributions with reversed photons and with final 
fermions exchanged, if the following operator is applied: 

(1 - \l313)( 1 + \l356)' (7.16) 

The internal symmetries (7.9)-(7.15) allow us to for­
mulate the sum of all 40 partial amplitudes by 

!DC = (1 - \l313)( 1 + \l3s6) (1 + \l3AB) (1 + ~A) (1 + ~B) 
X [!!DCA"B +!!DCA'B' +l!DC'A'B]' (7.17) 

This result shows that only three partial amplitudes of the 
reaction ee-+eerr have to be calculated explicitly whereas 
the remaining 37 amplitudes are obtained from these by var­
ious substitutions. The three generating helicity amplitudes 
have been worked out in Appendix D according to the meth­
ods described in the earlier paper I (Ref. 2) and Appendix 
A. 

VIII. CONCLUDING REMARKS 

The example of the preceding section illustrates that all 
the Feynman diagrams contributing to a physical reaction in 
the same order of the perturbation expansion can be classi­
fied in groups of topologically equivalent members. And all 
the members are connected by three types of transforma­
tions: (a) the permutation of two external particles of the 
same type-like \l312 for two electrons 1 and 2 or \l356 for two 
photons 5 and 6 in the preceding example; (b) the permuta­
tion of two currents of equal fermions passing through the 
reaction-like \l3AB which exchanges the current A: 2-+ 1 
and B: 4 -+ 3; and (c) the reversal of the order of the interac­
tion points of a specific current-like ~A or ~B' The ampli­
tudes of two reactions that are different by a change of an 
incoming particle into an outgoing antiparticle are connect­
ed by a further type of transformation: (d) which applies the 
"substitution rule" and the crossing exchange I-as dis­
cussed in Sec. VI. Some of these transformations combine 
two symmetry operations, which reproduce each member of 
a group of topologically equivalent diagrams. 

We showed in this paper that all these transformations 
can be formulated as simple substitutions that act on the 
particle indices and their natural signatures like charge, heli­
city, or in/out characters (Secs. II and III) as well as on 
some artificial dummy signs that have to be attached to the 
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fermion propagators and the vertex operators in the different 
currents of a diagram (Secs. III and VI). 

For each group of topologically equivalent diagrams 
there exists a representative expression that shows the parti­
cle signatures and dummy signs as general symbols. The rep­
resenting expressions are expanded in explicit forms offunc­
tions of particle energies and momenta according to the 
methods described in Appendix A. The particle signatures 
and dummy signs are likewise apparent in the explicit and in 
the original form of the representative amplitude. Therefore 
the explicit contributions of the different Feynman diagrams 
can be generated from the explicit form of the representative 
amplitude by the application of simple substitutions. We no­
tice that the symmetry operations can be used to prove the 
explicit forms of the generating expressions. If crossing oper­
ations are required- and the analytic form of the generating 
expressions are calculated-no difficult analytical continua­
tions but only simple substitutions have to be performed. 

In this way, the use of the substitutions connecting topo­
logically equivalent Feynman diagrams reduces the calcula­
tional efforts to evaluate the helicity amplitudes. 
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APPENDIX A: CALCULATIONAL AIDS FOR THE 
EVALUATION OF HELICITY AMPLITUDES 

It is useful to formulate the helicity amplitudes not with 
thehelicityspinors u~, Eq. (2.4 )-(2.S), but with the spinors 
w~ = ,[iiIu~ having the physical dimensionpl/2, 

Q _ 1 ( ~MIM,ft») _ 
wN(p) - V1 Q~ _MIM,p) , M - QN, 

w~(p) = ~ (Q~ _M(M,pl'~M(M,pl), 
with 

~M = (E+Mp)I/2. 

These spinors are normalized according to 

w~(P)w~(P) = Qm8QQ8NN · 

(AI) 

(A2) 

(A3) 

Sometimes we abbreviate these four-component spinors for 
different particles i by setting 

w;==w;==wgM,(p;), w;-;==wQ,~:(pj)' etc. (A4) 

Here we recall that according to (AI) M = QN for spin-! 
particles, but according to (6.14) M = - EN for spin-I par­
ticles. Similarly, we abbreviate 

Ii) == IMoPj), (- ilj) == ( - Mopj IMj,pj)' 

Q12··.==QIQ2···' ~.i==~N,<kj)' etc. 
(A5) 

The spinors of type w~ can also be introduced for massless 
particles. In this case we have 
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w~(k) = QNw=~(k) = QNw~(k), for k 2 = 0. 
(A6) 
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The factor Ys acts on a four-component spinor according to 
(4.24), 

Ysw~(p) = w=~(p), w~(p)Ys = - w=~(p). (A7) 

The numerators of Feynman amplitudes show several 
Dirac factors ~ = aft Y" . In many cases it is useful to replace 
these factors by dyadic products of helicity spinors. 19 We 
give some examples, using the convention that the two val­
ues ± 1 of the primed indices should be summed 

!!. + Qm = 2w~, (p)w~, (p), forp2 = m2, 

!!. = w~: (p)w~: (p), 

'5. = 2w~, (k)w~, (k), for k 2 = 0, 

(AS) 

(A9) 

(A1O) 

~N(P) = - (1lm)2-INI/2(N-Q'N')wq;",(p)w=~:(p), 

for N = 0, ± 1, A = ( - 1 )N, AN = - N, 
(All) 

~N(P) = -N(.j2lm)w~~'(P)WN(J?'(P)' for N= ± 1, 
(AI2) 

~N(P) = - ~N(P)!!. 

= 2 -INI12(NQ' - N')w=q;", (p)w~: (p), 

for N = 0, ± 1, A = ( - 1 )N, 

'5.~N(k) = - ~N(k)'5. = 2.j2Qw8N(k)w~QN(k), 

for N = ± 1, k 2 = 0, 

1 = (llm)Q 'w~: (p)W~: (p). 

(AB) 

(AI4) 

(AI5) 

In Eqs. (A1O) and (AI4) the charge Q = ± 1 is really ficti­
tious and has no affect on physical results. 

From the well-known formula (AS) one derives (A9), 
(A 10), and (A 15). The relation (A 11) shows how to treat 
the vertex for photons or other (massive) spin-I particles. 
Equation (All) is derived separately in Appendix B. Equa­
tion (AI2) specializes (All). Equation (AB) is a conse­
quence of (A9) and (A 11 ) with regard to the normalization 
(A3). Equation (AI4) is obtained by a specialization of 
(AB) with the help of (A6). 

If two or more successive factors Yft appear in a Dirac 
current, our method separates these by the dyadic form 
(AI5) of the unit operator. 

If all the Dirac factors included in the helicity currents 
are replaced by their dyadic forms (AS)-(AI5), the numer­
ator of a Feynman helicity amplitude is resolved into a sum 
of products with four-spinor scalars like WjWj or contracted 
helicity vector currents like WIYftW2W3y"W4' Moreover, the 
last expression can be transformed into four-spinor scalars 
because of the following formula20: 

-I 2-3,.1< 4 -I 4-3 2 -I -4-3 -2 WI Yft W2W3 r W4 = WI W4 W3W2 - WI W _4W3W_2 

- N2N3W: w3_ 3 w2_ 2 W! 

+ N2N3W:W3-3W2_2W=!' (AI6) 

If we proceed in this way we obtain many factors WjWj 

that can be expressed according to (A 19) by scalars of two­
component spinors like (Mi>Pj IMj,pj) and energy functions 
of the form 
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tM,M2"'MnIlQ 

=tM, (PI)" ·tMn (PlI) + Qt -M, (PI)···t -Mn (PlI)' 

(AI7) 

Sometimes we write this energy function in the abbreviated 
notation 

(AI8) 

However, it is not useful to replace schematically all the 
Dirac factors by dyadic products. In this way the number of 
summations over the intermediate indices Qj and N j would 
increase too much. Therefore we propose to maintain several 
forms of currents and current products that can be expressed 
in a manner as compact as WjWj • 

We gather here some useful compact expression of sev­
eral currents and current products: 

WIW2 = !Q2 tl- 211Q" (112) = !Qlt _ 1211Q" (11 2), (AI9) 

wIYJl W2W3y1'W4 

= !M2M 3 [Q34t12 - 3 -41IQ",. (114) ( - 21 - 3) 

- t1234I1Q",. (11 - 3) ( - 214)], (A20) 

WI~N2 (P2)W3 

= (1/2m2)2 -IN2112(N2 + N2 )tM,.ANz.Nz.M,II-Q" 

x(MI I-AN2)( -N2IM3 ), 

for N2 = 0, ± 1, A = ( - 1 )N" AN2 = - N2. 

This formula is specialized for N2 = 0, 

WI~O(P2)W3 

= (1/2m2)N 2tM,N2NzM,II- Q" 

X (MI I-N2)( -N2IM3 ), 

and for N2 = ± 1, 

(A2l) 

(A2I') 

WI~N, (P2)W3 = (1/v1)N£I3I1_ Q" (112) ( - 213), (A21") 

WI~N2~N,W4 = - (1/2m2m3)2 - <IN,I + IN,ll/2 

(A22) 

Especially21 for N2 = ± 1, N3 = ± 1, 

WI~N,~NJW4 = - Q4N 2N3tl-4I1Q,. (112)( - 213)( - 314), 
(A22') 

WI /!.2W3 = !t12'2'3I1Qu (11- 2')( - 2'13), (A23) 

WI /!.2l!.3W4 = !Q4tl2'2'3'3'-41IQ,. (11- 2')( - 2'13')(3'14). 
(A24) 

In paper I we derived some formulas that expressed 
products of currents with several contractions like 
WIYJlYvW2W3yvyI'W4' etc. These formulas have been derived 
from the very general formula I (3.11). Our present method, 
namely to separate the factors by the dyadic form (AI5) of 
the unit operator and to apply (A20) repeatedly, works just 
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as effectively. In some cases several summations over helici­
ties N j or "charges" Qj-denoted by primed indices-ap­
pear in the results. These summations can be done in many 
cases. For this purpose we found the following formulas use­
ful: 

tM''''MmIIAQ,tMm+ 1"'MnIIBQ' = 2tM''''MnIIAB' 

Q 'tM,"'MmIlAQ,tMm+ 1"'MnIIBQ' 

= 2At -M,'" -MmMm+ 1"'MnIIAB 

= 2BtM""Mm-Mm+ I'" -MnIlAB ' 

tN,fikNkNk"'IIQ INk> (N~ 1= 2ktNkNk"'1IQ INk)(Nk I, 

for k 2 = 0, 

tMMIl + I = 2EtiMM + 2mtiM, -M' 

tMMII- I = 2MptiMM , 

tMt-M=m, 

tM''''IIQ = Qt -M, - "'IIQ' 

tMkMk"'IIQ =MktM~k"'II-Q' for k
2
=0, 

tM,M/"IIQ,tMiM''''IIQ, = tMiM,M/"M''''IIQ,Q, 

(M,pIM,P) = tiMM , 

IM',P) (M',pl = 1, 

+ m j Q2tMj'" -M,- "'IIQ,Q,' 

(-MI,PII-M2,P2) = MIM2(M2,P2IMI,PI)' 

(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 

(A3l) 

(A32) 

(A33) 

(A34) 

(A35) 

(A36) 

(A37) 

The relations (A25)-(A34) are easily derived from the 
definitions (A2) and (A 17 ); (A3 5) is the normalization 
relation of the two-component spinors, (A20) is found in 
paper I as I(BI2), and (A37) is a special case ofI(A35). 
The completeness relation (A36) is contained in I(A32) for 
i = k, while (AI9) is directly derived from (Al) with 
(AI7), and (AI6) is obtained by a comparison of (AI9) 
and (A20). Also, (A21 ) and (A22) are derived from (A 11 ) 
with (AI9) and (A25). We notice that (A22) can also be 
reduced to (A2l) if the dyadic form (AI5) oftheunitoper­
ator is inserted between €2 and €3' and (A26) is applied. The 
specializations (A21") and (A22') use (A30). The relation 
(A9) with (AI9) and (A25) yields (A23) and (A24). 

If a vertex in a current shows a factor v(a + bys) we 
replace this factor by 

VtJK (PaPsYs )C, if v = YJl , 

VtJK (PsYs)C, if v = 1, 

VtJKYs, if v = YJlYv' f-l=fv. 

(A38) 

(A39) 

(A40) 

Here the exponent of Ys is a function of a dummy sign 
K= ± 1, 

C(K) = !(1-K) =c, 
and tJK represents a substitution operator 

tJK=a + b \K/ 

(A41) 

(A42) 

in front of the current. The meaning is that K, like all other 
dummy sign factors introduced in this paper, gets the value 
+ 1 after the substitutions have been worked. 

The surrogate factor Ys appears only in the neighbor-
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hood of a spinor or of a numerator of a propagator replaced 
by a dyadic product according to (A8)-(A15). Therefore 
the formulas (A 7) or more directly 

(A43) 

can always be applied to eliminate rs . 
If the propagators of the bosons a,b, ... belong to photons 

or massive vector bosons, we introduce dummy masses 
Aa,Ab , ... in these propagators and specialize at the end of the 
calculation. Thereby we use the symbol 

14 ~ m == {A = m in the succeeding expression} (A44) 

to assign a special mass to the dummy A. 

APPENDIX B: THE DYADIC FORM OF THE VERTEX EN 

OF A MASSIVE SPIN-1 PARTICLE OF DEFINITE -
HELICITY N 

For the "transversal" helicities N = ± 1 we had in pa­
per I, Eq. (3.10), the formula 

e;.(p)u~ = -e;.(p)if=N/2IN,p>( -N,pl. (B1) 

For the polarization vector (2.22) of "longitudinal" helicity 
N= 0, i.e., 

(
p E~) E m ~ Eb(p)= -,-p =-~--(1,Q), 
m m mp p 

(B2) 

we use (A36) and from paper I, Eq. 1(3.8), to derive22 the 
formulas 

Eb(p)U ~ =..!.. I N't7v' (p) 1- N',p> ( - N',pl, 
m N'~ ±1 

(B3) 

Eb(p)u~ =..!.. I N't7v' (p) IN',p> (N',pl· (B4) 
m N'~ ±1 

Equations (B3) and (B 1) as well as (B4) and (B 1) can be 
combined using (A30), A = ( - l)N, and N = 0, ± 1 to 
give 

e;.(p)U~ = ..!..2-INI/2 I (N+N')tN'(P)tAN'(P) 
m N'~ ±1 

Xl-AN',P>( -N',pl, (B5) 

e;.(p)U~ 

= _..!..2-INI/2 I (N + N') t - N' (p)t -AN' (p) 
N'~ ±1 m 

xl-AN',p>( -N',pl· (B6) 

Using (AI) we construct the dyadic product (M = QN) 

w = ~N (p) w~ (p) 

= ..!.. ( QtAMt-M 
2 -t-AMt-M 

tAMtM ) IAM~>(krl. 
Q

'r _r_ ,p,p 
- ~ -AM~M 

(B7) 

The multiplication with N - QN and summation over Q and 
Nyields 
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Multiply now with - (11m) 2 - IN 1/2. The result is equal to 

EN = (0 e;.OU~) , (B9) 
- e;.ul' 

where the elements are given by (B5) and (B6). Hence, 
formula (All) is correct. 

APPENDIX C: SPIN-1 REPRESENTATIONS 

The standard representation of spin-1 states is obtained 
from the Kronecker product of two Weyl spinors u' and v. 
by 

11/2 
-11/2 

(C1) 

In the rest system of the particle, the unitary transformation 
U separates the spin-1 space (components 1,2,3) and the 
spin-O space (component 4). A further unitary transforma­
tion T leads to the vector representation 

(

-1 

1 - i 
T=-/2 . 

We find 

/'" _ 1 T ,. ~ 0 S - - (u,u v.) = (S,S ). 
/2 

Here 

u', = (- ux ' - uy , - uz ,l) 

are the Pauli matrices, and 

u,=xu', X= (-'1 1.). 

-i 
(C2) 

(C3) 

(C4) 

(C5) 

This result helps to understand Eqs. (2.14) and (2.19). 

APPENDIX D: THE BASIC HELICITY AMPLITUDES OF 
THE REACTION ee~eerr 

The following reactions e ± e ± - e ± e ± 1'1', e + e­
- e + e - 1'1', and re ± - e ± e + e - l' are described by the same 
helicity amplitude for various configurations: two spin-~ par­
ticles in the "starting" states 2 and 4 are scattered into the 
"ending" states 1 and 3. Thereby two photons 5 and 6 are 
emitted. 

For abbreviation we use particle indices instead of part i­
cle signatures if the meaning of the indexed expression is 
unique. These abbreviations are explained in (A 4), (A5), 
and (A18). According to Eqs. (2.4), (3.6), (6.14), and 
( 6.17), the following relations are used in the calculation 
(fermion indicesj = 1,2,3,4 photon indices 1=5,6): 
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~ = Qj~' M[ = - £[N[, Pj = £jPj' K[ = £[k[, one boson propagator describing the r-exchange as well as 
the Zo-exchange. The two vertices are replaced by 

(p~pt)eAY'rf with C A =!( 1 - ~ ), and (p:pf)eBr/L rf 
with C B = ! (1 -,.n). The boson propagator has a dummy 
mass A, which is zero for a r-exchange, and mzo + ir Zo for a 
Zo-exchange. The amplitudes are therefore dependent on 
~,,.n, and A. 

(01) 

QI = rA£I' Q2 = - ~£2' Q3 = ~£3' Q4 = - ~£4' 
(02) 

According to the convention introduced in Appendix A, 
primed signatures or indices should be summed. 

The Feynman diagrams of the basic helicity amplitudes 
are shown in Fig. 4. These diagrams contain two vertices and 

I 

As an example for the method of calculation described 
in Appendix A, consider the partial amplitude (7.2) 

-I ( Q ,p- e A 2-3 k e B 
4 -I k e A 2-3 e B 4] +£3£6WI~S 2.1 + 1m ), r5 W2W3~6_6r/Lr5 W4 +£1£3£S£6WI~S_5Y'r5 W2W3~6~6r/Lr5 W4 . (03) 

The relations (A8) and (A14) allow us to substitute.e. + Qm and ~[~[ by (sums of) dyadic spin or products 

Wl~.l',A = ~ QIQ3£S£6(p~pt)eA(p:pf)eB{2(PIK5)2(P3K6)[ (P3 + P4 + K6)2 - A 2]}-1 
m 

The spinor expressions WaY'rfWbWCr"rfwd' Wa~Wb' and Wawb' are now evaluated using the relations (A43), (A20), 
(A21"), and (A19). Helicities with primed indices are summed. The relation (A29) helps to perform these summations. The 
fictitious dependence upon the arbitrary "charges of the photons" Q5 and Q6 will disappear. This result is obtained with the 
help of (A32) and (A34), 

Wl~.l',A = (1/m2)(p~pt)eA(p:pf)eBQI3M2N6{2(PIKs)2(P3K6)[ (P3 + P4 + K6)2 - A 2]}-1(115) (16) 

X {NsM I4PJP3( - 511)( - 613) [,.nQ34;12_3_ 41IQ..-',!'(14)( - 21- 3) - ; 1234I1Q..-',!'01- 3)( - 21 4)] 

+£12P3( - 613) [,.nQ34;12_3_4_5_51IQ..-',!'( - 514)( - 21- 3) - ;1234-5- 51IQ..-',!'( - 51- 3)( - 21 4)] 

+ £3£~sMI2pI ( - 511) [,.nQ34;12 _ 3 _ 4661IQ..-',!' (14) ( - 216) - ;1234 _ 6 _ 61IQ..-',!' (16) ( - 214) ] 

+ £1£3£6 [,.nQ34;12 _ 3 _ 4 _ 5 _ 566I1Q..-',!' ( - 514) ( - 216) - ;1234 _ 5 _ 5 _ 6 _ 61IQ..-',!' ( - 516) ( - 21 4 ) p. (05) 

Similarly we calculate the remaining two Feynman amplitudes 

Wl~;'t'A = (1lm2)p~p~(p~pt)C',<p:pf)eBM2M3{2(PIKs)[ (PI + Ks + K6)2 - m 2] [(P3 + P4)2 - A 2]}-1 (115) 

X {NsN64pi ( - 511)016)( - 611) [,.nQ34;12_3_41IQ..-',!'(14)( - 21- 3) - ; 12341IQ..-',!'01- 3)( - 214)] 

+ £1£sNsN~12pI ( - 511) (1 6) ( - 615') [,.nQ34;12 _ 3 _ 45'5'11- Q..-',!' (5'1 4) ( - 21 - 3) 

- ;12345'5'11- Q..-',!' (5'1 - 3) ( - 21 4)] + £ IN5MI2p I ( - 511) (16) 

X [,.nQ34;12 _ 3 _ 4 _ 6 _ 61IQ..-',!' ( - 614) ( - 21 - 3) - ;1234 _ 6 _ 6I1Q..-',!' ( - 61 - 3) ( - 214) ] 

+ EIN6( - 516) ( - 611');11' _ 5 _ 511- [,.nQ34;1'2 _ 3 _ 4I1Q..-',!' 0 '1 4 ) ( - 21 - 3) - ;1 '234 II Q..-',!' (1'1 - 3) ( - 21 4 ) ] 

+ NsN62ks( - 516)( - 61- 5) [,.nQ34;12_3_4_5_5I1Q..-',!'( - 514)( - 21- 3) 

- ;1234 _ 5 _ 51IQ..-',!' ( - 51 - 3) ( - 21 4)] + ( - 516) [,.nQ34;12 _ 3 _ 4 _ 5 _ 5 _ 6 _ 61IQ..-',!' ( - 614) ( - 21 - 3) 

- ;1234- 5 _ 5 _ 6 _ 61IQ..-',!'( - 61 - 3) ( - 214) p, (06) 

Wl~,,'t·A = (1lm2)p~p~(p~pt)eA(p:pf)eBQ12M3N6{2(PIK5)2(P2K6) [(P3 + P4)2 - A 2]}-J (15) ( - 612) 

232 

X {NsM I4PJP2( - 511) (216) [,.nQ34;12 _ 3 _ 41IQ..-',!' (14) ( - 21 - 3) - ; 12341IQ..-',!' 01 - 3) ( - 214) ] 

+ £12p2(216) [,.nQ34;12 _ 3 _ 4 _ 5 _ 51IQ..-',!' ( - 514) ( - 21 - 3) - ;1234 _ 5 _ 5I1Q..-',!' ( - 51 - 3) ( - 214) ] 

+ £2£~sMI2pI ( - 510 [,.nQ34;12 _ 3 _ 466I1Q..-',!' (114) ( - 61 - 3) - ;1234661IQ..-',!' (11 - 3) ( - 61 4 ) ] 

+ £1£2£6[,.nQ34;12_3_4_5_5661IQ..-',!' ( - 514)( - 61- 3) - ;1234-5-5661IQ..-',!'( - 51- 3)( - 614)]}. (07) 
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These expressions satisfy the symmetry relations (7.9)­
(7.12) as required. 

The sum of amplitudes for y- and Zo-exchanges is ob­
tained by the application of an operator for the correct per­
mutation ofxA,KI, and the assignment of the mass A accord­
ingto (A42) and (A44). This operator is evidently 
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The 0(3,1) symmetry problem of the charge-monopole interaction 
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The question of whether there exists a smooth, time-independent conserved vector observable 
in the classical mechanics of the charge-monopole interaction that spans an 0(3,1) Lie 
algebra together with the angular momentum or not is examined. It turns out that any 
candidate for such dynamical symmetry algebra has hard singularities at that part of the phase 
space that corresponds to charge-monopole collisions. In the course of the investigation we use 
the transformation of Boulware et al. [D. G. Boulware, L. S. Brown, R. N. Cahn, S. D. Ellis, 
and C. Lee, Phys. Rev. D 14, 2708 (1976)] relating the charge-monopole system to a point 
mass moving in an inverse square potential. This transformation is shown to be a complete 
isomorphism between the scattering parts of the related Hamiltonian systems; its global 
behavior is described in terms of an U ( 1) principal fiber bundle of nontrivial topology. Several 
remarks on the symmetries of various monopole problems are made, e.g., the most general 
O( 4) symmetry algebra is given for a special form of the charge-dyon interaction. 

I. INTRODUCTION 

There has been a renewed interest l
-

8 in the symmetries 
of the electric-charge-Dirac-monopole interaction. lackiw l 

treated the quantum mechanics of this problem on the basis 
of a time-dependent 0 (2,1 ) X SO (3) symmetry and he 
asked about the possible existence of a manifestly O( 3, 1) 
invariant formalism that would facilitate the computations 
and deepen the analogy to the Coulomb-Kepler scatter­
ing.9

•
lo The existence of an 0(3,1) symmetry in the charge­

monopole quantum mechanics, which is properly analogous 
to that of the Coulomb-Kepler problem, would imply that 
there should already exist a time-independent 0 (3,1) invar­
iance algebra in the classical mechanical version of the prob­
lem. The investigation of this latter existence question is the 
main subject of this paper and it will be answered in the 
negative in Sec. III. Gol04 announced an 0 (3,1) algebra of 
conserved observables. We will see that this, and in fact any 
time-independent 0(3,1) completion of the rotational sym­
metryalgebra, has hard singularities at that part of the phase 
space that corresponds to charge-monopole collisions. In 
our investigation we use a method II originally developed for 
looking for dynamical symmetries of spherically symmetric 
potentials. This is possible because there is a transforma­
tionI2

•
J3 relating the charge-monpole interaction to a point 

mass moving in an inverse square potential. For further use 
and for its own interest, in Sec. II we analyze the properties 
of this transformation in detail. It is an isomorphism 
between some restricted Hamiltonian systems and its nontri­
vial global topology will be unfolded, too. In the concluding 
final section, among other things, we give the most general 
o ( 4) symmetry algebra for a special form of the charge­
dyon interaction. 14.15 

II. THE RELATION BETWEEN THE CHARGE­
MONOPOLE SYSTEM AND A POINT MASS IN AN 
INVERSE SQUARE POTENTIAL 

The classical mechanics of a nonrelativistic point charge 
in the field of a Dirac monopole is described here by the 

Hamiltonian system (MD,WD,HD ). The phase space for the 
particle, M D' is identified with the set of pairs 
(r,p) = (rOPj) with r#O. The phase space MD carries the 
symplectic form 

WD = -dOD -eY, (2.1 ) 

where 0D = pj df is the Cartan form and 

Y = ~ Y jj df I\drj , Y jj = gEjjkr" 1,-3 (2.2) 

is the field strength tensor of a monopole of magnetic charge 
g. Our test particle, whose electric charge is e and mass is m, 
moves along the integral curves of the Hamiltonian vector 
field of 

HD = (l/2m)llpI12. (2.3) 

The Poisson bracket { , }D of two functions on the phase 
space is defined by WD (see, e.g., Refs. 16 and 17): 
(f,g}D = WD (Xf,xg), with the Hamiltonian vector fields 
Xf,xg. For the coordinate functions, for example, 

{rOrj}D = 0, {rj,pj}D = Djj , {Pj,Pj}D = eY jj . 
;I 

There exists an interesting relation I2
•
13 between the 

charge-monopole system and a particle in an attractive in­
verse square potential. The phase space of this latter, de­
noted by M p ' is again identified with (R3

\ {O}) X R3
, whose 

points we call (R, P) in this case. Its symplectic form is 
Wp = - dOp = - d(Pj dRj) and the Hamiltonian is 

H = -1_IIPI12 _ e2~ _1_. 
p 2m 2m R 2 (2.4) 

To Wp is associated the Poisson bracket { , } p giving for the 
coordinate functions {Rj,R)p = 0, {poP)p = 0, 
{Rj,Pj}p = Djj' Both systems are spherically symmetric; 
J = rXp - egr/r and L = RXP are the corresponding an­
gular momenta. Here J and L span an SO(3) Lie algebra 
with respect to { , }D and { , }p, respectively. Observe, 
that the two systems (MD, WD,HD ) and (Mp, Wp,Hp) can­
not be globally equivalent since Wp is an exact two-form 
while WD is not exact because Y describes a magnetic mon­
opole. 
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Let us define 

M~ = {(r,p)EMD I IIJ(r,p) 112 > e2g2} (2.5a) 

and 

(2.5b) 

where M~ is a smooth open submanifold in MD that is in­
variant with respect to the flow of H D • Therefore we can 
introduce the restricted Hamiltonian system 
(M~, W~, H~), where W~ = WDIM\', and 

H~ = H
DIM

\',. Analogously, we will consider the system 

(M~, W~,H~). Note that M~ and M~, respectively, con­
tain the scattering trajectories. Now we proceed to show that 
the above two "restricted Hamiltonian systems" can be can­
onically identified. To see this define the map A: M~ -M~ 
by 

J [ eg ] R;OA(r,p) = I r; + J2 rJ; , (2.6a) 

p.OA(r p) =!.. [po + ~ (r,p) J.] 
I , I I J2 r I' 

(2.6b) 

where J = IIJII, 1= 11111 = Ilrxpll. The relation (J, r/r) 
= - egimplies that, for fixed J, the trajectories of the parti­

cle interacting with the monopole lie on a cone whose axis is 
J. Geometrically, (2.6a) means that one rotates r into the 
plane perpendicular to J. Hereby the trajectories are carried 
into those of the potential - e2g2/(2mR 2), this is why Boul­
ware et al. 12 introduced the transformation. Anyway, the 
background potential seems simpler than the field of the 
monopole. It was also observed in Ref. 12 that (2.6a) used 
together with the relations p(t) = mr(t), P(t) = mR(t) 

converts HD and J into Hp and L. 
As a matter of fact (2.6) gives us the only transforma­

tion completing (2.6a) in a way that 

Hp(A(r,p») = HD (r,p), L(A(r,p») = J(r,p) (2.7) 

hold on M ~ . Here we are interested in the symplectic nature 
and global properties of the transformation (2.6). First, A is 
a global diffeomorphism from M~ to M~, its inverse u: 
M~ -M~ is described in our coordinates by the equations 

[ 
e2g2 ] 112 eg 

r.ou(R,P) = 1 - -- R. - - RL. , 
I L2 I L2 I 

(2.8a) 

[ 
e2g2 ] 112 eg (R,P) 

P·ou(RP) = 1-- p. ----L. 
I' L2 I L2 R I' 

(2.8b) 

with L = IIRXPII. The point is that actually A is a symplec­
tomorphism, A * ( W~) = W~. This is equivalent to 

{joA,hoA}D = {j,h}p 0A (2.9) 

for any j, hEC 00 (M ~.) It is enough to prove (2.9) for the 
coordinate functions, then 

{R;OA,RjOA}D = {R;,Rj}pOA = 0, 

{R;OA,PjOA}D = {R;.Pj}pOA = O;j' 

{P;OA,PjOA}D = {p;,Pj}pOA = 0 

(2.10) 

are verified by explicit calculations. Taking into account 
(2. 7) we summarize the above results in the following 
theorem. 
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Thereom 1: A is a diffeomorphism from M ~ to M ~ that 
carries the Hamiltonian system (M~, W~, H~) into 
(M~, W~, H~) and commutes with the action ofthe rota­
tional symmetry group SO (3) of the related systems. (Of 
course, the inverse transformation u = A -I is the same in 
the reverse direction. ) 

As a second step, now we investigate the behavior of our 
maps on the boundaries of the open submanifolds M~ and 
M ~. The closure of M ~ is M D' which can be decomposed as 
M~ UBD , where 

BD = {(r,p)EMD Irxp = O}. (2.11 ) 

The "boundary" BD is a line bundle over R3
,\ {a} because 

(2.11) tells us that for any fixed r, p varies on the line parallel 
to r. On the other hand, the closure of M~ in Mp can be 
decomposed as M~ = M~ UBp with the boundary Bp given 
as 

(2.12) 

HereBp is a "cylinder bundle" over R3
,\ {O}, for any fixed R, 

P can vary on the surface of an infinite rotation cylinder with 
axis R and radius legllR. From these we see immediately 
that Bp cannot be diffeomorphic to BD since dim Bp = 5 
while dim BD = 4. Notice, however, that the formula (2.8) 
is well defined also on the boundary, so we obtain a unique 
extension denoted also by u, which maps M~ UBp onto 
M~ UBD . The relations Hp = HD 0u, L = Jou remain val­
id for the extended map. Explicitly, on the boundary (r, 
p) = u(R, P) is given by 

r = - (R leg)L, p = - «R,P)leqR)L, (2.13 ) 

because of (2.8) and (2.12). Our first result in the character­
ization of u is the following theorem. 

(a) 

Theorem 2: Bp -BD is a U(1) principal fiber bundle 

with projection u described in (2.13). 
From their pictures as cylinder and line bundles over 

R3
,\ {a} we see that both Bp and BD are smooth manifolds, 

and closed submanifolds in Mp and M D , respectively. On 
account of (2.13), U: Bp -BD is a smooth surjective map. 
There is a natural action of U ( I) on Bp ' which makes it a 
principal bundle with projection u. Let (R, P)EBp and 
g(a) = e;aEu( 1). The vectors Rand P lie in the plane ~, 
which is perpendicular to L = R X P and contains the origin. 
Now denote by Ra and P a the vectors in ~ obtained by 
rotating, respectively, Rand P around L with angle a in a 
counterclockwise direction. The formula 

(2.14) 

provides us with a free right action ofU (1) on Bp for which 
only the identity g(a) = e;a = 1 has any fixed point. It fol­
lows easily from (2.13) and (2.14) that uoRg(a) = u, and 
that each (R, P) with fixed image under u belongs to a 
unique orbit of U (1) in B p' These facts together prove 
Theorem 2. (a) 

Now we clarify the structure of the bundleBp -BD. Let 
B ~ be the part of Bp in which (R, P) = O. Analogously, we 
denote by B ~ the (r, p) = 0 (and then p = 0) part of BD • It 
is convenient to consider first the B ~ -B ~ subbundle of 
B p _ BD • We remark that the integral curves of the 1/ R 2 
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potential in B ° describe uniform circular motions and u pro­
jects any traj:ctory of circular motion onto a certain phase 
point in B ~ representing the charge at rest in the monopole's 
field. Using the obvious identification of B~ with JR3\ {a} 
and that of Mp with pairs (R, P), B ~ can be regarded as 

° _ {. Illr ll #0, IIRII = IIrll, (R,P) = o} (2.15) 
B p - (r,R,P) R PI' X =-egrr 

as a consequence of (2.13) with (R, P) = 0. Then the pro-
jection B ° ----B ~ reads as (r;R,P) ____ r. Since 

p ° 0' JR3\ {o} = S2 X R+, the topology of the bundle B p ----B D IS 
determined by its restriction to S2. On the other hand, for 
IIrll = 1, (r; R, P) ---- (r; A, 11) [where A = R, B = PI 
( - eg), 11.:4 II = liB II = 1] maps this restriction isomorph i­
cally onto the bundle of oriented orthonormal frames of S 2, 

which is SO (3) 2f SU (2) IZ2 • To sum it up, we have proved 
the following theorem. 

Theorem 3: The restriction of the bundle B ~ ____ B ~ to S 2 

is isomorphic to the Hopfbundle SO(3) ____ S2. 
It seems quite accidental that the "boundary fibering" 

leads to the same bundle that belongs to a Dirac monopole of 
charge 2eg = 2. At this point it is easy to clarify the structure 
of the whole bundle Bp ----BD • To this let us introduce a map 
B ----B ° by projecting the P part of any pair (R, P)EBp to 
the pla~e that is perpendicular to R and contains the origin. 
This is a bundle map, it commutes with Rg(a) acting both on 
Bp and B~, for any g(a)EU(1). Hence it yields a map 
between the corresponding bases. As it is easy to see, this 
latter map is just the bundle projection from the line bundle 
BD to its base manifoldB~ 2fJR3\ {a} sending (r, P)EBD to 
r. In conclusion, the bundle Bp ----BD can be regarded as the 
pullback (see, e.g., Ref. 18, p. 60) of the bundleB ~ ----B ~ by 
the above natural map from BD onto B ~ . 

III. NONEXISTENCE OF THE TIME-INDEPENDENT, 
GLOBAL 0(3,1) SYMMETRY ALGEBRA 

Our purpose in this section is to answer the question of 
whether there exists a smooth, time-independent, conserved 
vector observable of the charge-monopole system that spans 
an O( 3, 1) Lie algebra together with the angular momentum 
or not. To find the answer, we apply, through the use of the 
related inverse square potential, a method II originally devel­
oped for the investigation of dynamical symmetries of 
spherically symmetric potential problems. First we shall re­
strict our considerations to M ~ and derive the most general 
0(3,1) algebra of the above-mentioned type there, then ex­
amine its smoothness at the boundary B D • 

An arbitrary phase point (R, P)EM~ determines, as an 
initial value, a scattemg trajectory of the particle influenced 
by the potential - e2~/2mR 2. For any (R, P)EM~ let 
r(R, P) denote the unit vector pointing to the unique turn­
ing point of the actual three-space trajectory. After a bit of 
calculation one finds the explicit expression 

r(R,P) = (cos 'T)R + (sin 'T)R xl. (3.1) 
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with 

L (R,P) 
'T = 'T(R,P) = arctan (3.2) 

~ L 2 _ e2g2 ~ L 2 _ e2g2 

(Here and in the following the "hatted" symbols stand for 
the corresponding unit vectors.) In this way we have ob­
tained a conserved vector, without explicit time dependence, 
for the restricted potential problem, that is, 
{r H} = 0 {L. rk} = Ek r hold on Mpo. In addi-i' P P , " pIn n 

tion, we have the relation {ri,r k}p = 0 as it is easy to check 
(it also follows from the general results of Ref. 11). The 
point is that using r we can write I I the most general smooth, 
conserved vector function on M ~ as 

(3.3 ) 

where CPI' CP2' and 1/1 are arbitrary but smooth, time-indepen­
dent scalar constants of motion, that is, C co functions of Hp 
and L. The properties of the map A.: M~ ----M~ allow us to 
transfer this result from the potential to the monopole prob­
lem. So the general form of a conserved C co vector observ­
able of the restricted charge-monopole problem that does 
not depend explicitly on time is 

D = <l>IA + <l>2J XA + IIJJ. (3.4) 

Here A=r0A., <1>1 (H,J) , <1>2 (H,J) , and IIJ(H,J) (H 
= H D ) are optional functions that are smooth on the "half­

infinite, open rectangle" H> 0, J> I eg I, the inverse image of 
which under the map (H, J): MD ---- JR2 is just M~. 

Now we proceed to single out those conserved vectors 
that, besides the trivially valid equations 

{Ji,Jk}D = EiknJn, {Ji,Dk}D = EiknDn , 

satisfy the 0(3,1) commutation relations {DjODk}D 
= - E'k J as well, leastways on M~. The prescription of 

these P~i~s~n brackets restrains the choice of the conserved 
scalars present in (3.4) according to 

allJ .!=o ~_J.. aQ2 +J=O, (3.5) 
aJ+J 'J 2aJ 

whereQ2 = (<1>1)2 + (<1>2)2. The general solution of this sys­
tem of equations is given by 

IIJ = A (H)IJ, Q2 =J2 _1IJ2 -B(H) , (3.6) 

where A (H) and B(H) are arbitrary functions smooth on 
the half-line H> O. By writing <1>1 and <1>2 in the form 

<1>1 = Q cos S, <1>2 = Q sin S (Q = + W) , (3.7) 

we introduce a new scalar constant of motion S(H, J). 
At this stage we have a wealthy collection of time-in de­

pendent 0(3,1) symmetry algebras on M~, with two op­
tional C co functions of the Hamiltonian A (H) and B(H) 
and with a third conserved scalar S(H, J), which must be a 
function of the type ensuring the smoothness of <1>1 and <1>2' 
But, ultimately, we are interested in the existence of a proper 
0(3,1) symmetry, we want the vector D to be well defined 
and as smooth as possible on the whole of MD' As a first step 
in the derivation of an 0(3,1) algebra smooth on M D , let us 
suppose that the function D remains continuous at the 
boundary BD • Decompose it as D = DII + DlO with 
DII = (D, J )J. It will be useful to consider simultan..:,ously 
C = Dou: M~ ____ JR3, too. Here C is continuous on M~ on 
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account of the continuity of (7: AI ~ - MD' Furthermore, C is 
a vector function on AI ~ : 

C(gR,gP) = gC(R,P) (3.8) 

is valid for any (R, P)EM~ and gESO(3) acting on three­
vectors in the usual manner. The fact that (7: M ~ - M ~ is an 
SO(3) equivariant diffeomorphism implies (3.8) on M~ 
and then it holds on the boundary Bp as well because of the 
continuity of C. The decomposition of C corresponding to 
that ofD is C = CII + Cp where CII = DII 0(7 = (C,L )L. On 
the other hand, by its very definition, C, when restricted to 
the boundary Bp ' must be invariant with respect to the bun­
dle action of U ( 1) described in Theorem 2 of Sec. II. Com­
bining this condition with (3.8) we obtain that C1 vanishes 
on Bp since Rg(a) [see (2.14)], for any g(a)EU(1), rotates 

any vector around the axis L. Consequently, returning to 
M D , the equation 

(3.9) 

must be satisfied for any continuous vector function D: 
MD _R3. 

In order to get a vector that is smooth on the whole of 
M D from the formula (3.4) we assume that the functions A 
and B introduced by (3.6) are Coo on the closed half-line 
H>O, not only in its interior H > 0. This is a natural assump­
tion in the light of the relations 

(3.10) 

which are derived from (3.4) and (3.6). As to the scalar 
function S(H, J) in (3.7), notice that the ansatz S = ° 
should yield a smooth D on M D if one could obtain such a D 
at all, since in that case Dl would point in the physically 
distinguished direction of A on M ~ . So we cannot lose much 
by making the convenient assumption that S is smooth on 
the half-infinite, closed rectangle H>O, J> legl. Now, trans­
late condition (3.9) into 

Q2 (H,J = legl) = 0. (3.11 ) 

This equation together with (3.6) provides us with an alge­
braic constraint between A (H) and B(H). Explicitly, (3.6) 
and (3.11) give rise to 

B(H) =e2~_A2(H)/e2g2, Q=IF, (3.12) 

where we introduced the notation 

(3.13) 

and 1 = ( J2 - e2g2
) 1/2. Let us observe that the requirement 

(3.11) is not only necessary but also enough for D to be 
continuous on the whole of MD provided that that scalar 
functions present in its formuala (3.4) are continuous for 
H;;.O, J> legl. Thus at this point the conserved vector under 
inquiry is certainly smooth on M~, spans there an O( 3, 1) 
Lie algebra together with J and is at least continuous on the 
whole of MD' 

The task ahead of us now is to decide whether the op­
tional functions that left A (H) and S(H, J), which are as­
sumed to be C 00 for H>O, J> I egl, can be chosen in a way 
ensuring the C 00 or at least the C I character of D on the 
whole of MD' Unfortunately, we have no further "criterion" 
at hand to restrict the form of D, so we are forced to investi­
gate directly the behavior of the partial derivatives of D at 
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the boundary BD • First of all, by collecting our previous 
equations, we rewrite D as 

D = r{ - eg~ + FPr sin(v - S) + FI2 cos(v - S)} 
rJ rJ 

+ rxp{~ + eg F cos(v - S)} 
J2 J 

-p{Frsin(v-S)}. (3.14) 

Here Pr = (r,p)/r, 1= Ilrxpll and, in accordance with 
(3.2), v = rOA,: M~ -R is given by 

v = (J /1) arctan (rPr/l) . (3.15) 

We note that (3.14) reproduces (apart from a sign error in 
Ref. 4) the conserved vector of Golo when taken with the 
ansatz S = 0, A = 0, F = 1. 

Turning to our problem let (r, Pr • r) be an arbitrarily 
fixed phase point in B D • Furthermore, let us consider 
p(l) = Prr + (I/r)n, where n = (n l , n2, n3 ) is some fixed 
unit vector which is orthogonal to r. For 1 #0 (r, p(l)) is in 
M~ since Ilrxp(l)112 = 12

, and 

lim(r,p(l)) = (r,Prr) . 
1-0 

For simplicity, in the following we denote (aDJaPk )(r,p(l)) 
by Y jk (I). Weare going to show that, in general, Y jk (I) does 
not approach a limit as I- 0. This will prove that D j cannot 
be a C 1 function on MD' It is convenient to put Y jk (I) in the 
form 

Yjk(l) = Ejk(l) + Gjk(l)sin(v-S) + K jk (l)cos(v-S) , 
(3.16 ) 

because of the form of D in (3.14). By an elementary but 
rather tedious calculation we obtain 

A rjrk dA Pr 
Ejk(l) = tJ(I) -Ejknr"-----, 

e2~ reg dH m 

Gjk (I) = tJ (I) + G~) + I-IG ~ - I) , 

K jk (I) = tJ (I) + K ~2) + I - 1 K ~ - I) , 

where 

( 3.17) 

G ~2) = F{ (rh - rOjk )/r + (1T/2) (sgn Pr )rjnk} , 

G~-I) =F(1T/2)eg(sgnpr)nkEjjmrjnm' 

K~) = - F(sgn eg)Ejk/ j , 

K~-I) = F(1T/2)legl(sgnpr)rnjnk . 

(3.18) 

TheA and dA /dH in (3.17) and Fin (3.18) are taken at the 
arbitrarily fixed phase point (r, Prr)EBD • Assuming that 
Pr#O, we see from (3.15) that liml_olvl = 00. Therefore 
both sin (v - S) and cos (v - S) oscillate as I- 0. From this, 
from the I independence and non vanishing of G ij>, 
K ij) (j = 0, - 1) it follows that, in general, Y jk (I) really 
does not have any limit as 1-0. In conclusion, D cannot be 
CIon the whole of Mo no matter how one chooses the Coo 
scalar constants of motion A (H) and S(H, J). Thus there is 
no global, time-independent 0(3,1) symmetry algebra of 
the form ( J, D) for the charge-monopole problem. 

Let us make some remarks about this nonexistence 
statement. First, the same reasoning would have lead to the 
same conclusion if we had taken the conserved scalar func-
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tions appeared in the demonstration as C 1 and not necessar­
ily C 00 functions. Second, the statement obviously remains 
valid without the smoothness assumption made at H = O. 
Third, let us notice that, in principle, one could allow S(H, 
J) in (3.7) to be a function defined only modulo 21T for 
which sin S, cos S, a sin S /ari, ... ,a cos S /a pk are contin­
uous on M~. Perhaps some kind of singularity of S at 
J = legl could compensate the singularity ofD, which arises, 
after all, from the singularity of v given by (3.15)? This is not 
the case. It can be shown (analyzing the explicit form of 
aDJapk) that liml_o Y ik (I) cannot exist in that case either. 

It is well known that for the Kepler problem the Runge­
Lenz vector gives rise to smooth 0 (3,1) and 0 ( 4) algebras 
only on the positive- and negative-energy submanifolds of 
the phase space, respectively, and not on the whole of it. 
Notwithstanding, these symmetry algebras are very useful in 
the quantum mechanics of the Kepler problem (e.g., Refs. 9 
and 10). Our "almost global" symmetry algebras ( J, D), 
however, are quite useless for the quantum mechanics of the 
charge-monopole scattering. The reason is that Bo , where 
D has its inevitable singularity, has nonempty intersection 
with every constant energy submanifold of (Mo,Ho )' 

IV. DISCUSSION AND CONCLUDING REMARKS 

Here we would like to mention some further results con­
nected with the transformation analyzed in Sec. II and with 
the symmetries of the charge-monopole interaction and to 
point out some problems. Let us suppose that, beyond the 
magnetic field of the monopole, the test particle is also in­
fluenced by an additional spherically symmetric potential, 
that is, the Hamiltonian reads as 

(4.1 ) 

instead of the simple kinetic Hamiltonian (2.3). Obviously, 
the transformation described in (2.6) and (2.8) relates this 
problem to a pure potential one governed by the Hamilto­
nian 

H' = -1-IIPI12 + VCR) _ e
2

i _1_. 
p 2m 2m R 2 

( 4.2) 

For example, by putting in (4.1) 

a e2i 1 
V(r) = --+--- (a>O), 

r 2m r (4.3 ) 

one can describe the charge moving in the field of a dyon and 
also influenced by an extra l/r potential, or with another 
interpretation of the constants a, e, g: the interaction of two 
dually charged particles. 14,15 The quantum mechanical ver­
sion of this problem 14,15 possesses a dynamical O( 4) invar­
iance, the extra repelling potential was introduced in Ref. 14 
just to get a highly symmetric system. This symmetry is un­
derstandable from the fact 13 that in this case the "trick" of 
Boulware et al. 12 leads to a Kepler problem. We have carried 
through an analysis to answer the question of what the most 
general time-independent 0 ( 4) symmetry algebra of the 
form ( J, D) is on the negative-energy submanifold of the 
phase space of the system governed by Hi:, with potential 
( 4. 3). This is parallel to the analysis in Sec. III and that of in 
Ref. 11 for the Kepler problem. Therefore we give only the 
result 
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D=X( -2mHi:,)-1/2 

X { (cos S) [ - p X J + mar - m;:g J] 
+ (sin S)J X [ - p X J + mar] + smaeg J}. ( 4.4 ) 

J2 
Here S = S(H i:" J) is an arbitrary smooth scalar constant 
of motion on the Hi:, < 0 part of the phase space and 
s = ± 1. From (4.4) one gets the conserved vector used in 
Refs. 13 and 14 by taking S = 1T, S = - 1. The general 
expression (4.4) or its simple special cases with S = k 1T /2 
(k = 1,2,00') seem to have escaped notice so far. It would be 
interesting to investigate the integrability and the quantum 
mechanical role of the general O( 4) algebra given here. Oth­
erwise, the potential (4.3) appears in quite a natural way19 in 
the mechanics of an isospin-carrying test particle feeling the 
large distance field of the Prasad-Sommerfield monopole. 

As a second matter, notice that the transformationsA-, a 
described in (2.6), (2.8) can be trivially completed to trans­
formations between the corresponding evolutional spaces 16: 
by taking the identity map for the time coordinate. In this 
way one can relate time-dependent properties of monopole 
and pure potential problems. For example, the conformal 
0(2,1) symmetry of the inverse square potential2o can be 
translated21 into the 0(2,1) symmetry of the monopole dis­
covered by Jackiw. 1 It is worth noting that the rotational 
SO (3) X conformal 0 (2,1) symmetry of these systems rep­
resents that part of the maximal kinematical in variance or 
Schrodinger group22,23 of the free particle that remains un­
destroyed by coupling the particle to a monopole or/and to 
an inverse square potential (for details see Refs. 5, 8, and 
24). On the other hand, the SO (3) X 0 (2, I ) symmetry alge­
bra of the charge-monopole problem is partly contained in a 
spectrum and charge-quantization generating 0 (4,2) alge­
bra2,3,15,25 containing conserved as well as nonconserved ob­
servables. The origin of this, from the viewpoint of analytical 
mechanics, is the face6 that the symplectic manifold 
(Mo,Wo ) is canonically isomorphic to a coadjoint orbit of 
mass-O, spin-eg of the restricted Poincare group that carries 
a natural, invariant symplectic form [cf. our Eqs. (2.1), 
(2.2) and Eq. (17.145) in Ref. 16, p. 309]. On this basis it is 
clear that the charge-monopole quantum mechanics and 
that of the massless spinning particles are paralleI2,3.27; they 
arise from quantizations 16 on isomorphic symplectic mani­
folds. 

In general, having a symmetry algebra for a spherically 
symmetric potential problem that is smooth onM~ and pos­
sibly depends on time, too, one can pull it through to M~ 
and derive in this manner a symmetry algebra for the related 
monopole problem, which is smooth on M~, and vice versa. 
But in most cases local symmetries are not of particular in­
terest, all the symplectic manifolds of equal dimension are 
locally isomorphic after all. Unfortunately, there is no sim­
ple relation between the differentiability of a function 
fEC 00 (M~) nCCMo) at Bo and that of the corresponding 
functionfoaEC 00 (M~) nC(M~ UBp) at the boundary Bp. 
The point is that while a maps the manifolds M~ onto M~ 
and Bp onto Bo in a Coo manner, the whole map a: 
M~ UBp -.Mo in only continuous but not differentiable at 
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the boundary. This is a map from a manifold with boundary 
onto a manifold in the proper sense and so its differentiabil­
ity at a boundary point makes sense in terms of some local 
differentiable extension (e.g., Ref. 28, pp. 248-251), which 
does not exist for 0' because of the appearance of the square 
roots in its formula (2.8). This pathology forces a case for 
case smoothness investigation when one sets up a correspon­
dence between symmetries of monopole and potential prob­
lems. 

It would be of great interest to clarify the structure of the 
space of motionsl6 for the charge-monopole scattering but 
we "succeeded" only in realizing that naive approaches run 
into difficulties. These, as our nonsmoothness statement for 
the 0 (3,1) algebras, find their origin in the charge-mono­
pole collisions. What is really needed is some kind of regular­
ization, perhaps analogous to that of the Kepler problem. 29 
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Different formulations of the Riemann-Hilbert problem related to the constraint equations in 
supersymmetric Yang-Mills theories are discussed. 

I. INTRODUCTION 

The supersymmetric constraint equations I yield a su­
perfield formulation of N-extended supersymmetric gauge 
theories (see Ref. 2 for a review). For N>3 these equations 
put the theory on shell. 3

-
6 Thus they can be used for describ­

ing classical solutions of theN = 3,4 supersymmetric Yang­
Mills equations. This is especially important since the con­
straint equations possess some features of the completely in­
tegrable systems.4

•
7

•
8 In this paper we discuss possible for­

mulations of the related Riemann-Hilbert problem. In our 
opinion the formulation with two spectral parameters is the 
most suitable one. 

We consider the Yang-Mills superpotential sf with the 
components..ifp (even), sf~ (odd), sf Ai (odd) depending 
on xl', 01, 1JAi, where xl' are the Cartesian coordinates of 
Minkowski space and 01, 1J Ai are anticommuting variables, 
A,A = 1,2 being the spinor indices and i = 1, ... ,N. The com­
ponents of sf are superpotentials with values in the Lie alge­
bra of the gauge group ~ CGL(n,C). They define the fol­
lowing covariant derivatives: 

!PI' =ap +sfp ' !P~ =D~ +sf~, 

!P Ai = DAi + sf Ai' 

where 

D i a '0- Bia A = -- + lAB' a01 
a 

a = -, aAB = U
p

AB au 
I' axp ~ 

and uP are the Pauli matrices. The constraint equations of 
Grimm, Sohnius, and Wess I impose some restrictions on the 
curvature of sf, namely, 

FYAB) = D ~A sf~) + D {B sf~) + {..if~A. sf~) } = 0, 
(1a) 

(1b) 

F~Bj = D~ sf Bj + DBjsf~ + {sf~ . ..if B) + 2i 8;..ifAB = 0. 
(1c) 

It was shown by Volovich 7 that Eqs. (1) are satisfied if and 
only if the system of linear equations for a matrix superfield 
tP, 

z4!P~ tP = 0, 

ur4!P AitP = 0, 

a) Alexander von Humboldt Fellow. 

(2a) 

(2b) 

b) On leave from Institute of Theoretical Physics, University of Warsaw, 
Warsaw, Poland. 

(2c) 

possesses a nonsingular (i.e., tP- 1 exists) solution for arbi­
trary complex parameters z4 and ur4. Since the equations (2) 
are invariant under scaling of z4 and ur4 it is sufficient to 
assume that 

where 

II. THE RIEMANN-HILBERT PROBLEM WITH ONE 
PARAMETER 

A common property of many completely integrable 
equations is the existence of a linear system [analogous to 
(2)], which can be reduced to the Riemann-Hilbert prob­
lem in one complex variable. 9 Solutions of the original equa­
tions can then be obtained using the Atiyah-Ward an­
satz 10. I I and its generalizations12

•
13 or soliton generating 

transformations of Zakharov and Shabat 14 (see also Ref. 9). 
The question arises whether we can assume t = t(A) and 
relate (2) to the Riemann-Hilbert problem with respect to 
A. In most papers on the integrability of the constraint equa­
tions it is assumed that t = A 2 (and often a part of the equa­
tion is solved, but it does not change the following discus­
sion). Then the equations ( 1 ) remain exactly the 
integrability conditions for (2). If..if satisfies ( 1) and tPo, tPl 
are nonsingular solutions of (2), analytic inA for IA I < 1 + E 

(where E is a positive constant) and 1 - E < IA I..; 00, respec­
tively, then 

(3) 

is analytic in a neighborhood of the circle IA I = 1 and satis­
fies 

z4 D ~ G = 0, ur4D Ai G = 0, z4wB a AB G = 0. ( 4 ) 

On the other hand, for a given G that satisfies (4) and is 
decomposable according to (3), we obtain, in particular, 
that ur4 (DAitPl) tPl- I has, for IA I < 1, the analytic continu­
ation ur4(DAi tPO)tPO- I

• Therefore it can have at most a (sec­
ond-order) pole atA = 00, i.e., 

ur4(DAi tPl )tPl- I = -..if ii + A&'J i-A 2..if ii 

= - ur4..if Ai + A&'J i> 

where ..if Ai' &'J i are arbitrary coefficients. Since in general 
the &'J i do not vanish the Riemann-Hilbert splitting (3) do 
not imply (2b) and, consequently, do not yield a solution of 
the constraint equations (1) (in contrast to the results of 
Chau et al. 15). The equations for ..if and &'J i' which follow 
from (4), were considered by Aref 'eva and Volovich. 16 
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They are nonrelativistic and they do not imply the super­
symmetric Yang-Mills equations. 

There is no problem with additional fields resulting 
from (3) if t = A or t = 1/,1, but then the integrability con­
ditions for (2) are weaker then the constraint equations. We 
can improve the situation by imposing specific boundary 
conditions on tPo and tPl' e.g., for the gauge group GL(n,C) 

D; tPo(O) = DiitPl ( 00 ) = 0, if t = A, (5a) 

D;tPo(O) =DiitPl(oo) =0, if t= 1/,1. (5b) 

Unfortunately, because of these extra conditions we are un­
able to apply known solution generating techniques to (3). 

The assumption t = A 2 was also exploited in searching 
for the Backlund transformation between solutions of ( 1 ). 
Unfortunately the transformation given in Ref. 15 leads to 
fields, which do not satisfy (1), and the one obtained by 
Devchand8 is appropriate only for the linearized equations. 

III. THE RIEMANN-HILBERT PROBLEM WITH TWO 
PARAMETERS 

In this and the next section we assume that the param­
eters A and t are independent and take arbitrary values in 
CU 00. The space of pairs (A,t) is isomorphic to CP 1 X CP 1 

and can be covered by four overlapping regions Ua 

(a=0,1,2,3) such that IAI,ltl<I+E, for (A,t)EUo, 
1,1 I > 1 - E and It I < 1 + E, for (A,t)EU1, 1,1 I < 1 + E and 
It I> 1 - E, for (A,t)EU2 and 1,1 I, It I > 1 - dor (A,t)EU3, 
where E is a positive constant. Since Eqs. (2) are linear and 
for each Ua can be written in an analytic form with respect to 
(A,t)EUa it seems reasonable to assume that given a local 
solution .x£ of (1) there are nonsingular (as matrices) solu­
tions tPa of (2), which are defined locally in Minkowski 
space and analytic in the corresponding regions Ua •· If we 
define in UanUb the patching function 

Gab = tPa-1tPb' (6) 

then it follows from (2) that 

zAD ~ Gab = 0, uJtDAiGab = 0, zAwil aAilGab = 0. 
(7) 

Hence each Gab depends on xJ.L, e1, (JAi only through the 
following combinations: 

Wil~!!' ZA~j, zAe1, Wil(Jili, 

where 

(8) 

~: = ~il ± 2ie t (J ilk, Z A = ( - A, 1), W A = ( - t,1 ). 

The functions (8) are not completely independent since 

ZA (WilX_ Ail) - Wil (ZAX+ Ail) = 4i(zA et )(Wil(J ilk). 

In the rest of this section we shall assume that GL(n,C) 
is the gauge group. Then it is easy to show that given a set of 
Gab satisfying (7) and admitting the splitting (6) there are 
potentials .x£~, .x£ Ai' .x£ Ail such that the equations (2) are 
satisfied (with tP = tP a ) and hence the potentials satisfy ( 1 ). 
Thus (6) and (7) describe the regular Riemann-Hilbert 
problem, which implies (and probably is equivalent to) the 
constraint equations. 

The question arises whether (6) admits solution gener­
ating techniques. Weare rather pessimistic concerning a 
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generalization of the Zakharov-Shabat transformations. 14 

Probably it is better to look for an ansatz for Gab analogous 
to that of Atiyah and Ward. Following this direction let us 
note that due to (6) the Gab satisfy the composition law 
GabGbc = Gac ' hence Gab 1 = Gba and G03 and G12 can be 
defined in terms of the remaining Gab' 

G03 = G01 G 13, G12 = G IOG02• (9) 

Thus, G01 ' G02' G13, and G23 can be chosen as the basic patch­
ing functions. Unfortunately they are not independent since 

GOl GI3 = G02G23 (10) 

in UonUlnU2nU3. The properties (7), (9), and (10) do not 
yet guarantee the splitting (6). To complete them to suffi­
cient conditions one can assume 

GOl = XO-lXI' G23 = X2- IX3' 

G02 (Ao) = PO- 1P2' a;.po = a;,P2 = 0, 

(1Ia) 

( llb) 

where Xa andpa are nonsingular and analytic in Ua and G02 

is taken at a fixed value ,10 of A. Then substituting (11) into 
(10) yields 

(12) 

Hence X oGo2X 2- I, as a function of A, has an analytic continu­
ation in the whole complex plane (including infinity) and 
therefore it cannot depend on A, 

XOG02X2- l =Q, a;.Q=o. (13) 

Now it follows from (12) and (13) taken at A = ,10 that 

Q= (x0(Ao)Po- I)(P2X2(Ao)-I), (14) 

where the expressions in brackets are analytic for It I < 1 + E 

and It I > 1 - E,respectively.Adirectconsequenceof(11a), 
( 12), (13), and (14) is that the Riemann-Hilbert problem 
( 6) is satisfied by 

tPo =PoXo(Ao)-IXo, tPl =PoXo(Ao)-IXI , 
(15) 

The corresponding gauge fields can be identified using (2) 
with tP = tPo. Summarizing we can say that the Riemann­
Hilbert splitting (6) exists and yields a solution of the con­
straint equations if and only if there exist A, t-dependent 
matrix superfields G01 ' G02' G13, G23 that (i) are nonsingular 
(in the matrix sense) and analytic with respect to A,t in the 
corresponding regions UanUb, (ii) depend on xJ.L, e1, (JAi 
only through the functions (8), (iii) admit the splittings 
(11 ), and (iv) satisfy the consistency condition (1 0). 

The relevance of Eqs. (11) is based on the fact that they 
describe separate Riemann-Hilbert problems with respect 
to only one complex variable. The parameter t appears in 
(Ila) as an external parameter and it is rather natural that 
the functions X a should depend on it in an analytic way since 
G01 and G23 do. 

At the moment we are not able to give examples of Gab' 
which depend on both parameters A and t and lead to non­
Abelian solutions of ( 1 ). The major difficulty is presented by 
Eq. (10). All other conditions can be satisfied by taking the 
Atiyah-Ward ansatz for Gab' 

If the Gab do not depend on one of the parameters, say t, 
then without loss of generality one can assume 

J. Tafel 241 



                                                                                                                                    

Goz = G13 = 1, GOI = GZ3 = G(ZA~:h01,).) 
and the problem (6) reduces to the splitting 

G=ifJo-lifJl' asl/Jo = asl/JI =0. (16) 

The Atiyah-Ward ansatz and the Zakharov-Shabat method 
are both applicable in this case, e.g., for the gauge group 
SL(2,C) we can follow Corrigan et al. 11 in order to find 
solutions of (16). The resulting gauge fields can be called 
self-dual17 since they satisfy equations that imply the self­
duality of F/w ' namely, 

FYAB) = 0, FAiRj = 0, F~Rj = 0, for N;.2, (17a) 

FAB = 0, FAR = 0, FAR = 0, FpA = 0, for N = 1. 
(17b) 

The above equations are the integrability conditions for the 
linear system 18 

zA fiJ ~ ifJ = 0, fiJ Ai ifJ = 0, zA fiJ AR ifJ = 0, 

which follows from (2) under the assumption asifJ = 0. A 
similar situation occurs when the Gab do not depend on A. 
Then it can be assumed that 

GOI = G23 = 1, G02 = G13 = G(WRxA!,WAeAi,g). 

The resulting gauge fields satisfy equations, obtained from 
(17) by the change of indices (~ )+-+(Ai). In the case of an 
Abelian gauge group the two types of solutions can be super­
imposed. 

IV. REALITY CONDITIONS 

In this section we consider the reduction of the gauge 
group GL(n,C) to SU(n). In terms of the gauge potentials it 
is described by the conditions 

d p+ = - d p ' Tr d p = 0, (18a) 

d Ai = - (Cijd~ )+, Tr d~ = Tr d Ai = 0, (18b) 

where Cij is a constant nonsingular Hermitian matrix (by a 
change of variables it can be reduced to a diagonal matrix 
with entries ± 1) and + denotes transposition of matrices 
composed with the generalized complex conjugation, which 
maps 01 into cije Aj and reverses the order of anticommut­
ing factors. With the above restrictions on d it is easy to 
show that ififJ(A,g) is a solution of (2), then det ifJ satisfies 
(7) and (ifJ+ (g,).»)-I, where ifJ+ (g,A) denotes (ifJ(t,x»)+, is 
also a solution of (2). Thus, in accordance with (2), we can 
assume 

ifJ(A,g)ifJ+(g')') = 1, 

det ifJ = 1. 

(19) 

(20) 

Equations (2), (19), and (20) imply the constraint equa­
tions (1) and the reality conditions (18). Taking into ac­
count that in fact there are four functions ifJ a and four re­
gions Ua we can rewrite (19), (20) in the following form: 
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ifJo(A,g)ifJo+ (g,A) = 1, 

ifJ3(A,g)ifJ3+ (g')') = 1, 

ifJ2(A,g) = (ifJt (g,).»)-I, 

det ifJa = 1. 
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(21a) 

(21b) 

(2Ic) 

(22) 

In virtue of (6) Eqs. (21) and (22) imply the following 
properties of the Gab: 

G02 (A,g) = G 16 (g')'), 

G13 (A,g) = G 31 (g')'), 

det GOI = 1, det G23 = 1. 

(23a) 

(23b) 

(24) 

Thus GOI and G23 can be taken as the basic patching func­
tions and the remaining Gab are defined by (23) and (9). In 
terms of GOI and G23 the consistency condition (to) reads 

Got. (g,A)GoI(A,g) = G23 (A,g)G 2i (g')'). (25) 

Let us assume that GOI and G23 satisfy (25) and admit 
the splitting (11a) with det Xa = 1. Ifwe define G02 and G13 
according to (23) Eq. (11 b) is satisfied by 

Po = Xo+ (go,).o)(xo+ (g,Ao»)-I, (26a) 

(26b) 

where (Ao,go)EUo is a fixed point and Xo+ (go,).o) is intro­
duced for a more convenient normalization. Now it follows 
from the consideration after Eqs. (11) that Gab = ifJa- lifJb' 
where the ifJa are given by (15) and (26), in particular 

ifJo = Xo+ (go,Ao)(xo+ (g')'o))-IXo(Ao,g) -IXo(A,g). (27) 

Condition (22) is automatically satisfied and substituting 
Gab = ifJa- lifJb into (23) yields (in virtue of the analytic prop­
erties of ifJ a ) 

ifJo(A,g)ifJo+ (g')') = ifJ2(A,g)ifJt (g')') = e, (28a) 

ifJ3 (A,g) ifJ/ (g,A) = ifJI (A,g)ifJ2+ (g,A) = e+, (28b) 

where aA e = ase = 0. It follows from (27) that 
ifJo(Ao,go) = 1, so e = 1 and Eqs. (28) coincide with the rea­
lity conditions (21). Summarizing we can say that the Rie­
mann-Hilbert splitting (6) exists and defines a SU (n) solu­
tion of (1) if there exist A, g-dependent matrix superfields 
GOI ' G23 that (i) are analytic in uon UI and uzn U3 , respec­
tively, (ii) depend onxP , 01, eAi only through the functions 
( 8), (iii) admit the splittings (11a) with det X a = 1 (hence 
det GOI = det G23 = 1),and (iv) satisfy the condition (25). 
We suspect that each SU (n) solution of ( 1) can be obtained 
from some GOI ' G23. 

Unfortunately we are not able to give nontrivial, non­
Abelian examples that satisfy the above conditions. For the 
gauge group U ( 1) the condition det X a = 1 should be re­
placed by det X a # ° and we can take 

GOI = G23 = expJ, 

where 

1= l(zAXA: ,zA01,).) 

is analytic with respect to A in a neighborhood of IA I = 1. 
Equations (1Ia) are now satisfied by 

Xo = X2 = exp( - 10)' 

XI = X3 = exp(/I), 

where/o( II) is the part of the Laurent series oflcontaining 
only positive (resp. nonpositive) powers of A. Setting 
Ao = go = ° in (27) we obtain 

ifJo = exp(fo+ (g) - 10(A»). 

Hence, in virtue of (2), 
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sY'; = 0, sY'~ = - D ~h, 

sY'ii = 0, sY'ii = Diih +, 

sY'li = 0, sY'li = Dlih +, sY'2i 

sY'2i =D2i (h + -h), 

where 

f dJ. 
h=!I(OO)= -. f 

1"- 1= 12m/!' 

(29a) 

(29b) 

(30) 

The above solutions are linear superpositions of two self­
dual solutions (one of which could be called anti-self-dual). 
For 81 = eAi = 0 the formulas (30) yield all analytic solu­
tions of the Maxwell equations. 19 We do not know whether 
(29) and (30) represent all U(1) solutions of the supersym­
metric constraint equations. 

v. CONCLUDING REMARKS 

We have shown that there is no simple way of trans­
forming the constraint equations ( 1 ) into the Riemann-Hil­
bert problem in one complex variable. It can be done pro­
vided extraordinary boundary conditions, e.g., (5), are 
imposed on the wave functions, but then the soliton methods 
do not work. Such conditions can be avoided if we consider 
the Riemann-Hilbert problem (6) in two complex variables 
J., s. Unfortunately, soliton techniques are not yet worked 
out for this problem. We have slightly relaxed the conditions 
on the patching functions Gab' which assure the existence of 
solutions of (1) for the gauge group GL(n,C) (Sec. III) and 
SU(n) (Sec. IV). They can be easily satisfied if the Gab do 
not depend on one of the parameters J., S. Then the resulting 
gauge fields are self-dual or anti-self-dual (Sec. III). In the 
Abelian case they can be added in order to get real solutions 
of ( 1 ). Further examples are needed to prove the usefulness 
of the Riemann-Hilbert problem for solving the constraint 
equations. This work is in progress. 
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A result of Debye, Anderson, and Brumberger [Po Debye, H. R. Anderson, Jr., and H. 
Brumberger, J. Appl. Phys. 28, 679 (1957)] for isotropic porous media states that the 
derivative of the two-point spatial correlation at the origin is equal to minus one-quarter of the 
specific surface area. This result is generalized for nonisotropic media by noting that the 
angular average of the anisotropic two-point spatial correlation function has the same 
relationship to the specific surface area. 

I. INTRODUCTION 

Debye, Anderson, and Brumberger l have shown that, 
for isotropic porous media, the derivative of the two-point 
spatial correlation at the origin is equal to minus one-quarter 
of the specific surface area. The two-point correlation func­
tion can be obtained from pictures of cross sections of a ma­
terial using image processing techniques. 2 Then, the specific 
surface area can be measured using the result of Debye et al. I 
The practical importance of this result has been demonstrat­
ed recently by combining the measured values of specific 
surface area with a Kozeny-Carman relation to obtain esti­
mates of fluid permeability.3 

Since we do not always know that the porous material to 
be analyzed is isotropic, an important question arises con­
cerning the applicability of the result of Debye et al. for pos­
sibly nonisotropic media. We generalize their result to aniso­
tropic media by noting that the angular average of any 
two-point spatial correlation function has the same relation­
ship to the specific surface area. Thus, if the two-point corre­
lation function is computed from images by taking angular 
averages (as has typically been proposed2

), the slope at the 
origin will provide a valid estimate of the specific surface 
area regardless of the degree of anisotropy of the sample. 

II. ANISOTROPIC POROUS MEDIA 

For a porous material, we define a characteristic func­
tion/(x) = Oor 1. Then, we say that void regions have/ = I, 
while material regions have / = O. The first two void-void 
correlation functions are then given by 

S2 = (j(x) = ifJ, (1) 

and 

(2) 

The brackets (.) indicate a volume average over the spatial 
coordinate X. The void volume fraction (or porosity) is giv­
en by ifJ. We refer to these two correlation functions as the 
one- and two-point correlation functions, respectively. For 
isotropic materials, the one- and two-point correlations can 
in principle be measured by processing representative im­
ages of material cross sections. However, for anisotropic ma­
terials, multiple images in orthogonal planes are required to 

obtain all the necessary information. In general, we still as­
sume that the porous medium of interest is statistically ho­
mogeneous so that on average only the differences in the 
coordinate values are significant (translational invariance). 
With these assumptions, the two-point correlation function 
simplifies to 

A 

S2(r l ,r2) = S2(r2 - r l ) . (3) 

From Eq. (2), it follows that 

S2(r) =..!.. ( d 3xj(x)j(x + r) , (4) 
V Jv 

where V is total volume of integration. Two important facts 
about the two-point correlations for applications to random 
media are 

(5) 

and 

lim S2(r) = ifJ2 . (6) 
Irl- 00 

The theorem that we wish to prove states that 

A ~ (0) = - s/4 , (7) 

where s is the specific surface area (internal surface area per 
unit volume) and the angular average of S2(r) is defined by 

A 2(r) = _1_ f dcp dO sin OS2(rr) 
41T 

=-I-fdcpdosino ( d 3xj(x)j(x+rr) , (8) 
41TV Jv 

where r = rc O,cp) is the radial unit vector. 
The derivation of Eq. (7) proceeds as follows: Taking 

the derivative of Eq. (8) gives 

dA 2(r) =-I-fdcpdOsinO ( d 3xj(x) J/(x+rr) 
~ ~V Jv ~ 

(9) 

Defining the pore volume as Vp ' we have 

dA 2 (r) =-I-fdcpdosinor. ( d 3xVj(x+rr). 
dr 41TV Jvp 

(10) 
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Then, if das is an infinitesimal element of the material sur­
face area as, we have 

dAz(r) = _1_ r das f drp dB sin Br . nJ(xs + rr) , 
dr 417"V Ja, 

(11) 

where n is the unit outward normal vector at the surface 
position given by Xs. Now, if we let r-+O+ and center the 
coordinate system at Xs with n = Z, we find that 

f drp dB sin Br . nJ (xs + O+r) 

= 217" f dB sin B cos B f (xs + O+r) 

= 217" ro df-lf-l = - 17" , 
)-1 

and we obtain a definite result for Eq. (11) given by 

lim dAz(r) = as 
r-O+ dr 4V 
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(12) 

(13) 

Since the specific surface area is defined as s = as/V, Eq. 
( 13) is equivalent to Eq. (7). Debye et al. 1 used a more 
intuitive approach to obtain their result for isotropic media. 
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